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Abstract— The Phasor Measurement Unit (PMU) is a
commonly used measurement unit in power systems to perform
state estimation, as it can measure the voltage and current
phasors of bus systems. Although PMU placement can improve
the accuracy of power system state estimation, it is expensive to
place PMUs in every bus. In this study, an MDEP algorithm is
proposed to achieve optimal PMU placement and reduce the
number of PMUs while minimizing error. A Weighted Least
Square (WLS) approach is implemented to estimate the power
system state. The efficacy of the proposed algorithm is
compared against previous algorithms in terms of meter
placement and computation time.
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l. INTRODUCTION

In the modern era, the population is increasing every day,
and along with it, the demand for electricity to support the
daily activities of the public is also increasing. To address the
challenge of supplying electricity to the public, state
estimation is required to ensure the stability of the power
system. This approach enables stable power supply without
facing any power cuts. State estimation is used to precisely
regulate the required generated power from the power system
and provide it to the industry and residents. Additionally, state
estimation acts as a security for the power system by
preventing damage to the equipment of the power system
when faults occur (Nagsarkar & Sukhija, 2014). Furthermore,
the rounding values in calculations can cause errors in power
system readings, in which state estimation can act as a
correction mechanism for the value.

The Weighted Least Square (WLS) algorithm is one of the
most extensively utilized algorithms for state estimation,
developed in 1986 by Fred Schweppe. The WLS state
estimation method employs three distinct state variables for
different measurements, namely complex power flow, nodal
voltage, and transformer ratio. The complex power flow
utilizes the state variables of real and reactive power flow,
while nodal voltage uses the voltage magnitude and voltage
phase angle as the state variables. Furthermore, transformer
turns ratio utilizes the transformer turn ratio angle and
transformer turn ratio magnitude as the state variables.
Different state variables are applied to respective
measurements (Monticelli, 1999). For instance, all the three
different state variables can be used for switch flow, zero
impedance branch flow, and unknown impedance flow
measurements.

Phasor Measurement Units (PMUs) are measurement
units frequently utilized in the power grid, distribution line,
and the transmission line to estimate the system state and
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monitoring processes in the power system. PMUs capture
positive time-tagged measurements with high accuracy,
collecting the voltage phasor and the current phasor value of
the bus. Furthermore, PMUs can integrate with global
positioning satellite (GPS) time stamps to deliver data to other
transmission lines located in different points of location,
enabling real-time monitoring in the power system. However,
a major consideration in implementing PMUs in the power
system is their cost. While PMUs have high accuracy for state
estimation, implementing one in every bus of the power
system is prohibitively expensive. Therefore, optimal PMU
placement is necessary to minimize the number of PMUs used
in the power system while maintaining state estimation
accuracy at a high level (Yuill et al., 2011).

This study employed the proposed Modified Discrete
Evolutionary Programming (MDEP) algorithm to optimize
PMU placement and improve the accuracy of the WLS
algorithm state estimation to reduce error considering
observability. The simulation of the MDEP algorithm was
tested on the IEEE 14 bus system, and its performance was
compared with existing algorithms.

II.  OBSERVABILITY OF PMU PLACEMENT

A. Observability Analysis

The observability of PMU placement is critical to ensure
the accuracy of state estimation in a bus system. In WLS
algorithm, the total measurement must be more than 2n-1
where n represents the total number of buses in the state vector
to be estimated. The gain matrix was used in this study to
signify the topological observability of the power system
network. Improper PMU placement can result in singularity in
the gain matrix and consequently cause an invalid calculation
for state estimation.

The formation of a rank matrix occurs through the
utilization of Gaussian elimination on the Jacobian H matrix
(Shahriar et al., 2019). The rank of a matrix with a row echelon
form is equivalent to the number of its nonzero rows.
Moreover, a matrix will be identified as a rank matrix when
its rank number exceeds the number of columns. Eqg. (1) shows
constraint of the observability for bus system.

rank (H) =22n—1 ()

The Jacobian H matrix in Eq. (2) is composed of both real
and reactive power flow as well as real and reactive power
injection. By taking the derivative of the real power injection
and power flow with respect to the angle, a model can be
formed to ascertain the observability of the bus system.
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By solely considering the real power injection and flow
and utilizing Eq. (1), one can rephrase the observability as
shown in Eqg. (3), where only the derivatives of the real power
injection and flow are considered in determining the
observability of the bus system.

rank (Hpg) = n—1 (3)

I1l.  MDEP ALGORITHM FOR OPTIMAL PMU PLACEMENT

The MDEP algorithm is an improvement on the DEP
algorithm as shown in Fig. 1. Initially, the MDEP algorithm
generates a dxd matrix population, as illustrated in Table I.
The dimension of the generated matrix depends on the total
number of buses in the bus system. This population is then
subject to the constraint, which determines the observability
of the bus arrangement. Once observable buses are identified,
they are used to calculate the state estimation error.

