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Abstract— Pathfinding algorithms are used for finding the 
shortest path to travel between a starting point and ending 
points if a path exists. This paper aims to research one of the 
most popular pathfinding algorithms which is A*. The purpose 
is to find out different aspects about the traditional A* 
pathfinding algorithm and test its suitability for being 
implemented in navigation systems like Waze. The algorithm 
will run through multiple limited 2D static grid-based 
environments in cases where obstacles are either present or 
absent. During the trials, its heuristics factor and run-time for 
will be tabulated. The research revealed that A* performs most 
efficiently when its heuristic factor is calibrated between 0.7 to 
0.8 and any value below 0.6 significantly increases its runtime. 
This shows evidence for A* to be suitable in navigation system 
but further testing with real-time data, and dynamic 
environments could better support its application within 
navigation systems. 

Keywords—A* algorithm, pathfinding algorithm, Waze path 
navigation system 

I. INTRODUCTION 

Most vehicles waste time on the road and burn more fuel 
due to poor traffic conditions (Chian & Kamsin, 2023), and in 
this age of rapid change where roads are constantly being 
changed, making traditional maps obsolete. This is why GPSs 
exist, to help us navigate through the confusing traffic and find 
the fastest way from our location to our destination. Other than 
the layout of the land and traffic data, GPSs also require a 
pathfinding algorithm. This report presents a comprehensive 
analysis of the A* algorithm, a widely utilized heuristic search 
algorithm renowned for its efficiency and effectiveness in 
pathfinding and optimization tasks. The literature review 
investigates into optimization principles, as well as examines 
the algorithm's inherent advantages. Conversely, the review 

also scrutinizes its disadvantages, including its sensitivity to 
the quality of heuristic estimates and its potential inefficiency 
in certain scenarios. The report also conducts a meticulous 
comparison between A* and alternative algorithms. 
Additionally, it explores upon real-life implementations of the 
A* algorithm across diverse applications, showcasing its 
practical utility in domains ranging from robotics to gaming. 
The report outlines the materials and requirements necessary 
for algorithm implementation, encompassing hardware and 
software prerequisites essential for executing A* efficiently. 
Methodologically, it describes the approach to algorithm 
implementation, elucidating the purpose and parameters 
governing its operation. Finally, the report presents the results 
and discussions derived from empirical evaluations, offering 
insights into the algorithm's performance, and discussing 
potential avenues for future research and optimization. 

II. LITERATURE REVIEW 

A. Strengths and Weaknesses of A* 

A* inherently has its strengths and weaknesses that make 
it suitable for specific use cases. The classic A* is popular for 
being a relatively simple algorithm that can operate in a closed 
2D or 3D environments as evidenced in Alsakka et. al. (2020) 
using A* to navigate 3D cable paths and Aziz et. al. (2022) 
comparing A* with Dijkstra and ACO in pathfinding for a 2D 
grid environment. Second, A* uses heuristics, so it always 
finds the shortest path if a path exists. In addition, A* operates 
more efficiently in environments with a smaller grid size and 
accurate weightage as well as only having 1 starting and 
ending point. This is demonstrated by Yerramilli et. al. (2021) 
when testing A*’s pathfinding capability in a grid map that 
represents a real-world location. 
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Consequently, due to these specifications, the traditional 
A* algorithm is built particularly for path finding in closed- 
space static environments like the one from Alaska et. al. 
(2020) and Rafiq et. al. (2020). This limits its use cases to 
situations like simple automatic navigation within game 
development, industrial cable planning and car navigation 
systems. Moreover, A* is an algorithm that relies heavily on 
its heuristics as since Goyal et. al. (2014) pointed out that its 
heuristics played a major role in its pathfinding. If the 
heuristics function is not properly coded to be admissible, the 
algorithm might fail to find the true shortest path. Moreover, 
the traditional A* has proven to not be efficient if there are 
multiple end points as mentioned by Goyal et. al. (2014), 
cannot be operated with real-time data as mentioned by Renoy 
et. al. (2015) as one of the traditional A*’s flaws; and does not 
work with negative edge weights, another issue that it uses up 
a lot of memory for dynamic environments as evidenced by 
Leigh et. Al. (2007) and Korkmaz & Durdu’s (2018) research. 

