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Abstract— Pathfinding algorithms are used for finding the
shortest path to travel between a starting point and ending
points if a path exists. This paper aims to research one of the
most popular pathfinding algorithms which is A*. The purpose
is to find out different aspects about the traditional A*
pathfinding algorithm and test its suitability for being
implemented in navigation systems like Waze. The algorithm
will run through multiple limited 2D static grid-based
environments in cases where obstacles are either present or
absent. During the trials, its heuristics factor and run-time for
will be tabulated. The research revealed that A* performs most
efficiently when its heuristic factor is calibrated between 0.7 to
0.8 and any value below 0.6 significantly increases its runtime.
This shows evidence for A* to be suitable in navigation system
but further testing with real-time data, and dynamic
environments could better support its application within
navigation systems.

Keywords—A* algorithm, pathfinding algorithm, Waze path
navigation system

I. INTRODUCTION

Most vehicles waste time on the road and burn more fuel
due to poor traffic conditions (Chian & Kamsin, 2023), and in
this age of rapid change where roads are constantly being
changed, making traditional maps obsolete. This is why GPSs
exist, to help us navigate through the confusing traffic and find
the fastest way from our location to our destination. Other than
the layout of the land and traffic data, GPSs also require a
pathfinding algorithm. This report presents a comprehensive
analysis of the A* algorithm, a widely utilized heuristic search
algorithm renowned for its efficiency and effectiveness in
pathfinding and optimization tasks. The literature review
investigates into optimization principles, as well as examines
the algorithm's inherent advantages. Conversely, the review

also scrutinizes its disadvantages, including its sensitivity to
the quality of heuristic estimates and its potential inefficiency
in certain scenarios. The report also conducts a meticulous
comparison between A* and alternative algorithms.
Additionally, it explores upon real-life implementations of the
A¥* algorithm across diverse applications, showcasing its
practical utility in domains ranging from robotics to gaming.
The report outlines the materials and requirements necessary
for algorithm implementation, encompassing hardware and
software prerequisites essential for executing A* efficiently.
Methodologically, it describes the approach to algorithm
implementation, elucidating the purpose and parameters
governing its operation. Finally, the report presents the results
and discussions derived from empirical evaluations, offering
insights into the algorithm's performance, and discussing
potential avenues for future research and optimization.

II. LITERATURE REVIEW

A. Strengths and Weaknesses of A*

A* inherently has its strengths and weaknesses that make
it suitable for specific use cases. The classic A* is popular for
being a relatively simple algorithm that can operate in a closed
2D or 3D environments as evidenced in Alsakka et. al. (2020)
using A* to navigate 3D cable paths and Aziz et. al. (2022)
comparing A* with Dijkstra and ACO in pathfinding for a 2D
grid environment. Second, A* uses heuristics, so it always
finds the shortest path if a path exists. In addition, A* operates
more efficiently in environments with a smaller grid size and
accurate weightage as well as only having 1 starting and
ending point. This is demonstrated by Yerramilli et. al. (2021)
when testing A*’s pathfinding capability in a grid map that
represents a real-world location.
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Consequently, due to these specifications, the traditional
A* algorithm is built particularly for path finding in closed-
space static environments like the one from Alaska et. al.
(2020) and Rafiq et. al. (2020). This limits its use cases to
situations like simple automatic navigation within game
development, industrial cable planning and car navigation
systems. Moreover, A* is an algorithm that relies heavily on
its heuristics as since Goyal et. al. (2014) pointed out that its
heuristics played a major role in its pathfinding. If the
heuristics function is not properly coded to be admissible, the
algorithm might fail to find the true shortest path. Moreover,
the traditional A* has proven to not be efficient if there are
multiple end points as mentioned by Goyal et. al. (2014),
cannot be operated with real-time data as mentioned by Renoy
et. al. (2015) as one of the traditional A*’s flaws; and does not
work with negative edge weights, another issue that it uses up
a lot of memory for dynamic environments as evidenced by
Leigh et. Al. (2007) and Korkmaz & Durdu’s (2018) research.

