
 Journal of Applied Technology and Innovation (e -ISSN: 2600-7304) vol. 7, no. 1, (2023) 28

Solver of 8-Puzzle with Genetic Algorithm

Cheng Min Yang

School of computing

Asia Pacific University of Technology

and Innovation (APU)

Kuala Lumpur, Malaysia

TP064404@mail.apu.edu.my

Tan Choon wei

School of computing

Asia Pacific University of Technology

and Innovation (APU)

Kuala Lumpur, Malaysia

TP063860@mail.apu.edu.my

Vincent Pek

School of computing

Asia Pacific University of Technology

and Innovation (APU)

Kuala Lumpur, Malaysia

TP063671@mail.apu.edu.my

Zailan Arabee Abdul Salam

School of computing

Asia Pacific University of Technology

and Innovation (APU)

Kuala Lumpur, Malaysia

zailan@apu.edu.my

Sim Hui Ling

School of computing

Asia Pacific University of Technology

and Innovation (APU)

Kuala Lumpur, Malaysia

TP061282@mail.apu.edu.my

Abstract—Genetic algorithm is a search heuristic that takes

Charles Darwin's theory of natural evolution as its source of

inspiration that can be used in solving 8 puzzle problems. One

of the earliest known problems in mathematics is the "N puzzle

problem.". In this paper, we will look at how to solve 8 puzzle

problems by using genetic algorithm. The parameters will be

changed to see the different result and time used. The three

parameters that will be modified are the crossover rate,

mutation chance and population len. The results showed that the

problem will be solved faster when the crossover rate and

mutation chance are higher but when the population size

becomes more, the time taken to solve the problem will be

longer.

Keywords—8 puzzle problem, genetic algorithm, N puzzle

problem

I. INTRODUCTION

 This documentation is about using genetic algorithms to
solve 8-puzzle. 8-puzzle is a game invented by Noyes Palmer
Chapman in 1870s. (Shahzad, 2022) Nowadays, it is a popular
game which almost everyone has played before, the rules is
simple you can only move the block beside the block number
0 (change the position with it) and your goals is rearrange the
blocks from number 0 to number 8. The boards will randomly
generate when the game starts. Hence, you won’t face the
same board in a short time unless you are very lucky. Genetic
algorithms also came from a field of study that is known as
evolutionary computation in which the algorithm was used to
copy the reproduction process and select the fittest solutions
(Hor et al., 2022; Yuen et al., 2021).

 There are many different algorithms that can be used to
solve problems, for example the A* search algorithm, which
will always find the best solution to solve the specific
problem. But we decided to use genetic algorithm as it is an
algorithm which we didn’t learn before. This documentation
will include a few different parts to explain what genetic
algorithms are and how the problem is solved by the
algorithm.

II. LITERATURE REVIEW

8 puzzle or N-puzzle is a common problem in artificial
intelligence. There are many research using different

approaches to solve this problem. Most of the research are
using breath-first-search, death-first-search, or A* algorithm
to solve 8 puzzle problem. In the research of (Shaban et.al,
2010) they were using genetic algorithm to solve the problem.

 In the research, they had applied all the stages of genetic
algorithm. 8 puzzle is a 3x3 grid which contains nine blocks
(Richard, n.d.). In the research, they convert the puzzle into
one dimension array and this array will be the chromosome.
The program will first generate a new population of tiles based
on the number of available moves of the block which do not
match the goal state (Melanie, 1999). The available move is
counted by it position, for example, the block at the top-left of
8 puzzle will only have two available moves which are
moving down or to the right. After that, the fitness function
values of each chromosome will be calculated using the fitness
function provided in the research paper. The final goal will
also have a fitness value which is used to compare with the
chromosome. If the comparison of fitness values of
chromosome and final goal is satisfied, the program will then
record the chromosome. Then, tournament selection method
was being used to choose two individuals as parent from the
filtered parents (Melanie, 1999).

 The fourth phase will be cross over, in this stage, two
chromosomes (previously selected parent) will be recombined
(Goldberg, 1989). The cross point will be selected randomly,
then parent 1 and parent 2 will recombine to form a new child.
As a reason of the chromosome is 1D array, it will cause that
the child may have duplicate values after cross over operator,
thus, after cross over operator, the program will remove the
duplicate number and add the missing number at the cross
over point of chromosomes. The main objective of this stage
is to generate new population. Last, all the new chromosomes
will have a probability to carry out mutation. The mutation
operator will swap the position of two random number and
preventing the chromosome become too similar to each other
to avoid local minima (Koza, 1992). Iteration will be carried
out for repeating these procedures until the program cannot
give out a better solution.