B. Real Life Implementation 

Besides your everyday car navigation apps, the A* 
algorithm is still used across different of life, utilizing 
its ability to find the most optimal path with remarkable 
efficiency. The algorithm has allowed the accomplishment 
of many different things, from navigating through obstacles 
to decision making, as well as searching for different things. 
We can see the algorithm is being applied to robots and 
provided it the ability to navigate through a cluttered 
warehouse while avoiding obstacles. Other than that, it has 
been used in aspects such as checkers, providing it with 
the intellectual capability to make decisions and anticipate 
opponent’s movements, or even guides the complex folding 
of proteins, which may potentially unlock medical 
breakthroughs and save more lives. Speaking of saving lives, 
it has been proven helpful for ambulances as the algorithm to 
generate an optimized path to help navigate ambulances 
through traffic, avoiding busy traffic to maximize time saved 
as time is of the essence when it comes to saving lives. 
Efficiency is one of the important aspects in manufacturing. 
With that in mind, A* has also been used to help plan factory 
production lines optimally to reduce times of production. 
Researchers has also used the algorithm to dive into the vast 
amounts of information present on the internet, utilizing its 
searching capabilities to return relevant search results, 
producing a smoother online experience. 

C. Comparison with Different Algorithm 

The literature review provides an in-depth analysis 
of various algorithms used for solving the shortest path 
problem, with a specific focus on why Waze chose to 
implement the A* algorithm in its navigation application. The 
review compares the A* algorithm with other algorithms such 
as Dijkstra, Bellman-Ford, and Floyd-Warshall. The real-life 
example of the shortest path problem will be identifying the 
shortest distance in navigating applications like Waze, Google 
Maps, Apple Maps, and many more directory applications. 
According to Matthieu Casanova, Waze utilises the A star 
algorithm to solve the shortest path problem (Sailiou, n.d.) 

According to the survey from Maharshi and Ronit (2018), 
the A Star algorithm is a combination of the Dijkstra algorithm 
and the Greedy Best-First Search algorithm. It uses a heuristic 
function to determine a node's distance from the target node 
and its current state by using f(m)=c(m)+h(m) equations to 

calculate the cost of the node. The algorithm efficiently 
computes an optimal solution by combining the Uniform Cost 
Search function from Dijkstra. Applications in various 
domains, such as traffic navigation systems and games for 
Non-Player Characters (NPC) pathfinding, have implemented 
the A* algorithm due to its efficiency in route planning. 
Studies by Maharshi and Ronit, found that heuristic search 
algorithms are generally better than blind search algorithms. 
For example, A star and UCS, A star is more efficient and able 
to find more optimal paths than Uniform Cost Search. A star 
algorithm is the advancement of UCS by integrating heuristic 
functions into the algorithm. This helps in improving the A 
star algorithm accuracy and sensitivity of finding the optimal 
path, in the meantime, it also increases the memory usage and 
computational time due to its heuristic function. (Maharshi, 
Ronit, 2018) 

The Dijkstra algorithm categorizes nodes into unmarked, 
temporary, and permanent. Research is conducted by Shrawan 
and Pal (2015) to compare the A star algorithm and the 
Dijkstra Algorithm in terms of investing their performance in 
searching the low-cost paths for road networks. According to 
the experiment results, it shows that A star performs better 
than Dijkstra in terms of time in every condition except in an 
uninformed search. (Sharawan, Pal, 2015) Not only that, the 
journal from Dian and Lysander also analysed that the A star 
algorithm performs better and faster in the large-scale map due 
to its heuristic compared to Dijkstra. This is due to the reason 
that Dijkstra explores all the directions uniformly, but A star 
only explores the direction of the destination. The statement 
can be proven by the loop count of each algorithm where 
Dijkstra comes with a higher loop count (Dian, Lysander, 
2020) 

The Bellman-Ford algorithm is designed to find the 
shortest path, even with negative weights, and can detect 
negative cycles and avoid them through the “relaxation” 
method (Vaibhavi, Chitra, 2014). A negative cycle in a loop 
will cause to decrease in the shortest path finding accuracy, 
creating an unreliable shortest path and an endless loop in a 
graph. Dijkstra is generally faster and more efficient compared 
to Bellman-Ford. Dijkstra algorithms consume more memory 
usage when executing on a large number of nodes, but 
Bellman-Ford may not require a complex data structure where 
it is more memory efficient (Samah et.al, 2020). In the context 
of GPS routing, the A star algorithm will be selected compared 
to Bellman-Ford due to its efficiency and optimality. Even 
though the Bellman-Ford algorithm can avoid falling into a 
negative cycle loop, but long processing time does not suit 
real-time applications and GPS routing. 

