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Abstract—Genetic algorithm is a search heuristic that takes 

Charles Darwin's theory of natural evolution as its source of 

inspiration that can be used in solving 8 puzzle problems. One 

of the earliest known problems in mathematics is the "N puzzle 

problem.". In this paper, we will look at how to solve 8 puzzle 

problems by using genetic algorithm. The parameters will be 

changed to see the different result and time used. The three 

parameters that will be modified are the crossover rate, 

mutation chance and population len. The results showed that the 

problem will be solved faster when the crossover rate and 

mutation chance are higher but when the population size 

becomes more, the time taken to solve the problem will be 

longer. 

Keywords—8 puzzle problem, genetic algorithm, N puzzle 

problem 

I. INTRODUCTION 

 This documentation is about using genetic algorithms to 
solve 8-puzzle. 8-puzzle is a game invented by Noyes Palmer 
Chapman in 1870s. (Shahzad, 2022) Nowadays, it is a popular 
game which almost everyone has played before, the rules is 
simple you can only move the block beside the block number 
0 (change the position with it) and your goals is rearrange the 
blocks from number 0 to number 8. The boards will randomly 
generate when the game starts. Hence, you won’t face the 
same board in a short time unless you are very lucky. Genetic 
algorithms also came from a field of study that is known as 
evolutionary computation in which the algorithm was used to 
copy the reproduction process and select the fittest solutions 
(Hor et al., 2022; Yuen et al., 2021). 

 There are many different algorithms that can be used to 
solve problems, for example the A* search algorithm, which 
will always find the best solution to solve the specific 
problem. But we decided to use genetic algorithm as it is an 
algorithm which we didn’t learn before. This documentation 
will include a few different parts to explain what genetic 
algorithms are and how the problem is solved by the 
algorithm.  

II. LITERATURE REVIEW 

8 puzzle or N-puzzle is a common problem in artificial 
intelligence. There are many research using different 

approaches to solve this problem. Most of the research are 
using breath-first-search, death-first-search, or A* algorithm 
to solve 8 puzzle problem. In the research of (Shaban et.al, 
2010) they were using genetic algorithm to solve the problem. 

 In the research, they had applied all the stages of genetic 
algorithm. 8 puzzle is a 3x3 grid which contains nine blocks 
(Richard, n.d.). In the research, they convert the puzzle into 
one dimension array and this array will be the chromosome. 
The program will first generate a new population of tiles based 
on the number of available moves of the block which do not 
match the goal state (Melanie, 1999). The available move is 
counted by it position, for example, the block at the top-left of 
8 puzzle will only have two available moves which are 
moving down or to the right. After that, the fitness function 
values of each chromosome will be calculated using the fitness 
function provided in the research paper. The final goal will 
also have a fitness value which is used to compare with the 
chromosome. If the comparison of fitness values of 
chromosome and final goal is satisfied, the program will then 
record the chromosome. Then, tournament selection method 
was being used to choose two individuals as parent from the 
filtered parents (Melanie, 1999).  

 The fourth phase will be cross over, in this stage, two 
chromosomes (previously selected parent) will be recombined 
(Goldberg, 1989). The cross point will be selected randomly, 
then parent 1 and parent 2 will recombine to form a new child. 
As a reason of the chromosome is 1D array, it will cause that 
the child may have duplicate values after cross over operator, 
thus, after cross over operator, the program will remove the 
duplicate number and add the missing number at the cross 
over point of chromosomes. The main objective of this stage 
is to generate new population. Last, all the new chromosomes 
will have a probability to carry out mutation. The mutation 
operator will swap the position of two random number and 
preventing the chromosome become too similar to each other 
to avoid local minima (Koza, 1992). Iteration will be carried 
out for repeating these procedures until the program cannot 
give out a better solution. 

 In their research, they had provided two results after 
running the program. In the first run of the program, we can 
see the graph showing the greater the number of generations, 
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the greater the number of solutions that can be found. 
However, the second run of the program show that the number 
of solutions become lower when the number of generation 
higher than 300. From the graph we can also find that the 
program cannot give out a satisfy result when the number of 
generations is below 100 while the number of solution start 
growing when the number of generations is greater than 100.  
From the two examples, we can know that genetic algorithm 
is able to solve 8 puzzle problem and provide different 
solutions. However, the examples and results provided is not 
enough since that the first example are having only 2 different 
blocks compare to the goal while the second example having 
3 differences. The example should have more difference block 
compared to the final goal so that we can have more accurate 
result. 