B. Real Life Implementation

Besides your everyday car navigation apps, the A*
algorithm is still used across different of life, utilizing
its ability to find the most optimal path with remarkable
efficiency. The algorithm has allowed the accomplishment
of many different things, from navigating through obstacles
to decision making, as well as searching for different things.
We can see the algorithm is being applied to robots and
provided it the ability to navigate through a cluttered
warehouse while avoiding obstacles. Other than that, it has
been used in aspects such as checkers, providing it with
the intellectual capability to make decisions and anticipate
opponent’s movements, or even guides the complex folding
of proteins, which may potentially unlock medical
breakthroughs and save more lives. Speaking of saving lives,
it has been proven helpful for ambulances as the algorithm to
generate an optimized path to help navigate ambulances
through traffic, avoiding busy traffic to maximize time saved
as time is of the essence when it comes to saving lives.
Efficiency is one of the important aspects in manufacturing.
With that in mind, A* has also been used to help plan factory
production lines optimally to reduce times of production.
Researchers has also used the algorithm to dive into the vast
amounts of information present on the internet, utilizing its
searching capabilities to return relevant search results,
producing a smoother online experience.

C. Comparison with Different Algorithm

The literature review provides an in-depth analysis
of various algorithms used for solving the shortest path
problem, with a specific focus on why Waze chose to
implement the A* algorithm in its navigation application. The
review compares the A* algorithm with other algorithms such
as Dijkstra, Bellman-Ford, and Floyd-Warshall. The real-life
example of the shortest path problem will be identifying the
shortest distance in navigating applications like Waze, Google
Maps, Apple Maps, and many more directory applications.
According to Matthieu Casanova, Waze utilises the A star
algorithm to solve the shortest path problem (Sailiou, n.d.)

According to the survey from Maharshi and Ronit (2018),
the A Star algorithm is a combination of the Dijkstra algorithm
and the Greedy Best-First Search algorithm. It uses a heuristic
function to determine a node's distance from the target node
and its current state by using f(m)=c(m)+h(m) equations to

calculate the cost of the node. The algorithm efficiently
computes an optimal solution by combining the Uniform Cost
Search function from Dijkstra. Applications in various
domains, such as traffic navigation systems and games for
Non-Player Characters (NPC) pathfinding, have implemented
the A* algorithm due to its efficiency in route planning.
Studies by Maharshi and Ronit, found that heuristic search
algorithms are generally better than blind search algorithms.
For example, A star and UCS, A star is more efficient and able
to find more optimal paths than Uniform Cost Search. A star
algorithm is the advancement of UCS by integrating heuristic
functions into the algorithm. This helps in improving the A
star algorithm accuracy and sensitivity of finding the optimal
path, in the meantime, it also increases the memory usage and
computational time due to its heuristic function. (Maharshi,
Ronit, 2018)

The Dijkstra algorithm categorizes nodes into unmarked,
temporary, and permanent. Research is conducted by Shrawan
and Pal (2015) to compare the A star algorithm and the
Dijkstra Algorithm in terms of investing their performance in
searching the low-cost paths for road networks. According to
the experiment results, it shows that A star performs better
than Dijkstra in terms of time in every condition except in an
uninformed search. (Sharawan, Pal, 2015) Not only that, the
journal from Dian and Lysander also analysed that the A star
algorithm performs better and faster in the large-scale map due
to its heuristic compared to Dijkstra. This is due to the reason
that Dijkstra explores all the directions uniformly, but A star
only explores the direction of the destination. The statement
can be proven by the loop count of each algorithm where
Dijkstra comes with a higher loop count (Dian, Lysander,
2020)

The Bellman-Ford algorithm is designed to find the
shortest path, even with negative weights, and can detect
negative cycles and avoid them through the “relaxation”
method (Vaibhavi, Chitra, 2014). A negative cycle in a loop
will cause to decrease in the shortest path finding accuracy,
creating an unreliable shortest path and an endless loop in a
graph. Dijkstra is generally faster and more efficient compared
to Bellman-Ford. Dijkstra algorithms consume more memory
usage when executing on a large number of nodes, but
Bellman-Ford may not require a complex data structure where
it is more memory efficient (Samah et.al, 2020). In the context
of GPS routing, the A star algorithm will be selected compared
to Bellman-Ford due to its efficiency and optimality. Even
though the Bellman-Ford algorithm can avoid falling into a
negative cycle loop, but long processing time does not suit
real-time applications and GPS routing.