To update the particles' position, the observable bus
undergoes Mutation 1 process, in which a nonidentical value
replaces the diagonal element of the buses, as presented in
Table I1. Next, the observable population of the bus undergoes
the Mutation 2 process, in which the left triangular element of
the buses is removed, as shown in Table Ill. The purpose of
this mutation is to minimize the population of the buses.
Subsequently, the new bus arrangement undergoes a
constraint to assess its observability after the second mutation.
The observable bus arrangement is then used to calculate the
state estimation error.

These observable buses are then combined to undergo a
ranking and selection process. The bus arrangement with the
lowest state estimation error is ranked at the top, while the
opposite occurs at the bottom. The mutation process is iterated
until a converged result is obtained, when the generated
optimal bus arrangement differs from the original one. Thus,
the MDEP algorithm not only obtains the observable bus for
PMU placement but also minimizes the number of PMU
placements required for power system state estimation.

TABLE I. INITIAL POPULATION
Intial population
X11 | X12 | X33 | o | X14
X21 | X22 | X23 X2,d
X31 | X32 | X33 X3,d
Xa1 | Xaz2 | Xa3 | - | Xad

TABLE Il MATRIX OF MUTATION 1
Mutation 1
Xrand,1 X1,2 X1,3 X1,d
X2,1 Xrand,2 X2,3 X2,d
X3,1 X322 Xrand,3 X3,d
xrand,...
Xda1 Xa,2 Xd3 Xrand,d
TABLE Il MATRIX OF MUTATION 2
Mutation 2
xrand,i x1,2 x1,3 xl_d
Xrand,2 X2,3 X2,d
xrund,3

Combination

Generate random population
in dxd matrix size

Check the observability of
the bus

Check the observability of
the bus

Calculate the state
estimation error

Calculate the state
estimation error

Ranking and selection

Mutation 1
» (Update the diagonal v
elements with random ]
particles) New updated particles
Mutation 2

Is solution
converged?

(Reduce the matrix size by
removing the triangular
elements)

Fig. 1. Flowchart of MDEP algorithm

B. WLS Algorithm

The WLS algorithm is considered to compute the state
estimation which is conducted in the IEEE bus test system.
Figure 3 depicts the flowchart of the WLS algorithm. Initially,
the state vector and measurement vector must be identified.
These vectors are necessary for the WLS algorithm to
calculate the measurement vector error, denoted as ¢ in Eq.
(4). This error is calculated using the nonlinear function
vector, h(x), which relates the state vector, x as in Eg. (5) and
the measured vector, z, which is obtained from PMU
placement in the bus system as in Eq. (6). The state vector
consists of voltage magnitude and phase angle of each bus.

§=hx) -z 4)
X = [92I63!94I"')9TL! Ver2rV3r"'JI/n] (5)
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Q;*® = reactive power flow from bus a to b
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Initialize state vector and
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vector as in Eq. (5) and (6)
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y

Construct covariance matrix
from weighting factor as in
Eq. (7)

where i

| Compute the change of state
vector as in Eq. (15)

Update new state vector
asin Eqg. (16)

Change of vector
<error?

Compute the Jacobian
matrix H as in Eq. (13)

Fig. 2. Flowchart of WLS algorithm

The measurement variables comprise real and reactive
power injection, real and reactive power flow, voltage
magnitude and phase angle. The iteration count, denoted as i,
is initially set to 1. The algorithm then uses the weighting
factor to construct a covariance matrix. A diagonal covariance
matrix is formed when errors are assumed to be independent,
as shown in Eq. 7. The minimization of the objective function
in the WLS state estimation is solved using Eq. 8.
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where  z; = measured value in i
h(x); = nonlinear function vector that relates to
the states vector, x

Ry = measured error value in the i"" of the

covariance matrix.

The Jacobian H matrix is formed using the state vector.
Fig. 4 illustrates the two-port t-model for a network branch,
which is utilized to compute the real and reactive power flow
and the real and reactive power injection in the nonlinear
function h(x). The real and reactive power injection are
calculated using Eg. 9 and Eq. 10 respectively whereas the

real and reactive power injection is calculated using Eq. 11
and Eq. 12 respectively.
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Fig. 3. Two port t-model for network branch
Pr = Vi*(gij + 9s1) — ViVj (gijcosByj + byjsind;;)  (9)
Qr = —Viz(bij + bs,-) = ViV, (gijsinf;; + b;jcosB;;) (10)
Py = VY jen, Vj(Gijcos8;; + Byjsinb;;) (11)
Qi = Vi Xjen, Vi(Gyjsind;; + Bjcosb;;) (12)

where g;;, b;;= the series branch admittance connecting to

busiand j

Jsi» bgi = the shunt branch admittance connecting to
busiand j

G;, B;j= the complex bus admittance matrix's ij"
element

6;; = voltage angle difference between bus i and j
N; = a group of bus numbers that are linked to bus i