 In conclusion, genetic algorithm is able to solve 8 puzzle 
problem and from the research of Sha’ban et al, we can find 
that the optimal number of generations to find out the 
solutions would be around 100 until 300. 

III. MATERIAL AND METHOD 

     A genetic algorithm is a search technique used in 
computing to find exact or approximate solutions to 
optimization and search problems. Genetic algorithms are a 
particular class of evolutionary algorithms (also known as 
evolutionary computation) that use techniques inspired by 
evolutionary biology such as inheritance, mutation, selection, 
and crossover also called recombination. From the idea 
inspired by evolutionary biology, genetic algorithms will 
maintain the chromosome with good genes and weed out the 
chromosome with bad genes. As the diagram shows in Fig. 1, 
it will select two chromosomes as parents and crossover two 
of the chromosomes to generate a new chromosome. Then, the 
new chromosome will have the probability to mutate either in 
a bad way or in a good way. After this, it will maintain the 
chromosome with good genes and weed out the chromosome 
with bad. 

 

 

 Fig 1. Example of evolutionary biology 

     A genetic algorithm operates through a simple cycle of 
stages (Konar, 2018). 

• Creation of a "population" of strings. 

• Evaluation of each string.  

• Selection of best strings.  

• Genetic manipulation to create a new population of 

string.  

 

Fig 2. illustrated the cycle of a genetic algorithm (Konar, 

2018). 

 

 
 

Fig.2 Cycle of a genetic algorithm (Konar, 2018). 

IV. FLOWCHART FOR PROPOSED GENETIC ALGORITHM 

TO SOLVE THE 8-PUZZLE PROBLEM 

A. Initial state and Goal State 

         According to the flow chart below, the initial state will 
be generated randomly while the goal state will be fixed from 
0 to 8. Chromosomes will be generated randomly from the 
initial state to form a population. The number of chromosomes 
that will be generated will be according to the value input in 
the population length. For example, if the input for population 
length is 1000, then there will be 1000 chromosomes 
generated from the initial state to form the population. After 
this, it will calculate the fitness value (fitness function) for 
each chromosome in the generation for the proposed heuristic 
genetic algorithm and compare the fitness function for each 
chromosome with the fitness function of the goal and compare 
the tile's value of chromosome with tile's value of the goal. If 
the two conditions are satisfied, then record the generation’s 
index and chromosome index. Else go to the next 
chromosome. 

B. Selection, Crossover and Mutation operations 

      The next generation is produced by executing 
Selection, Crossover, and Mutation operations, respectively. 
The crossover operation was to crossover the chromosomes 
according to the input of crossover rate. For the mutation 
operation, used the order changing method as two numbers are 
selected and exchanged them. The probability for 
chromosomes to mutate is according to the input of mutation 
chance. After this, it will calculate fitness value (fitness 
function) again for each chromosome in the new generation 
and compare the fitness function for each chromosome with 
fitness function of the goal, also compare the tile's value of 
chromosome with tile's value of the goal. It will terminate if 
the optimal solution is found. Else, it will go back to the step 
of selection and repeat the following steps until the optimal 
solution is found. 

Fig 3. shows the Flowchart for proposed genetic algorithm 
to solve the 8-puzzle problem 
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Fig.3 Flowchart for proposed genetic algorithm with 8-puzzle problem 

 

V. ALGORITHM IMPLEMENTATION 

        Genetic algorithm is an algorithm which was developed 

by John Holland and his student in 1975. And they were 

inspired by the theory of evolution which was introduced by 

Charles Darwin. This algorithm is based on a combination of 

genetic crossover, mutations, and nature selection, which can 

keep generate better answer until the generation reaches max 

generation.  

From the source code of (Noury, 2020) some tools such as 
numpy and random are called to generate the board which 
could randomly generate a new board when a new game is 
started. For the board, the function numpy.zero will be used to 
generate an empty matrix which will fill by 0. The matrix will 
be filled by combination of two for loop. Firstly, the index 
number will be set as 0 because the index number will be used 
to fill the matrix which is generated before. The for loop will 
fill the block [I, j] with the index number every time the 
second for loop is run after the second for loop are run the 
index number will automatic plus one. The for loops will run 
until all empty blocks in the matrix are filled by the index 
number. 