 In their research, they had provided two results after
running the program. In the first run of the program, we can
see the graph showing the greater the number of generations,

mailto:zailan@apu.edu.my

 Journal of Applied Technology and Innovation (e -ISSN: 2600-7304) vol. 7, no. 1, (2023) 29

the greater the number of solutions that can be found.
However, the second run of the program show that the number
of solutions become lower when the number of generation
higher than 300. From the graph we can also find that the
program cannot give out a satisfy result when the number of
generations is below 100 while the number of solution start
growing when the number of generations is greater than 100.
From the two examples, we can know that genetic algorithm
is able to solve 8 puzzle problem and provide different
solutions. However, the examples and results provided is not
enough since that the first example are having only 2 different
blocks compare to the goal while the second example having
3 differences. The example should have more difference block
compared to the final goal so that we can have more accurate
result.

 In conclusion, genetic algorithm is able to solve 8 puzzle
problem and from the research of Sha’ban et al, we can find
that the optimal number of generations to find out the
solutions would be around 100 until 300.

III. MATERIAL AND METHOD

 A genetic algorithm is a search technique used in
computing to find exact or approximate solutions to
optimization and search problems. Genetic algorithms are a
particular class of evolutionary algorithms (also known as
evolutionary computation) that use techniques inspired by
evolutionary biology such as inheritance, mutation, selection,
and crossover also called recombination. From the idea
inspired by evolutionary biology, genetic algorithms will
maintain the chromosome with good genes and weed out the
chromosome with bad genes. As the diagram shows in Fig. 1,
it will select two chromosomes as parents and crossover two
of the chromosomes to generate a new chromosome. Then, the
new chromosome will have the probability to mutate either in
a bad way or in a good way. After this, it will maintain the
chromosome with good genes and weed out the chromosome
with bad.

 Fig 1. Example of evolutionary biology

 A genetic algorithm operates through a simple cycle of
stages (Konar, 2018).

• Creation of a "population" of strings.

• Evaluation of each string.

• Selection of best strings.

• Genetic manipulation to create a new population of

string.

Fig 2. illustrated the cycle of a genetic algorithm (Konar,

2018).

Fig.2 Cycle of a genetic algorithm (Konar, 2018).

IV. FLOWCHART FOR PROPOSED GENETIC ALGORITHM

TO SOLVE THE 8-PUZZLE PROBLEM

A. Initial state and Goal State

 According to the flow chart below, the initial state will
be generated randomly while the goal state will be fixed from
0 to 8. Chromosomes will be generated randomly from the
initial state to form a population. The number of chromosomes
that will be generated will be according to the value input in
the population length. For example, if the input for population
length is 1000, then there will be 1000 chromosomes
generated from the initial state to form the population. After
this, it will calculate the fitness value (fitness function) for
each chromosome in the generation for the proposed heuristic
genetic algorithm and compare the fitness function for each
chromosome with the fitness function of the goal and compare
the tile's value of chromosome with tile's value of the goal. If
the two conditions are satisfied, then record the generation’s
index and chromosome index. Else go to the next
chromosome.

B. Selection, Crossover and Mutation operations

 The next generation is produced by executing
Selection, Crossover, and Mutation operations, respectively.
The crossover operation was to crossover the chromosomes
according to the input of crossover rate. For the mutation
operation, used the order changing method as two numbers are
selected and exchanged them. The probability for
chromosomes to mutate is according to the input of mutation
chance. After this, it will calculate fitness value (fitness
function) again for each chromosome in the new generation
and compare the fitness function for each chromosome with
fitness function of the goal, also compare the tile's value of
chromosome with tile's value of the goal. It will terminate if
the optimal solution is found. Else, it will go back to the step
of selection and repeat the following steps until the optimal
solution is found.