The Jacobian matrix, H, is formed according to Eq. 13.
The left-hand side elements of the matrix consists of the
partial derivative with respect to the angle, while the right-
hand side elements consists of the partial derivative with
respect to the voltage. The gain matrix is be calculated using
Eq. 14 after the Jacobian matrix, H, has been obtained. The
gain matrix is used in Eq. 15 to calculate the change of the
state variable for the variables to be updated.

oVm A
-
OPinj  OPinj
00 oV
— |%Qinj Qinj
H 00 oV (13)
Pp  Pr
00 ov
e 0r
- 00 ov -
G= H'R'H (14)
Ax* = HTR [z — h(x*)]G(x*)~? (15)

where k= number of iterations
HT = transpose of the Jacobian H matrix
h(x*) = nonlinear function vector that relates the
states vector, x to the measurement, Z;
G(x*) = gain matrix

Next, the algorithm uses the change of state vector to
calculate the new state vector, as illustrated in Eq. 16. This
new state vector is then updated in the algorithm. The
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TABLE IV. COMPARISON OF ALGORITHM
Algorithm Number of PMU Computation
placement (Bus) time (s)

DEP 4 0.29

MDEP 4 0.56

DeFS [5] 6 0.094

IPSO [6] 3 231

PSO [6] 3 2.52

V. DISCUSSION

Fig. 4 illustrates the convergence of the MDEP algorithm
with minimum error of 0.0164 in the state estimation. Optimal
PMU placement was identified to be at Buses 9, 6, 7, and 2.
Fig. 5 and 6 illustrate the phase angle and voltage magnitude
errors by the state estimation without optimal PMU
placement. The maximum error for phase angle was identified
to be at Bus 5 while the maximum error for voltage magnitude
was identified to be at Bus 3.

A comparison was made between the state estimation and
the Newton Raphson method for phase angle and voltage
magnitude as illustrated in Fig. 7 and 8 respectively. Bus 2 to
Bus 14 shows a small error in phase angle ranging from 0.01
to 0.07. It shows that this phase angle error does not result in
a significant mismatch with the Newton Raphson method. On
contrary, voltage magnitude shows a significant error which
ranging from 0.38 to 0.8 from Bus 2 to Bus 14. Thus, the
voltage magnitude shows a significant mismatch with the
Newton Raphson method.

The optimal PMU placement, determined by the MDEP
algorithm, included buses 9, 6, 7, and 2. This placement was
subsequently implemented in the WLS state estimation. Fig. 9
depicts a significant reduction in phase angle error for all
buses except buses 3, 4, and 5, in comparison to Fig. 7 with
the values ranging between 0.003 to 0.07. Similarly, Fig. 10
shows a significant reduction in voltage magnitude error for
all buses except buses 3, 4, and 5, in comparison to Fig. 8 with
the values ranging between 0.5 to 0.57. These results indicate
a considerable improvement in state estimation accuracy
resulting from the PMU placement.

To prove the accuracy of the state estimation based on
optimal PMU placement, a comparison was made to Newton
Raphson method for phase angle and voltage magnitude as
depicted in Fig. 11 and 12 respectively. The results for both
phase angle and voltage magnitude shows no significant error
between state estimation and Newton Raphson method.
Therefore, it is proven that the optimal PMU placement by
MDEP algorithm improve the accuracy of state estimation.

Additionally, the performance of MDEP algorithm was
compared with other algorithms such as Discrete Evolutionary
Programming (DEP), Differential Evolution Based Feature
Subset (DeFS), Improved Particle Swarm Optimization
(IPSO), and Particle Swarm Optimization (PSO) in terms of
computation time and number of PMU placement as presented
in Table IV. The DeFs algorithm identified a greater number
of PMU placement as compared with MDEP although it can

achieve the most minimum computation time. However, a
greater number of PMU placements leads to increased project
costs.

Accordingly, the PSO and IPSO algorithms identified the
minimum number of PMU placements with nearly identical
computation times, however, longer duration in comparison
with MDEP. While over-reducing PMU placement and
increasing computation time may not significantly impact
small-scale bus systems such as the IEEE 9 bus and IEEE 14
bus systems, the same approach implemented in a larger-scale
bus system such as the IEEE 118 bus system will likely result
in significant computation time that is unsuitable for state
estimation given that dynamic data collected from actual bus
systems requires a timely computation to avoid errors in state
estimation. Hence, the performance of MDEP for optimal
PMU placement was comparable with previous optimization
techniques.

VI. CONCLUSION

In conclusion, the proposed algorithm has successfully
reduced the number of the PMU placement in the IEEE 14 bus
system to four buses. The performance of the MDEP
algorithm was compared against other optimization
algorithms, with MDEP showcasing superior overall
performance, requiring less computing time, and achieving
minimum number of PMU placements.
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