After the matrix is filled, the matrix will be arranged from 
0 to 8. Hence, the board needs to be shuffled before the game 
starts, the function shuffle will be called to do this action. The 
function will be used for loop to randomly move the numbers 
in the matrix 100 times to make sure the matrix is disordered. 
It will use four functions which will also be used when the 
algorithm tries to arrange the number in the matrix which are 
move_up, move_down, move_left and move_right. 

These four functions are almost the same, but the direction 
of the move isn’t the same. Fistly, the code will used where 
function which is called from numpy to find out the 0 in the 
block. After that, it will check if the number 0 can move to 
that specific direction for example, in the move_left function 
the code will check if the number 0 is at the third (2 in the code 
cause start with 0) position because if the number 0 is at that 
position it is not able to move to the left-hand side than the 
code will return false and try to move it to other direction. 
Same for the others move function. Until here, the game board 
is generated, and the algorithm can start to solve the puzzle. 

The class chromosomes are also very important as they 
will affect the output of the algorithm. The update error 
function in this class will use deepcopy from module copy, 
this is because you didn’t want the affect the regular board. 
Every update in the deepcopy will not cause the original object 
to be changed because if you are using deepcopy the code will 
create a new object. The code will also use apply_chain from 
the class pad (generate board and allows movement). The 
apply_chain function will be used to print out the movement 
or the board. 

After selecting the parents, the function cross_over will 
run. In this function the function random will be called and if 
the number provided by the function random is smaller than 
0.5 the evolution of the gene will happen. The mutate chance 
is also using random. random function, if the mutate chance is 
lower than the number generated by the function than the 
mutate will not happen else the gene will be mutated. 

The class solver will import two modules which are math 
and random. This class will use the output of the class pad and 
the chromosomes. The function select best will run to choose 
the best gene in the generation and let them become parents of 
the next generation. The function of the calculate_error will 
show us the total error of the iteration. 

The mutate function will be run after the parents are 
chosen. If the number generated by function random. random 
are smaller than mutate chance the mutate function in the class 
chromosomes will execute. The last function is solved, it will 
run 1000 times repletely, unless the best solution is generated. 
Then the display function will run, to print out the iteration. 
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In this code there are 4 parameters which can be changed 

which are Mutate_chance, Cross_over_rate, Population_len 
and Max_iteration. The function of each parameter will be 
discussed later on. 

VI. RESULT AND DISCUSSION 

A. Mutation Chance 

The tests conducted here involve the mutation chance that 
will have lesser iteration. The max iteration for the runs here 
is 1000, the population length is 100 and the crossover rate is 
0.5.  

In Table I, the average of iterations with the mutation 
chance of 0.9 is lesser compared with the mutation chance of 
0.1 and the mutation chance of 0.5. This is because the chance 
of mutation refers to the probability that a chromosome will 
mutate. Therefore, the mutation chance of 0.9 means that each 
chromosome will have a 90 percent probability to mutate into 
a new chromosome and it will generate a greater number of 
new chromosomes in one iteration. Hence, with a greater 
number of new chromosomes that will be generated in one 
iteration, the greater number of mutation chances can have a 
lesser number of iterations. 

TABLE I.    Mutation chance result 

NO 

 

 

NUMBER OF ITERATION 

MUTATION 

CHANCE = 0.1 

MUTATION 

CHANCE = 0.5 

MUTATION 

CHANCE = 0.9 

1 544 1 2 

2 680 7 54 

3 369 97 21 

4 235 564 23 

5 179 244 69 

6 4 268 77 

7 9 6 39 

8 149 127 145 

9 567 329 143 

10 9 342 41 

11 431 5 63 

12 999 913 8 

13 196 178 1 

14 131 237 30 

15 11 154 7 

16 761 2 48 

17 173 4 105 

18 407 74 38 

19 899 272 111 

20 8 549 10 

AVERAGE: 338.05 218.65 51.75 

 

B. Crossover rate 

 The test conducted here involves the crossover rate that 

will have lesser iteration. The population length is set as 

1000, the mutation chance is 1 and the max iteration will be 

3000. The maximum value of crossover rate is 0.5 because 

this is the swapping rate of two chromosomes. When the 

swapping rate is 0.6, it is actually the same as 0.4 since two 

chromosomes rate will be separated into two. 

In Table II, the number of iterations in different crossover 

rates are shown. When the crossover rate equals to 0, the only 

chance to change the chromosome will be only mutation 

chance. This makes the iteration become many and time taken 

become longer. While crossover rate is higher, the good 

chromosome will remain and get to the next generation. So, 

the number of iterations will become lower. 

