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Optimal PMU Placement for Power System 

State Estimation 

 

Abstract— The Phasor Measurement Unit (PMU) is a 

commonly used measurement unit in power systems to perform 

state estimation, as it can measure the voltage and current 

phasors of bus systems. Although PMU placement can improve 

the accuracy of power system state estimation, it is expensive to 

place PMUs in every bus. In this study, an MDEP algorithm is 

proposed to achieve optimal PMU placement and reduce the 

number of PMUs while minimizing error. A Weighted Least 

Square (WLS) approach is implemented to estimate the power 

system state. The efficacy of the proposed algorithm is 

compared against previous algorithms in terms of meter 

placement and computation time. 

Keywords— MDEP algorithm, optimal PMU placement, WLS 

state estimation 

I. INTRODUCTION  

In the modern era, the population is increasing every day, 
and along with it, the demand for electricity to support the 
daily activities of the public is also increasing. To address the 
challenge of supplying electricity to the public, state 
estimation is required to ensure the stability of the power 
system. This approach enables stable power supply without 
facing any power cuts. State estimation is used to precisely 
regulate the required generated power from the power system 
and provide it to the industry and residents. Additionally, state 
estimation acts as a security for the power system by 
preventing damage to the equipment of the power system 
when faults occur (Nagsarkar & Sukhija, 2014). Furthermore, 
the rounding values in calculations can cause errors in power 
system readings, in which state estimation can act as a 
correction mechanism for the value. 

The Weighted Least Square (WLS) algorithm is one of the 
most extensively utilized algorithms for state estimation, 
developed in 1986 by Fred Schweppe. The WLS state 
estimation method employs three distinct state variables for 
different measurements, namely complex power flow, nodal 
voltage, and transformer ratio. The complex power flow 
utilizes the state variables of real and reactive power flow, 
while nodal voltage uses the voltage magnitude and voltage 
phase angle as the state variables. Furthermore, transformer 
turns ratio utilizes the transformer turn ratio angle and 
transformer turn ratio magnitude as the state variables. 
Different state variables are applied to respective 
measurements (Monticelli, 1999). For instance, all the three 
different state variables can be used for switch flow, zero 
impedance branch flow, and unknown impedance flow 
measurements. 

Phasor Measurement Units (PMUs) are measurement 
units frequently utilized in the power grid, distribution line, 
and the transmission line to estimate the system state and 

monitoring processes in the power system. PMUs capture 
positive time-tagged measurements with high accuracy, 
collecting the voltage phasor and the current phasor value of 
the bus. Furthermore, PMUs can integrate with global 
positioning satellite (GPS) time stamps to deliver data to other 
transmission lines located in different points of location, 
enabling real-time monitoring in the power system. However, 
a major consideration in implementing PMUs in the power 
system is their cost. While PMUs have high accuracy for state 
estimation, implementing one in every bus of the power 
system is prohibitively expensive. Therefore, optimal PMU 
placement is necessary to minimize the number of PMUs used 
in the power system while maintaining state estimation 
accuracy at a high level (Yuill et al., 2011). 

This study employed the proposed Modified Discrete 
Evolutionary Programming (MDEP) algorithm to optimize 
PMU placement and improve the accuracy of the WLS 
algorithm state estimation to reduce error considering 
observability. The simulation of the MDEP algorithm was 
tested on the IEEE 14 bus system, and its performance was 
compared with existing algorithms. 

II. OBSERVABILITY OF PMU PLACEMENT 

A. Observability Analysis 

The observability of PMU placement is critical to ensure 
the accuracy of state estimation in a bus system. In WLS 
algorithm,  the total measurement must be more than 2n-1 
where n represents the total number of buses in the state vector 
to be estimated. The gain matrix was used in this study to 
signify the topological observability of the power system 
network. Improper PMU placement can result in singularity in 
the gain matrix and consequently cause an invalid calculation 
for state estimation.   

The formation of a rank matrix occurs through the 
utilization of Gaussian elimination on the Jacobian H matrix 
(Shahriar et al., 2019). The rank of a matrix with a row echelon 
form is equivalent to the number of its nonzero rows. 
Moreover, a matrix will be identified as a rank matrix when 
its rank number exceeds the number of columns. Eq. (1) shows 
constraint of the observability for bus system. 

 𝑟𝑎𝑛𝑘 (𝐻) ≥ 2𝑛 − 1 (1) 

The Jacobian H matrix in Eq. (2) is composed of both real 
and reactive power flow as well as real and reactive power 
injection. By taking the derivative of the real power injection 
and power flow with respect to the angle, a model can be 
formed to ascertain the observability of the bus system.  
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By solely considering the real power injection and flow 
and utilizing Eq. (1), one can rephrase the observability as 
shown in Eq. (3), where only the derivatives of the real power 
injection and flow are considered in determining the 
observability of the bus system.  