The Floyd-Warshall algorithm is used for finding the
shortest path between pairs of nodes in a weighted directed
graph. The algorithm uses a matrix to store distance and
initialize with direct edge weights or infinity which means no
direct edge exists. Using a matrix helps to find all possible
shortest paths where it accommodates positive and negative
edge weight (Harseerat, Gopal, 2022). According to the study
conducted by Ramesh and Vishwas, they conclude that the
Floyd-Warshall algorithm capable of finding the most
accurate result for routing purposes, but it is the slowest and
time-consuming method for shortest path finding compared to
the A star algorithm. Even though the Floyd-Warshall
algorithm has high accuracy in finding the shortest path, it
isn’t a suitable algorithm for single-pair pathfinding. The
Floyd-Warshall algorithm is more suitable for LPG Gas route
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planning, instead of real-time GPS navigation (Ramesh,
Vishwas, 2023).

In conclusion, the A star algorithm has been chosen by
Waze for their shortest path finding algorithm due to its
efficiency and accuracy mainly because of the heuristic
function. The Dijkstra algorithm is performing well, it
explores all directions from the initial node, but it might
consume more time. It is an alternative algorithm for shortest
path finding compared to the A star algorithm. Compared to
the A star algorithm, the Bellman-Ford algorithm is not suited
for real-life route planning, but it is suitable for routing
protocols in computer networks or telecommunications
networks due to its negative cycle loop detection and high
processing time. The Floyd-Warshall algorithm wasn’t the
best algorithm in terms of route planning due to the time
complexity, even though it has the most accurate shortest path.

D. Optimization of A* algorithm

Several aspects of A* algorithm can be optimised to
improve the performance of the WAZE navigation system,
including pathfinding speed, memory usage, path robustness
and multi-target search. Mi at el. proposed RPT and JPS
algorithms to be integrated with A* algorithm to filter
unnecessary nodes, minimizing the execution time by 67%
and pathfinding speed by 47% (Mi, Xiao, & Huang, 2023).
Liu et al. presented fusion algorithm, which reduce the
pathfinding time by approximately 70% (Liu, Wang, & Xu,
2022). It managed to choose the best available option instead
of revisiting the starting node, and lessen the path branching
by exploring smaller range of path points to reduce data
redundancy and path planning time. Waze can benefit from
faster pathfinding algorithms to calculate optimum routes
swiftly and generate real-time navigation updates, particularly
in complex environments.

Besides, Tang et al. suggested an improved A* algorithm
formula, F(n) = G(n) + H(n) + C(n), which lowered memory
consumption by 64.38%. It utilized turning points and key
point setting method to improve path robustness and prevent
the algorithm from being trapped (XiangRong, Yukun, &
XinXin, 2021). Huang et al implemented JPS and pruning
methods such as Triangle Inequality Theorem into
conventional A* algorithm, reducing its memory space by
14.98% and nodes by 3.14% (Huang, Li, & Bai, 2022).
Memory space reduction can be advantageous to WAZE to
operate more efficiently and smoother in users’ smartphones
to improve user experience.

Moreover, Yao et al. increases path robustness by applying
unbelievable points, virtual human motion, inner searching
markers and repeated path search so that it will not be trapped
in obstacles (Yao, Binbin, & Qingda, 2009). It addresses
WAZE’s challenge with unexpected road closures due to
constructions or events and traffic congestion, preventing cars
from getting trapped in such conditions. Xiang et al. also
introduced the integration of greedy algorithm with
A¥*algorithm to achieve multi-target pathfinding which allows
the users to visit several destinations, like the add stops
features in WAZE (Xiang, Lin, & Ouyang, 2022).

III. MATERIALS AND METHOD

A. Materials
. Software Requirements

To execute the source code given, visual studio code is
utilised for this research paper. Visual Studio Code is a code
editor where users can run the code snippets within the file
directly. The given source code is in Python format, python is
selected as the development language due to its readability and
conciseness. Python has five main components like UI, code
editor, file’s view, compiler and debugger. (Youssef, 2022) It
is easier to write and maintain the code, which is beneficial for
complex algorithms like A Star for shortest path finding.
Other than that, it has rich standards of library where it
provides plenty of modules and packages. In this source code
given, it has installed and imported two libraries which are
pygame and random. Pygame is used for creating a graphical
user interface for pathfinding visualisation. Meanwhile,
random is used for generating random numbers, in this case,
it creates a random maze for pathfinding. The A Star algorithm
is executed in the Windows operating system.