Fig 3. shows the Flowchart for proposed genetic algorithm
to solve the 8-puzzle problem

 Journal of Applied Technology and Innovation (e -ISSN: 2600-7304) vol. 7, no. 1, (2023) 30

Fig.3 Flowchart for proposed genetic algorithm with 8-puzzle problem

V. ALGORITHM IMPLEMENTATION

 Genetic algorithm is an algorithm which was developed

by John Holland and his student in 1975. And they were

inspired by the theory of evolution which was introduced by

Charles Darwin. This algorithm is based on a combination of

genetic crossover, mutations, and nature selection, which can

keep generate better answer until the generation reaches max

generation.

From the source code of (Noury, 2020) some tools such as
numpy and random are called to generate the board which
could randomly generate a new board when a new game is
started. For the board, the function numpy.zero will be used to
generate an empty matrix which will fill by 0. The matrix will
be filled by combination of two for loop. Firstly, the index
number will be set as 0 because the index number will be used
to fill the matrix which is generated before. The for loop will
fill the block [I, j] with the index number every time the
second for loop is run after the second for loop are run the
index number will automatic plus one. The for loops will run
until all empty blocks in the matrix are filled by the index
number.

After the matrix is filled, the matrix will be arranged from
0 to 8. Hence, the board needs to be shuffled before the game
starts, the function shuffle will be called to do this action. The
function will be used for loop to randomly move the numbers
in the matrix 100 times to make sure the matrix is disordered.
It will use four functions which will also be used when the
algorithm tries to arrange the number in the matrix which are
move_up, move_down, move_left and move_right.

These four functions are almost the same, but the direction
of the move isn’t the same. Fistly, the code will used where
function which is called from numpy to find out the 0 in the
block. After that, it will check if the number 0 can move to
that specific direction for example, in the move_left function
the code will check if the number 0 is at the third (2 in the code
cause start with 0) position because if the number 0 is at that
position it is not able to move to the left-hand side than the
code will return false and try to move it to other direction.
Same for the others move function. Until here, the game board
is generated, and the algorithm can start to solve the puzzle.

The class chromosomes are also very important as they
will affect the output of the algorithm. The update error
function in this class will use deepcopy from module copy,
this is because you didn’t want the affect the regular board.
Every update in the deepcopy will not cause the original object
to be changed because if you are using deepcopy the code will
create a new object. The code will also use apply_chain from
the class pad (generate board and allows movement). The
apply_chain function will be used to print out the movement
or the board.

After selecting the parents, the function cross_over will
run. In this function the function random will be called and if
the number provided by the function random is smaller than
0.5 the evolution of the gene will happen. The mutate chance
is also using random. random function, if the mutate chance is
lower than the number generated by the function than the
mutate will not happen else the gene will be mutated.

The class solver will import two modules which are math
and random. This class will use the output of the class pad and
the chromosomes. The function select best will run to choose
the best gene in the generation and let them become parents of
the next generation. The function of the calculate_error will
show us the total error of the iteration.

The mutate function will be run after the parents are
chosen. If the number generated by function random. random
are smaller than mutate chance the mutate function in the class
chromosomes will execute. The last function is solved, it will
run 1000 times repletely, unless the best solution is generated.
Then the display function will run, to print out the iteration.

 Journal of Applied Technology and Innovation (e -ISSN: 2600-7304) vol. 7, no. 1, (2023) 31

In this code there are 4 parameters which can be changed

which are Mutate_chance, Cross_over_rate, Population_len
and Max_iteration. The function of each parameter will be
discussed later on.

VI. RESULT AND DISCUSSION

A. Mutation Chance

The tests conducted here involve the mutation chance that
will have lesser iteration. The max iteration for the runs here
is 1000, the population length is 100 and the crossover rate is
0.5.

In Table I, the average of iterations with the mutation
chance of 0.9 is lesser compared with the mutation chance of
0.1 and the mutation chance of 0.5. This is because the chance
of mutation refers to the probability that a chromosome will
mutate. Therefore, the mutation chance of 0.9 means that each
chromosome will have a 90 percent probability to mutate into
a new chromosome and it will generate a greater number of
new chromosomes in one iteration. Hence, with a greater
number of new chromosomes that will be generated in one
iteration, the greater number of mutation chances can have a
lesser number of iterations.