  𝑟𝑎𝑛𝑘 (𝐻𝑃𝜃) ≥ 𝑛 − 1 (3) 

III. MDEP ALGORITHM FOR OPTIMAL PMU PLACEMENT 

The MDEP algorithm is an improvement on the DEP 
algorithm as shown in Fig. 1. Initially, the MDEP algorithm 
generates a d×d matrix population, as illustrated in Table I. 
The dimension of the generated matrix depends on the total 
number of buses in the bus system. This population is then 
subject to the constraint, which determines the observability 
of the bus arrangement. Once observable buses are identified, 
they are used to calculate the state estimation error.  

To update the particles' position, the observable bus 
undergoes Mutation 1 process, in which a nonidentical value 
replaces the diagonal element of the buses, as presented in 
Table II. Next, the observable population of the bus undergoes 
the Mutation 2 process, in which the left triangular element of 
the buses is removed, as shown in Table III. The purpose of 
this mutation is to minimize the population of the buses. 
Subsequently, the new bus arrangement undergoes a 
constraint to assess its observability after the second mutation. 
The observable bus arrangement is then used to calculate the 
state estimation error. 

These observable buses are then combined to undergo a 
ranking and selection process. The bus arrangement with the 
lowest state estimation error is ranked at the top, while the 
opposite occurs at the bottom. The mutation process is iterated 
until a converged result is obtained, when the generated 
optimal bus arrangement differs from the original one. Thus, 
the MDEP algorithm not only obtains the observable bus for 
PMU placement but also minimizes the number of PMU 
placements required for power system state estimation. 

TABLE I.  INITIAL POPULATION 

Intial population 

𝑥1,1 𝑥1,2 𝑥1,3 … 𝑥1,𝑑 

𝑥2,1 𝑥2,2 𝑥2,3 … 𝑥2,𝑑 

𝑥3,1 𝑥3,2 𝑥3,3 … 𝑥3,𝑑 

⋮ … ⋱ … ⋮ 

𝑥𝑑,1 𝑥𝑑,2 𝑥𝑑,3 … 𝑥𝑑,𝑑 

 

 

 

 

TABLE II.  MATRIX OF MUTATION 1 

Mutation 1 

𝑥𝑟𝑎𝑛𝑑,1 𝑥1,2 𝑥1,3 … 𝑥1,𝑑 

𝑥2,1 𝑥𝑟𝑎𝑛𝑑,2 𝑥2,3 … 𝑥2,𝑑 

𝑥3,1 𝑥3,2 𝑥𝑟𝑎𝑛𝑑,3 … 𝑥3,𝑑 

⋮ … ⋱ 𝑥𝑟𝑎𝑛𝑑,... ⋮ 

𝑥𝑑,1 𝑥𝑑,2 𝑥𝑑,3 … 𝑥𝑟𝑎𝑛𝑑,𝑑 

TABLE III.   MATRIX OF MUTATION 2 

Mutation 2 

𝑥𝑟𝑎𝑛𝑑,1 𝑥1,2 𝑥1,3 … 𝑥1,𝑑 

- 𝑥𝑟𝑎𝑛𝑑,2 𝑥2,3 … 𝑥2,𝑑 

- - 𝑥𝑟𝑎𝑛𝑑,3 … 𝑥3,𝑑 

- - - 𝑥𝑟𝑎𝑛𝑑,... ⋮ 

- - - - 𝑥𝑟𝑎𝑛𝑑,𝑑 
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Fig. 1. Flowchart of MDEP algorithm  

B. WLS Algorithm 

The WLS algorithm is considered to compute the state 
estimation which is conducted in the IEEE bus test system. 
Figure 3 depicts the flowchart of the WLS algorithm. Initially, 
the state vector and measurement vector must be identified. 
These vectors are necessary for the WLS algorithm to 
calculate the measurement vector error, denoted as ξ in Eq. 
(4). This error is calculated using the nonlinear function 
vector, h(x), which relates the state vector, x as in Eq. (5) and 
the measured vector, z, which is obtained from PMU 
placement in the bus system as in Eq. (6). The state vector 
consists of voltage magnitude and phase angle of each bus. 

  𝝃 = 𝒉(𝒙) − 𝒛  (4) 

  𝒙 =  [𝜃2 , 𝜃3 , 𝜃4 , … , 𝜃𝑛 ,   𝑉1 , 𝑉2 , 𝑉3 , … , 𝑉𝑛 ] (5) 
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  (6) 

where i     = number of iterations  

          𝑉𝑖
𝑎  = voltage at bus a 

          𝑃𝑖
𝑎  = real power injection at bus a 

         𝑄𝑖
𝑎   = reactive power injection at bus a 

         𝑃𝑖
𝑎𝑏   = real power flow from bus a to b 

         𝑄𝑖
𝑎𝑏  = reactive power flow from bus a to b 
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Fig. 2. Flowchart of WLS algorithm 

The measurement variables comprise real and reactive 
power injection, real and reactive power flow, voltage 
magnitude and phase angle. The iteration count, denoted as i, 
is initially set to 1. The algorithm then uses the weighting 
factor to construct a covariance matrix. A diagonal covariance 
matrix is formed when errors are assumed to be independent, 
as shown in Eq. 7. The minimization of the objective function 
in the WLS state estimation is solved using Eq. 8. 