il. Hardware Requirements

The hardware that has been used for executing the given
A star algorithm for pathfinding in this paper is the NVIDIA
GeForce RTX3050 for the Graphic Processing Unit (GPU). In
the source code, the A star algorithm itself doesn’t heavily rely
on GPU acceleration. The Central Processing Unit (CPU)
used in this research paper is 12th Gen Intel(R) Core (TM) i5-
12500H. The performance of the A star algorithm can be
affected by the capabilities of the CPU. A star algorithm
includes various computations like node evaluation, heuristics
calculations, priority queues, and so on. The speed of
processing those computations depends on the processing
power of the CPU. The computer uses 16GB RAM to perform
the A-star algorithm. It involves keeping track of open and
closed sets, node information storage, and computations that
require memory..

B. Methodology

initial start sector 'n'
and put it on open list
L2

calculate cost function
f(n)=g(n) + h(n)

-

remove from open list and put on
closed and save the index of the
sector 'n' which has the smallest 'f

-

if'n’ is the’
target sector

Terminate the algorithm, and
use the pointers of indexes to get
the optimal path

detect all the seccessor sectors of 'n’
which not exist on closed list

calculate cost function 'f for
cach sector

Figure 1: A* algorithm Block Diagram (Zidane & Ibrahim, 2018)

Figure 1 shows the block diagram of an A* algorithm.
Pathfinding of A* algorithm is initialized by storing the
starting node into an open list. The f, g, and h value of the
node is then calculated. G value is the actual value from
current node to child node. The final cost of the path will be
stored in g value. H value is the heuristics value from start
point to end point, which is computed using Euclidean
Distance, also known as Pythagoras' theorem. F value is the
sum of g value and h value. During exploration, the algorithm
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generates child nodes by navigating the neighboring position.
If the neighboring node is an obstacle, it will skip the
calculation and proceed to the next neighboring node to
evaluate their f value. The neighboring nodes are then stored
in a priority queue in the open list, sorted by their f value
ascendingly. The node with the lowest f value will be selected
as the current node. After that, the current node is inserted
into the closed list to prevent the node from being revisited.
The current node is also checked to determine if it is the target
point. If it is not the destination point, the child nodes that are
not in closed list and have not been explored, are added into
the open list. The iteration continues starting from computing
the f value of the child nodes until the target node is found.
When the algorithm reaches the goal node or the open list is
empty, backtracking is executed to retrieve the best optimal
path from start node to end node.

IV. ALGORITHM IMPLEMENTATION

The source code from James Robinson enables the
simulation of pathfinding process of A* algorithm in a virtual
environment (Robinson, 2020). The pathfinding can be
simulated in a simple map by inserting one starting point and
one or more end points by using keys 1 to 9. The algorithm
will initialize the pathfinding from the starting point and
progressively advances to other points in ascending order
based on their assigned numbers. The maximum point that can
be assigned is 9 points, including the starting point. To create
a more complex environment, a random maze can
automatically be generated by clicking the ‘m’ key. The
algorithm will cross over the obstacles when navigating the
map until the targets are found. The optimal path is returned
after it reaches the targets. Customized maps can also be
developed by adding the obstacles manually to the blank map.
The pathfinding process of A* algorithm can be observed, and
by importing time module into the source code, the run time
of A*algorithm pathfinding can also be calculated.

A. Purpose

The A* algorithm serves the fundamental purpose of
finding the optimal path from a designated starting point to a
specified goal within a graph or network structure efficiently.
Its significance spans across various aspects including route
planning, robotics, and artificial intelligence, where
identifying the shortest or most efficient route is significant.
A* has the ability to keep a perfect balance between
completeness and optimality, offering a versatile solution for
various real-world problems that require pathfinding and
optimization tasks. Its effectiveness lies in navigating
through complex networks while intelligently leveraging
heuristic estimates to guide the search process towards the
goal, making it a cornerstone algorithm in computational
problem-solving. (GeeksforGeeks, 2023)