The Floyd-Warshall algorithm is used for finding the 
shortest path between pairs of nodes in a weighted directed 
graph. The algorithm uses a matrix to store distance and 
initialize with direct edge weights or infinity which means no 
direct edge exists. Using a matrix helps to find all possible 
shortest paths where it accommodates positive and negative 
edge weight (Harseerat, Gopal, 2022). According to the study 
conducted by Ramesh and Vishwas, they conclude that the 
Floyd-Warshall algorithm capable of finding the most 
accurate result for routing purposes, but it is the slowest and 
time-consuming method for shortest path finding compared to 
the A star algorithm. Even though the Floyd-Warshall 
algorithm has high accuracy in finding the shortest path, it 
isn’t a suitable algorithm for single-pair pathfinding. The 
Floyd-Warshall algorithm is more suitable for LPG Gas route 
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planning, instead of real-time GPS navigation (Ramesh, 
Vishwas, 2023). 

In conclusion, the A star algorithm has been chosen by 
Waze for their shortest path finding algorithm due to its 
efficiency and accuracy mainly because of the heuristic 
function. The Dijkstra algorithm is performing well, it 
explores all directions from the initial node, but it might 
consume more time. It is an alternative algorithm for shortest 
path finding compared to the A star algorithm. Compared to 
the A star algorithm, the Bellman-Ford algorithm is not suited 
for real-life route planning, but it is suitable for routing 
protocols in computer networks or telecommunications 
networks due to its negative cycle loop detection and high 
processing time. The Floyd-Warshall algorithm wasn’t the 
best algorithm in terms of route planning due to the time 
complexity, even though it has the most accurate shortest path. 

D. Optimization of A* algorithm 

Several aspects of A* algorithm can be optimised to 
improve the performance of the WAZE navigation system, 
including pathfinding speed, memory usage, path robustness 
and multi-target search. Mi at el. proposed RPT and JPS 
algorithms to be integrated with A* algorithm to filter 
unnecessary nodes, minimizing the execution time by 67% 
and pathfinding speed by 47% (Mi, Xiao, & Huang, 2023). 
Liu et al. presented fusion algorithm, which reduce the 
pathfinding time by approximately 70% (Liu, Wang, & Xu, 
2022). It managed to choose the best available option instead 
of revisiting the starting node, and lessen the path branching 
by exploring smaller range of path points to reduce data 
redundancy and path planning time. Waze can benefit from 
faster pathfinding algorithms to calculate optimum routes 
swiftly and generate real-time navigation updates, particularly 
in complex environments. 

Besides, Tang et al. suggested an improved A* algorithm 
formula, F(n) = G(n) + H(n) + C(n), which lowered memory 
consumption by 64.38%. It utilized turning points and key 
point setting method to improve path robustness and prevent 
the algorithm from being trapped (XiangRong, Yukun, & 
XinXin, 2021). Huang et al implemented JPS and pruning 
methods such as Triangle Inequality Theorem into 
conventional A* algorithm, reducing its memory space by 
14.98% and nodes by 3.14% (Huang, Li, & Bai, 2022). 
Memory space reduction can be advantageous to WAZE to 
operate more efficiently and smoother in users’ smartphones 
to improve user experience. 

Moreover, Yao et al. increases path robustness by applying 
unbelievable points, virtual human motion, inner searching 
markers and repeated path search so that it will not be trapped 
in obstacles (Yao, Binbin, & Qingda, 2009). It addresses 
WAZE’s challenge with unexpected road closures due to 
constructions or events and traffic congestion, preventing cars 
from getting trapped in such conditions. Xiang et al. also 
introduced the integration of greedy algorithm with 
A*algorithm to achieve multi-target pathfinding which allows 
the users to visit several destinations, like the add stops 
features in WAZE (Xiang, Lin, & Ouyang, 2022). 

 
 

III. MATERIALS AND METHOD 

A. Materials 

i. Software Requirements 

To execute the source code given, visual studio code is 
utilised for this research paper. Visual Studio Code is a code 
editor where users can run the code snippets within the file 
directly. The given source code is in Python format, python is 
selected as the development language due to its readability and 
conciseness. Python has five main components like UI, code 
editor, file’s view, compiler and debugger. (Youssef, 2022) It 
is easier to write and maintain the code, which is beneficial for 
complex algorithms like A Star for shortest path finding. 
Other than that, it has rich standards of library where it 
provides plenty of modules and packages. In this source code 
given, it has installed and imported two libraries which are 
pygame and random. Pygame is used for creating a graphical 
user interface for pathfinding visualisation. Meanwhile, 
random is used for generating random numbers, in this case, 
it creates a random maze for pathfinding. The A Star algorithm 
is executed in the Windows operating system. 