TABLE I. Mutation chance result

NO

NUMBER OF ITERATION

MUTATION

CHANCE = 0.1

MUTATION

CHANCE = 0.5

MUTATION

CHANCE = 0.9

1 544 1 2

2 680 7 54

3 369 97 21

4 235 564 23

5 179 244 69

6 4 268 77

7 9 6 39

8 149 127 145

9 567 329 143

10 9 342 41

11 431 5 63

12 999 913 8

13 196 178 1

14 131 237 30

15 11 154 7

16 761 2 48

17 173 4 105

18 407 74 38

19 899 272 111

20 8 549 10

AVERAGE: 338.05 218.65 51.75

B. Crossover rate

 The test conducted here involves the crossover rate that

will have lesser iteration. The population length is set as

1000, the mutation chance is 1 and the max iteration will be

3000. The maximum value of crossover rate is 0.5 because

this is the swapping rate of two chromosomes. When the

swapping rate is 0.6, it is actually the same as 0.4 since two

chromosomes rate will be separated into two.

In Table II, the number of iterations in different crossover

rates are shown. When the crossover rate equals to 0, the only

chance to change the chromosome will be only mutation

chance. This makes the iteration become many and time taken

become longer. While crossover rate is higher, the good

chromosome will remain and get to the next generation. So,

the number of iterations will become lower.

TABLE II. Crossover rate result

NO

NUMBER OF ITERATIONS

CROSSOVER

RATE = 0.1

CROSSOVER

RATE = 0.3

CROSSOVER

RATE = 0.5

1 323 732 27

2 2650 0 104

3 128 426 422

4 2890 30 1058

5 953 703 290

6 647 1529 26

7 2975 505 382

8 6 1032 198

9 1523 1299 1

10 86 376 359

11 705 49 621

12 2808 403 10

13 1379 3 926

14 76 830 603

15 849 499 431

16 2677 2031 185

17 902 1394 68

18 740 2245 239

19 2034 38 0

20 92 127 493

AVERAGE 1222.15 712.55 322.15

C. Population Length

The tests conducted here involve the population length that
will have lesser iteration and the population length that has a
higher chance to have a chromosome representing the optimal
solution in the initial state. The max iteration for the runs here
is 1000, the mutation chance is 1 and the crossover rate is 0.5.

In Table III, the average of iterations with the population
length of 1000 is lesser compared with the population length
of 10 and the population length of 100. This is because when
you set crossover rate to 0.5 and mutate chance to 1, you can
compare fitness values for 500 new chromosomes generated
from the population length of 1000 in one iteration. However,
you can only compare fitness values for 5 new chromosomes
generated from the population length of 10 in one iteration.
Therefore, with the greater number of chromosomes that will
be compare fitness values in one iteration, the greater number
of population length can have lesser number of iterations.

Moreover, the population length of 1000 has a higher
chance that the population of chromosomes generated from

 Journal of Applied Technology and Innovation (e -ISSN: 2600-7304) vol. 7, no. 1, (2023) 32

the initial state will contain a chromosome representing the
optimal solution. This is because the number of chromosomes
that will be generated from the initial state for the population
length of 1000 is greater compared with the population length
of 10 and the population length of 100.

TABLE III. Population length result

NO

NUMBER OF ITERATION

POPULATION

LENGTH = 10

POPULATION

LENGTH =

100

POPULATION

LENGTH =

1000

1 237 0 615

2 481 182 473

3 323 460 681

4 27 84 242

5 695 605 9

6 2 89 3

7 63 362 0

8 4 624 178

9 890 56 67

10 17 67 0

11 236 4 14

12 884 614 5

13 85 1 149

14 616 751 531

15 833 41 557

16 23 224 66

17 712 21 265

18 58 32 384

19 12 127 177

20 961 372 0

AVERAGE: 357.95 235.8 220.8

D. Discuss on implementation

From the output which are shown in the table above, we
found that the largest the population the less of the iteration
will be generate which mean if we assign the largest number
of populations to the code, the less time will be needed to wait
before the solution are found by the algorithm. This is because
the more population means the more chromosomes can be
selected by the algorithm in the same generation which will
let the algorithm find the elite in the generation. For example,
China is a big country which are having 1.47 billion of
population, hence if only 1% of the people will be an elite,
they are still having a lot of elites. Which means the more
population you have the more possibility the generation will
have an elite.