B. Parameters

Critical to the functionality of the A* algorithm are its
parameters. To be more specific, there are the heuristic
function and the cost function. The heuristic function provides
an estimate of the cost from the current node to the goal node,
facilitating informed decision-making within the algorithm.
Meanwhile, the cost function determines the expense
associated with traversing from one node to another in the
graph, influencing the overall optimization process. These

parameters play a significant role in guiding A*'s exploration
of potential paths, allowing it to prioritize those that are
deemed most promising while maintaining computational
efficiency. The heuristic function's value represents an
approximation of the remaining cost from a given node to the
goal, thereby shaping the algorithm's decision-making process
and ultimately impacting its ability to find optimal solutions
effectively. (GeeksforGeeks, 2023)

child.g = current_node.g + 1

child.h = ((

S

Figure 2: Parameters for A* Algorithm

The figure above shows the parameters for the A* algorithm.
The parameters required for the algorithm are the starting
node, goal node, its heuristic function (f), the cost function
(g), and the total cost function (f), which is calculated using
the f and g. In this case, h is set at 0.6, which can be seen in
the red box located on the figure. The reasoning behind is so
that it will prioritize diagonal lines instead of the straight lines
as it is the optimal line and much efficient. As we change its
value, the amount of time taken to generate an optimal line
will be affected as well. These parameters guide the A*
algorithm in exploring the graph systematically while also
selecting the path intelligently towards the goal node.

V. RESULTS AND DISCUSSION
A. Results

o

2

Figure 3: The map, start point and end point without obstacles.
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Figure 4: The map, start point and end point with obstacles. Figure 6: A* behavior with H (0.5) in a map with obstacles

Figure 5: A* behavior with H (0.5) in a map without obstacles

Figure 7: A* behavior with H (0.7) in a map without obstacles
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1.1 5.4140

12 5.4163

TABLE IL A* ALGORITHM RUN TIME FOR DIFFERENT H DISTANCE
VALUE IN MAP WITH OBSTACLES

H Distance Value Run time

0.1 42.1373

0.2 42.2490

03 41.5854

04 38.4340

0.5 28.8132

0.6 5.2446

0.7 4.9509

0.8 4.9457

0.9 4.9588

1.0 4.9212

1.1 4.9453

12 4.9658

E
Algorithm runtir

Figure 8: A* behavior with H (0.8) in a map with obstacles

8306 seconds

Figure 9: A* enters deadlock state with H (0.9) in more complex

map

TABLEL A* ALGORITHM RUN TIME FOR DIFFERENT H DISTANCE
VALUE IN MAP WITHOUT OBSTACLES.

H Distance Value Run time

0.1 58.7944

0.2 58.6837

03 58.6808

04 59.9777

0.5 47.9640

0.6 6.1523

0.7 5.0462

0.8 5.8242

0.9 5.3859

1.0 5.3940

B. Discussion

Based on results from the 2 tables above, we discovered
that the classic A* algorithm performs optimally when its
heuristics value is set to 0.7 and 0.8 for pathfinding with or
without obstacles respectively. Hence, determining the
admissible range to be from 0.7 to 0.8. Consequently, anything
lower than 0.6 greatly increases its runtime and hence
decreases its efficiency in path finding; the worse performing
trials occur when the heuristics value is set to 0.2 or 0.4 in
cases with or without obstacles respectively.

Although the collected data shows faster runtime in cases
where the heuristics value is calibrated higher than 0.8, those
values were where were cases that A* will get trapped in a
path-finding deadlock occur, the algorithm would reach a
dead-end and it essentially stops functioning and does not
further explore any nodes or map the shortest path between the
starting and ending point. Besides that, when calibrating
higher than 0.8, there were even special cases where A*
continues searching for shorter routes even when it has
explored the nodes closest to the ending point and
subsequently entering a deadlock.

In regards to how changing the heuristics value would
affect the behaviour of the classic A* algorithm. The higher
the heuristics value, the narrows the direction of searching,
and the higher the chances of entering a deadlock state.

Therefore, if we relate our trials to navigating through
traffic in a city or rural area, calibrating the heuristics value to
0.8 would be the best choice. This is to prevent deadlocks from
high values, and preventing too much exploration from low
values.

VI. CONCLUSION

This paper concludes that the A* pathfinding algorithm is
indeed suitable to be implemented for pathfinding within
navigation systems with results performing the best when
setting the heuristics value from 0.7 randomly generated grids.
But due to the limitations of using randomly generated, small
and static grid environments, the results only support the
original algorithm’s application for navigation in a small scale
where the environment does not change, which does not cover
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cases of outdated or faulty data that are common for modern
navigating systems.

The research can be improved by comparing different
path finding algorithms including A* or its variants while
using real-world data for generating its virtual environment.
This will identify which of them is a more suitable algorithm
to be used in a real-time navigation system such as Waze or
Google Maps.
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