 

TABLE II.    Crossover rate result 

NO 

NUMBER OF ITERATIONS 

CROSSOVER 

RATE = 0.1 

CROSSOVER 

RATE = 0.3 

CROSSOVER 

RATE = 0.5 

1 323 732 27 

2 2650 0 104 

3 128 426 422 

4 2890 30 1058 

5 953 703 290 

6 647 1529 26 

7 2975 505 382 

8 6 1032 198 

9 1523 1299 1 

10 86 376 359 

11 705 49 621 

12 2808 403 10 

13 1379 3 926 

14 76 830 603 

15 849 499 431 

16 2677 2031 185 

17 902 1394 68 

18 740 2245 239 

19 2034 38 0 

20 92 127 493 

AVERAGE 1222.15 712.55 322.15 

 

C. Population Length 

The tests conducted here involve the population length that 
will have lesser iteration and the population length that has a 
higher chance to have a chromosome representing the optimal 
solution in the initial state. The max iteration for the runs here 
is 1000, the mutation chance is 1 and the crossover rate is 0.5.  

In Table III, the average of iterations with the population 
length of 1000 is lesser compared with the population length 
of 10 and the population length of 100. This is because when 
you set crossover rate to 0.5 and mutate chance to 1, you can 
compare fitness values for 500 new chromosomes generated 
from the population length of 1000 in one iteration. However, 
you can only compare fitness values for 5 new chromosomes 
generated from the population length of 10 in one iteration. 
Therefore, with the greater number of chromosomes that will 
be compare fitness values in one iteration, the greater number 
of population length can have lesser number of iterations. 

Moreover, the population length of 1000 has a higher 
chance that the population of chromosomes generated from 
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the initial state will contain a chromosome representing the 
optimal solution. This is because the number of chromosomes 
that will be generated from the initial state for the population 
length of 1000 is greater compared with the population length 
of 10 and the population length of 100. 

TABLE III.    Population length result 

NO 

NUMBER OF ITERATION 

POPULATION 

LENGTH = 10 

POPULATION 

LENGTH = 

100 

POPULATION 

LENGTH = 

1000 

1 237 0 615 

2 481 182 473 

3 323 460 681 

4 27 84 242 

5 695 605 9 

6 2 89 3 

7 63 362 0 

8 4 624 178 

9 890 56 67 

10 17 67 0 

11 236 4 14 

12 884 614 5 

13 85 1 149 

14 616 751 531 

15 833 41 557 

16 23 224 66 

17 712 21 265 

18 58 32 384 

19 12 127 177 

20 961 372 0 

AVERAGE: 357.95 235.8 220.8 

 

D. Discuss on implementation 

From the output which are shown in the table above, we 
found that the largest the population the less of the iteration 
will be generate which mean if we assign the largest number 
of populations to the code, the less time will be needed to wait 
before the solution are found by the algorithm. This is because 
the more population means the more chromosomes can be 
selected by the algorithm in the same generation which will 
let the algorithm find the elite in the generation. For example, 
China is a big country which are having 1.47 billion of 
population, hence if only 1% of the people will be an elite, 
they are still having a lot of elites. Which means the more 
population you have the more possibility the generation will 
have an elite. 

The other parameters which can make a lot of impact to 
the iteration generated will be crossover rate. Table 3 shows 
that if the others parameter is the same the higher chance of 
mutation will equal to the less time needed to spend waiting 
for the result. If the crossover rated is 0, the only chance of 
change will be the possibility of the mutation rate. It is a very 
simple math question if the crossover rate is 1 (0% of chance) 
and the mutate rate is 1.5 (0.5) the possibility of change is just 
1.5, however is the crossover rate is 1.5 (0.5) and the mutated 
rate is maintaining the possibility of the change will become 
2.25. Hence, the best mutation rate and crossover rate will all 
be 0.9 and the length of population will be 1000. It is possible 
to make the length of population even larger, but the 
computer’s RAM must be large enough to store the 

population, otherwise we recommended to use 1000 and no 
larger population. 

VII. CONCLUSION 

In this paper, it is shown that genetic algorithm can find 
out the solution of the 8-puzzle problem. The time taken to 
solve the problem and the number of iterations will change 
depending on the parameters changing. Although genetic 
algorithms can solve the problem effectively, but we can know 
that the time taken to solve it is much longer according to the 
result. So, it is not really efficient if the crossover rate or 
mutation chance is low. Implementation of genetic algorithms 
will be a good choice for problem solving if time allows. 
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