ii. Hardware Requirements 

The hardware that has been used for executing the given 
A star algorithm for pathfinding in this paper is the NVIDIA 
GeForce RTX3050 for the Graphic Processing Unit (GPU). In 
the source code, the A star algorithm itself doesn’t heavily rely 
on GPU acceleration. The Central Processing Unit (CPU) 
used in this research paper is 12th Gen Intel(R) Core (TM) i5- 
12500H. The performance of the A star algorithm can be 
affected by the capabilities of the CPU. A star algorithm 
includes various computations like node evaluation, heuristics 
calculations, priority queues, and so on. The speed of 
processing those computations depends on the processing 
power of the CPU. The computer uses 16GB RAM to perform 
the A-star algorithm. It involves keeping track of open and 
closed sets, node information storage, and computations that 
require memory.. 

B. Methodology 
 

Figure 1: A* algorithm Block Diagram (Zidane & Ibrahim, 2018) 

Figure 1 shows the block diagram of an A* algorithm. 
Pathfinding of A* algorithm is initialized by storing the 
starting node into an open list. The f, g, and h value of the 
node is then calculated. G value is the actual value from 
current node to child node. The final cost of the path will be 
stored in g value. H value is the heuristics value from start 
point to end point, which is computed using Euclidean 
Distance, also known as Pythagoras' theorem. F value is the 
sum of g value and h value. During exploration, the algorithm 
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generates child nodes by navigating the neighboring position. 
If the neighboring node is an obstacle, it will skip the 
calculation and proceed to the next neighboring node to 
evaluate their f value. The neighboring nodes are then stored 
in a priority queue in the open list, sorted by their f value 
ascendingly. The node with the lowest f value will be selected 
as the current node. After that, the current node is inserted 
into the closed list to prevent the node from being revisited. 
The current node is also checked to determine if it is the target 
point. If it is not the destination point, the child nodes that are 
not in closed list and have not been explored, are added into 
the open list. The iteration continues starting from computing 
the f value of the child nodes until the target node is found. 
When the algorithm reaches the goal node or the open list is 
empty, backtracking is executed to retrieve the best optimal 
path from start node to end node. 

 
IV. ALGORITHM IMPLEMENTATION 

The source code from James Robinson enables the 
simulation of pathfinding process of A* algorithm in a virtual 
environment (Robinson, 2020). The pathfinding can be 
simulated in a simple map by inserting one starting point and 
one or more end points by using keys 1 to 9. The algorithm 
will initialize the pathfinding from the starting point and 
progressively advances to other points in ascending order 
based on their assigned numbers. The maximum point that can 
be assigned is 9 points, including the starting point. To create 
a more complex environment, a random maze can 
automatically be generated by clicking the ‘m’ key. The 
algorithm will cross over the obstacles when navigating the 
map until the targets are found. The optimal path is returned 
after it reaches the targets. Customized maps can also be 
developed by adding the obstacles manually to the blank map. 
The pathfinding process of A* algorithm can be observed, and 
by importing time module into the source code, the run time 
of A*algorithm pathfinding can also be calculated. 

A. Purpose 

The A* algorithm serves the fundamental purpose of 
finding the optimal path from a designated starting point to a 
specified goal within a graph or network structure efficiently. 
Its significance spans across various aspects including route 
planning, robotics, and artificial intelligence, where 
identifying the shortest or most efficient route is significant. 
A* has the ability to keep a perfect balance between 
completeness and optimality, offering a versatile solution for 
various real-world problems that require pathfinding and 
optimization tasks. Its effectiveness lies in navigating 
through complex networks while intelligently leveraging 
heuristic estimates to guide the search process towards the 
goal, making it a cornerstone algorithm in computational 
problem-solving. (GeeksforGeeks, 2023) 

B. Parameters 

Critical to the functionality of the A* algorithm are its 
parameters. To be more specific, there are the heuristic 
function and the cost function. The heuristic function provides 
an estimate of the cost from the current node to the goal node, 
facilitating informed decision-making within the algorithm. 
Meanwhile, the cost function determines the expense 
associated with traversing from one node to another in the 
graph, influencing the overall optimization process. These 

parameters play a significant role in guiding A*'s exploration 
of potential paths, allowing it to prioritize those that are 
deemed most promising while maintaining computational 
efficiency. The heuristic function's value represents an 
approximation of the remaining cost from a given node to the 
goal, thereby shaping the algorithm's decision-making process 
and ultimately impacting its ability to find optimal solutions 
effectively. (GeeksforGeeks, 2023) 