 𝑅 =

[
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  (7) 

 𝑱(𝒙) =  ∑
[𝑧𝑖−ℎ(𝑥)𝑖]

2

R𝑖𝑖

𝑚
𝑖=1   (8) 

 

where 𝑧𝑖 = measured value in ith  

ℎ(𝑥)𝑖   = nonlinear function vector that relates to 

the states vector, x  

R𝑖𝑖   = measured error value in the ith of the 

covariance matrix. 

 

The Jacobian H matrix is formed using the state vector. 

Fig. 4 illustrates the two-port π-model for a network branch, 

which is utilized to compute the real and reactive power flow 

and the real and reactive power injection in the nonlinear 

function h(x). The real and reactive power injection are 

calculated using Eq. 9 and Eq. 10 respectively whereas the 

real and reactive power injection is calculated using Eq. 11 

and Eq. 12 respectively.  

 

 

Fig. 3. Two port π-model for network branch 

 𝑃𝐹 = 𝑉𝑖
2(𝑔𝑖𝑗 + 𝑔𝑠𝑖) − 𝑉𝑖𝑉𝑗  (𝑔𝑖𝑗𝑐𝑜𝑠𝜃𝑖𝑗 + 𝑏𝑖𝑗𝑠𝑖𝑛𝜃𝑖𝑗 ) (9) 

 

 𝑄𝐹 = −𝑉𝑖
2(𝑏𝑖𝑗 + 𝑏𝑠𝑖) − 𝑉𝑖𝑉𝑗  (𝑔𝑖𝑗𝑠𝑖𝑛𝜃𝑖𝑗 + 𝑏𝑖𝑗𝑐𝑜𝑠𝜃𝑖𝑗 ) (10) 

 

 𝑃𝑖 = 𝑉𝑖 ∑ 𝑉𝑗(𝐺𝑖𝑗𝑐𝑜𝑠𝜃𝑖𝑗 + 𝐵𝑖𝑗𝑠𝑖𝑛𝜃𝑖𝑗 ) 𝑗∈𝑁𝑖
  (11) 

 

 𝑄𝑖 = 𝑉𝑖 ∑ 𝑉𝑗(𝐺𝑖𝑗𝑠𝑖𝑛𝜃𝑖𝑗 + 𝐵𝑖𝑗𝑐𝑜𝑠𝜃𝑖𝑗 ) 𝑗∈𝑁𝑖
  (12) 

 

where 𝑔𝑖𝑗 , 𝑏𝑖𝑗= the series branch admittance connecting to 

bus i and j 

𝑔𝑠𝑖 , 𝑏𝑠𝑖  = the shunt branch admittance connecting to 

bus i and j 

𝐺𝑖𝑗 , 𝐵𝑖𝑗 = the complex bus admittance matrix's ijth 

element 

𝜃𝑖𝑗  = voltage angle difference between bus i and j 

𝑁𝑖 = a group of bus numbers that are linked to bus i 

 

The Jacobian matrix, H, is formed according to Eq. 13. 

The left-hand side elements of the matrix consists of the 

partial derivative with respect to the angle, while the right-

hand side elements consists of the partial derivative with 

respect to the voltage. The gain matrix is be calculated using 

Eq. 14 after the Jacobian matrix, H, has been obtained. The 

gain matrix is used in Eq. 15 to calculate the change of the 

state variable for the variables to be updated. 
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   𝑮 =  𝑯𝑻𝑹−𝟏𝑯  (14) 

  

 ∆𝒙𝑘 = 𝑯𝑇𝑹−1[𝒛 − 𝒉(𝒙𝑘)]𝑮(𝒙𝑘)−1  (15) 

 

where k     = number of iterations 

𝑯𝑇   = transpose of the Jacobian H matrix 

𝒉(𝒙𝑘)  = nonlinear function vector that relates the 

states vector, x to the measurement, 𝑍𝑖 

   𝑮(𝒙𝑘)  = gain matrix 

 

Next, the algorithm uses the change of state vector to 

calculate the new state vector, as illustrated in Eq. 16. This 

new state vector is then updated in the algorithm. The 
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algorithm is iteratively computed until the change of state 

vector is less than the tolerance value. 