The other parameters which can make a lot of impact to
the iteration generated will be crossover rate. Table 3 shows
that if the others parameter is the same the higher chance of
mutation will equal to the less time needed to spend waiting
for the result. If the crossover rated is 0, the only chance of
change will be the possibility of the mutation rate. It is a very
simple math question if the crossover rate is 1 (0% of chance)
and the mutate rate is 1.5 (0.5) the possibility of change is just
1.5, however is the crossover rate is 1.5 (0.5) and the mutated
rate is maintaining the possibility of the change will become
2.25. Hence, the best mutation rate and crossover rate will all
be 0.9 and the length of population will be 1000. It is possible
to make the length of population even larger, but the
computer’s RAM must be large enough to store the

population, otherwise we recommended to use 1000 and no
larger population.

VII. CONCLUSION

In this paper, it is shown that genetic algorithm can find
out the solution of the 8-puzzle problem. The time taken to
solve the problem and the number of iterations will change
depending on the parameters changing. Although genetic
algorithms can solve the problem effectively, but we can know
that the time taken to solve it is much longer according to the
result. So, it is not really efficient if the crossover rate or
mutation chance is low. Implementation of genetic algorithms
will be a good choice for problem solving if time allows.

VIII. ACKNOWLEDGMENT

We would like to thank Mr. Zailan Arabee Abdul Salam
for providing us with the information we need and helping us
when we are doing our research. Mr. Zailan also gives us some
reliable comments which are helping us to improve the quality
of our research on genetic algorithms and other AI-related
knowledge.

REFERENCES

Koza, J. R. (1992). Genetic Programming: On the Programming of
Computers by Means of Natural Selection. Amsterdam

University Press.

Melanie, M. (1999). An Introduction to Genetic Algorithm. In A Bradford
Book The MIT Press (Vols. 8–9). Massachusetts Institute of

Technology. https://www.boente.eti.br/fuzzy/ebook-fuzzy-

mitchell.pdf.
Mofan, M. (n.d.). Evolutionary-Algorithm. MofanPython. Retrieved

September 1, 2022, from https://mofanpy.com/tutorials/machine-

learning/evolutionary-algorithm/.
Richard, J. (n.d.). 8 Puzzle background. University of Minnesota Duluth.

Retrieved October 12, 2022, from
https://www.d.umn.edu/%7Ejrichar4/8puz.htm.l

Shaban, R. Z., Alkallak, I. N., & Sulaiman, M. M. (2010, September 1).

Genetic Algorithm to Solve Sliding Tile 8-Puzzle Problem.
JOURNAL OF EDUCATION AND SCIENCE, 23(3), 145–157.

https://doi.org/10.33899/edusj.2010.58405.

Hor, S. H., Yan, M. K., Sim, Y. S., Tan, S. J., & Abdul Salam, Z. A. bin.
(2022). Snake Game: A genetic neural network approach. Journal

of Applied Technology and Innovation, 6(1), 51–57.

Yuen, M. C., Yeong, L. W., Kang, E. C. Y., Syed, S. Q., & Abdul Salam, Z.
A. (2021). Investigating parameters of genetic algorithm and

neural network on classic snake game. Journal of Applied

Technology and Innovation, 5(2), 7–11.
Goldberg, D. E. (1989, January 11). Genetic Algorithms in Search,

Optimization and Machine Learning (13th ed.). Addison-Wesley

Professional.
Bhasin, H., & Singla, N. (2012, August). Genetic based Algorithm for N –

Puzzle Problem. International Journal of Computer Applications,

51(22), 0975 – 8887.
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.258.

7927&rep=rep1&type=pdf

Genetic Algorithm (Tutorial). (2017, August 12). [Video]. YouTube.
Retrieved September 1, 2022, from

https://www.youtube.com/watch?v=9ExCPd918Yk&t=306s

Konar, A. (2018, October 8). Artificial Intelligence and Soft Computing |
Behavioral and Cognitive. Taylor & Francis. Retrieved October

12, 2022, from

https://www.taylorfrancis.com/books/mono/10.1201/978131521
9738/artificial-intelligence-soft-computing-amit-konar.

Noury, Z. (2020, February 29). Genetic Algorithm to Solve Sliding Tile 8-

Puzzle Problem. GitHub. https://github.com/zaraanry/8-Puzzle.

https://doi.org/10.33899/edusj.2010.58405

