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Abstract— As Adam optimizer’s learning rate decay 

hyperparameter has recently been deprecated, this journal 

article focuses to not only provide an alternate optimizer, but 

also compare the performance of the said optimizer, AdamW, 

with the Adam optimizer using a face mask detection model. 

This study experiments with different weight decay values and 

finds that a weight decay of 0.00009 with the AdamW optimizer 

consistently achieves a 98% accuracy rate. Aside from that, this 

study also discusses the differences between Adam with L2-

regularization and AdamW on how the weight decay is 

decoupled from the Adam optimizer’s gradient-base update that 

impacts the performance of AdamW. Overall, the study 

provides insights to those new to AdamW and looking for a 

starting point in optimizing deep learning models. 
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I. INTRODUCTION 

With COVID-19 cases gradually being forgotten by many 
across the world in 2023, the borders are slowly being 
reopened for tourists to boost the economic growth in these 
countries. The thing with humans is that they tend to have a 
habit of forgetting instead of learning from the past, thus 
causing history to repeat itself. While COVID-19 cases are 
slowly subsiding, it will only be a matter of time before a new 
variant comes in for the next outbreak if a country is not 
careful. Currently, new COVID-19 variants are still being 
found with the most recent one being XBB.1.5 that was 
reported on the 24th of February 2023 (Medicine, 2023). 

That said, technologies such as face mask detection 
systems can help to promote safety and prevent the spread of 
COVID-19 in public spaces (Rao, Devi, Dileep, & Ram, 
2020). These systems implements machine learning 
algorithms and computer vision to detect whether civilians are 
wearing masks in public areas such as airports, train stations, 
and shopping centres. By identifying individuals who are not 
wearing masks, authorities can take appropriate measures to 
enforce mask-wearing policies and reduce the risk of 
transmission. While these systems are not a silver bullet 
solution, they can be a useful tool for preventing the spread of 
COVID-19 and protecting public health. In this study, one 
aims to enhance the face mask detection system’s accuracy as 

well as its consistency by altering its optimizer to a more 
scale-free optimizer; one that is suitable for deep learning 
scenarios. 

II. LITERATURE REVIEW 

With the increasing popularity of deep learning algorithms 
such as CNN in the development of computer vision systems 
over the past several decades, the inclusion of face mask 
detection systems to this list was evident in 2020 due to the 
outbreak of COVID-19. Rao et al. (2020) had proposed a face 
mask detection system with an altered version of the CNN 
algorithm, called M-CNN. As the system the authors were 
developing turned out to be a relatively small model, M-CNN 
was simply a scaled-down version of the typical CNN. It is 
due to these alterations that the system was still able to provide 
a relatively high accuracy of 91.21% given only 1500 sample 
images to train and test the model with. Aside from that, the 
authors had also implemented other algorithms such as Scale 
Invariant Feature Transform (SIFT), Histogram of Oriented 
Gradients (HOG), and Support Vector Machine (SVM) to 
extract as well as detect objects and value mappings (Rao, 
Devi, Dileep, & Ram, 2020). Utilizing all these algorithms had 
allowed the authors to achieve a computer vision system that 
is able to perform image classification under harsh lighting 
conditions as well as various dimensions. 

In addition to algorithm selection, noise in training sample 
images has been found to impact the accuracy of image 
classification models. Lau et al. (2021) investigated the impact 
of noise on a Keras Simple CNN model and found that the 
accuracy rate decreased when noise was present in the training 
sample images. Using Kaggle as the development platform, 
the model was trained with six (6) different sets of sample data 
include a noise-free set of sample images and using the same 
set of images with different levels of noise ranging from 10 to 
50 to generate the other five (5) sets. The training and testing 
were done in two (2) separate scenarios with the first one 
being to train and test using sample images in their respective 
noise levels, and the second scenario training the model with 
noisy sample images, but is tested using the noise-free sample 
images. The authors suggest that training sample images 
should be tied to the purpose of the model, train the model 
with noisy images if the model was supposed to classify noisy 
images and vice versa (Lau, Sim, Chew, Ng, & Abdul Salam, 
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2021). These findings have implications for developing face 
mask detection systems that are robust to noisy image data. 