 𝒙𝑘+1 = 𝒙𝑘 + ∆𝒙𝑘 (16) 

 

IV. RESULTS 

 

Fig. 4. MDEP algorithm convergence characteristic 

 

Fig. 5. Phase angle error by state estimation 

 

Fig. 6. Voltage magnitude error by state estimation 

 

Fig. 7. Phase angle by state estimation compared with Newton Raphson 

load flow analysis 

 

 

Fig. 8. Voltage magnitude by state estimation compared with Newton 

Raphson load flow analysis 

 

Fig. 9. Phase angle error by state estimation using optimal PMU 

placement 

 

Fig. 10. Voltage magnitude error by state estimation using optimal PMU 

placement 

 

Fig. 11. Phase angle by state estimation using optimal PMU placement 

compared with Newton Raphson load flow analysis 

 

 

Fig. 12. Voltage magnitude by state estimation using optimal PMU 

placement compared with Newton Raphson load flow analysis 
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TABLE IV.  COMPARISON OF ALGORITHM 

Algorithm Number of PMU 

placement (Bus) 

Computation  

time (s) 

DEP 4 0.29 

MDEP 4 0.56 

DeFS [5] 6 0.094 

IPSO [6] 3 2.31 

PSO [6] 3 2.52 

V. DISCUSSION 

Fig. 4 illustrates the convergence of the MDEP algorithm 
with minimum error of 0.0164 in the state estimation. Optimal 
PMU placement was identified to be at Buses 9, 6, 7, and 2. 
Fig. 5 and 6 illustrate the phase angle and voltage magnitude 
errors by the state estimation without optimal PMU 
placement. The maximum error for phase angle was identified 
to be at Bus 5 while the maximum error for voltage magnitude 
was identified to be at Bus 3.  

A comparison was made between the state estimation and 
the Newton Raphson method for phase angle and voltage 
magnitude as illustrated in Fig. 7 and 8 respectively. Bus 2 to 
Bus 14 shows a small error in phase angle ranging from 0.01 
to 0.07. It shows that this phase angle error does not result in 
a significant mismatch with the Newton Raphson method. On 
contrary, voltage magnitude shows a significant error which 
ranging from 0.38 to 0.8 from Bus 2 to Bus 14. Thus, the 
voltage magnitude shows a significant mismatch with the 
Newton Raphson method. 

The optimal PMU placement, determined by the MDEP 
algorithm, included buses 9, 6, 7, and 2. This placement was 
subsequently implemented in the WLS state estimation. Fig. 9 
depicts a significant reduction in phase angle error for all 
buses except buses 3, 4, and 5, in comparison to Fig. 7 with 
the values ranging between 0.003 to 0.07. Similarly, Fig. 10 
shows a significant reduction in voltage magnitude error for 
all buses except buses 3, 4, and 5, in comparison to Fig. 8 with 
the values ranging between 0.5 to 0.57. These results indicate 
a considerable improvement in state estimation accuracy 
resulting from the PMU placement. 

To prove the accuracy of the state estimation based on 
optimal PMU placement, a comparison was made to Newton 
Raphson method for phase angle and voltage magnitude as 
depicted in Fig. 11 and 12 respectively. The results for both 
phase angle and voltage magnitude shows no significant error 
between state estimation and Newton Raphson method. 
Therefore, it is proven that the optimal PMU placement by 
MDEP algorithm improve the accuracy of state estimation.  

Additionally, the performance of MDEP algorithm was 
compared with other algorithms such as Discrete Evolutionary 
Programming (DEP), Differential Evolution Based Feature 
Subset (DeFS), Improved Particle Swarm Optimization 
(IPSO), and Particle Swarm Optimization (PSO) in terms of 
computation time and number of PMU placement as presented 
in Table Ⅳ. The DeFs algorithm identified a greater number 
of PMU placement as compared with MDEP although it can 

achieve the most minimum computation time. However, a 
greater number of PMU placements leads to increased project 
costs.  

Accordingly, the PSO and IPSO algorithms identified the 
minimum number of PMU placements with nearly identical 
computation times, however, longer duration in comparison 
with MDEP. While over-reducing PMU placement and 
increasing computation time may not significantly impact 
small-scale bus systems such as the IEEE 9 bus and IEEE 14 
bus systems, the same approach implemented in a larger-scale 
bus system such as the IEEE 118 bus system will likely result 
in significant computation time that is unsuitable for state 
estimation given that dynamic data collected from actual bus 
systems requires a timely computation to avoid errors in state 
estimation. Hence, the performance of MDEP for optimal 
PMU placement was comparable with previous optimization 
techniques. 

VI. CONCLUSION  

In conclusion, the proposed algorithm has successfully 
reduced the number of the PMU placement in the IEEE 14 bus 
system to four buses. The performance of the MDEP 
algorithm was compared against other optimization 
algorithms, with MDEP showcasing superior overall 
performance, requiring less computing time, and achieving 
minimum number of PMU placements. 
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