 

Figure 2: Parameters for A* Algorithm 

The figure above shows the parameters for the A* algorithm. 
The parameters required for the algorithm are the starting 
node, goal node, its heuristic function (f), the cost function 
(g), and the total cost function (f), which is calculated using 
the f and g. In this case, h is set at 0.6, which can be seen in 
the red box located on the figure. The reasoning behind is so 
that it will prioritize diagonal lines instead of the straight lines 
as it is the optimal line and much efficient. As we change its 
value, the amount of time taken to generate an optimal line 
will be affected as well. These parameters guide the A* 
algorithm in exploring the graph systematically while also 
selecting the path intelligently towards the goal node. 

 
V. RESULTS AND DISCUSSION 

A. Results 
 

 
Figure 3: The map, start point and end point without obstacles. 
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Figure 4: The map, start point and end point with obstacles. 

 

Figure 5: A* behavior with H (0.5) in a map without obstacles 

Figure 6: A* behavior with H (0.5) in a map with obstacles 
 

 
Figure 7: A* behavior with H (0.7) in a map without obstacles 
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1.1 5.4140 
1.2 5.4163 

 

 
TABLE II. A* ALGORITHM RUN TIME FOR DIFFERENT H DISTANCE 

VALUE IN MAP WITH OBSTACLES 
 

H Distance Value Run time 
0.1 42.1373 
0.2 42.2490 
0.3 41.5854 
0.4 38.4340 
0.5 28.8132 
0.6 5.2446 
0.7 4.9509 
0.8 4.9457 
0.9 4.9588 
1.0 4.9212 
1.1 4.9453 
1.2 4.9658 

 
 
 
 
 

 
Figure 8: A* behavior with H (0.8) in a map with obstacles 

 

Figure 9: A* enters deadlock state with H (0.9) in more complex 
map 

 
TABLE I. A* ALGORITHM RUN TIME FOR DIFFERENT H DISTANCE 

VALUE IN MAP WITHOUT OBSTACLES. 

B. Discussion 

Based on results from the 2 tables above, we discovered 
that the classic A* algorithm performs optimally when its 
heuristics value is set to 0.7 and 0.8 for pathfinding with or 
without obstacles respectively. Hence, determining the 
admissible range to be from 0.7 to 0.8. Consequently, anything 
lower than 0.6 greatly increases its runtime and hence 
decreases its efficiency in path finding; the worse performing 
trials occur when the heuristics value is set to 0.2 or 0.4 in 
cases with or without obstacles respectively. 

Although the collected data shows faster runtime in cases 
where the heuristics value is calibrated higher than 0.8, those 
values were where were cases that A* will get trapped in a 
path-finding deadlock occur, the algorithm would reach a 
dead-end and it essentially stops functioning and does not 
further explore any nodes or map the shortest path between the 
starting and ending point. Besides that, when calibrating 
higher than 0.8, there were even special cases where A* 
continues searching for shorter routes even when it has 
explored the nodes closest to the ending point and 
subsequently entering a deadlock. 

In regards to how changing the heuristics value would 
affect the behaviour of the classic A* algorithm. The higher 
the heuristics value, the narrows the direction of searching, 
and the higher the chances of entering a deadlock state. 

Therefore, if we relate our trials to navigating through 
traffic in a city or rural area, calibrating the heuristics value to 
0.8 would be the best choice. This is to prevent deadlocks from 
high values, and preventing too much exploration from low 
values. 

 
 

VI. CONCLUSION 

This paper concludes that the A* pathfinding algorithm is 
indeed suitable to be implemented for pathfinding within 
navigation systems with results performing the best when 
setting the heuristics value from 0.7 randomly generated grids. 
But due to the limitations of using randomly generated, small 
and static grid environments, the results only support the 
original algorithm’s application for navigation in a small scale 
where the environment does not change, which does not cover 

H Distance Value Run time 
0.1 58.7944 
0.2 58.6837 
0.3 58.6808 
0.4 59.9777 
0.5 47.9640 
0.6 6.1523 
0.7 5.0462 
0.8 5.8242 
0.9 5.3859 
1.0 5.3940 
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cases of outdated or faulty data that are common for modern 
navigating systems. 

The research can be improved by comparing different 
path finding algorithms including A* or its variants while 
using real-world data for generating its virtual environment. 
This will identify which of them is a more suitable algorithm 
to be used in a real-time navigation system such as Waze or 
Google Maps. 
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