Upon further research on CNN, it was found that The 
Decoupled Weight Decay Regularization (DWDR) method 
was first tokened in this journal article where the authors had 
implemented the weight decay regularization in the optimizer 
to enhance the model’s accuracy and convergence speed 
(Loshchilov & Hutter, Decoupled Weight Decay 
Regularization, 2019). Decoupling the weight decay value 
from the optimizer’s gradient-base rule and applying it 
directly onto the weight value itself was found to be reason 
behind these improvements when comparing with Adam with 
L2-regularization and SGD with momentum. It was also 
mentioned that the AdamW optimizer was proven to be 
effective in preventing the model from overfitting as 
separating the weight decay from the other hyperparameters 
may improve the optimizer’s generalization, especially in 
deep neural network (DNN) (Loshchilov & Hutter, Decoupled 
Weight Decay Regularization, 2019). Through this study, the 
use of AdamW optimizer may allow one in developing 
accurate and efficient face mask detection systems using 
CNN. 

As for improvements that can be made to streamline the 
training process of the system, we can consider using transfer 
learning models such as Big Transfer (BiT) as a general visual 
representation to be transferred to our downstream task of a 
face mask detection system. Through a study, it was found that 
BiT, a DNN that utilizes the transfer learning method that 
outperforms previous state-of-the-art methods such as 
ResNet-v2, FixRes, and SwaAV on several benchmark 
datasets (Kolesnikov, et al., 2020) is computationally efficient 
and would allow us to save on resources and time if we were 
to use it following the concept of transfer learning. 

III. MATERIALS 

A. Dataset 

The dataset used in this study consists of a total of 4,000 
sample images, with 2,000 images each for masked and 
unmasked faces. According to the original author of the Face 
Mask Detection (Maskd) system, the images were collected 
from 3 different sources – Kaggle datasets, RMFD dataset, 
and Google Dataset Search, before being split into training 
and testing sets with a ratio of 8:2. 

B. Implementation 

The model was implemented using Python 3.8 ,  
TensorFlow 2.11.0, TensorFlow Addons 0.19.0 and NumPy 
1.22.4 for tasks ranging from preprocessing, model 
architecture building, and model training. Additionally, 
pandas 1.3.5 and Matplotlib were used in data analysis to 
graph training and validation loss as well as accuracy. The 
code was run on Google Colab’s Python 3 Google Compute 
Engine that comes with an Intel® Xeon® CPU @ 2.20 Ghz 
including two cores, a total of 12.7 GB of system RAM and 
107.7 GB of disk space with no GPU. 

IV. METHODS 

A. Preprocessing 

All images in the input dataset of face images were resized 
to a fixed size of 96 x 96 pixels to ensure consistency in size. 
To increase the size of the training dataset and prevent 
overfitting, data augmentation techniques such as random 

rotation, zoom, horizontal flip, and vertical flip were applied 
to the pre-processed images. Specifically, the images were 
randomly rotated up to 20 degrees, zoomed up to 15%, 
horizontally flipped with a probability of 50%, and vertically 
flipped with a probability of 50%. 

B. Model Architecture 

The input image is first fed into a 3x3 convolutional layer 
with 16 filters, followed by max pooling with a 2x2 kernel 
size. This is repeated with increasing numbers of filters for the 
next 4 convolutional layers, each followed by max pooling 
with a 2x2 kernel size. The output of the final convolutional 
layer is flattened and fed into two fully connected layers with 
1024 and 64 nodes respectively. The final output layer has 2 
nodes, representing the binary classification of masked faces 
to unmasked faces from the sample images using the softmax 
activation function. 

C. Model Training 

The model was trained using the AdamW optimizer with 
a learning rate of 0.0005 and a batch size of 32. The training 
was carried out across 100 epochs and uses a binary cross-
entropy loss function. The learning rate of 0.0005 was chosen 
based on a preliminary hyperparameter search which we 
found to produce good results and weight decay was added to 
help prevent overfitting and improve generalization. 

D. Evaluation 

The trained model was evaluated on the testing set to 
measure its performance at the end with a classification report, 
showing the model’s precision, recall, and f1-score. 

V. ALGORITHM 

The algorithm used in the face mask detection system is CNN, 

a type of neural network that is found to be particularly well-

suited when it comes to analyzing two-dimensional data such 

as images, whether it may be for detection, classification, 

segmentation, or any other image processing purposes (Ng, 

Chong, Mohammed, How, & Abdul Salam, 2023). Compared 

to traditional neural networks such as feedforward neural 

networks, every neuron in the adjacent layer is found 

connected to one another and is typically referred to as a dense 

or fully connected layer. That said, while traditional neural 

networks are suited for various types of input, it can be 

computationally expensive. However, in CNN, the input 

image is said to have passed through a series of convolutional 

and pooling layers, which allows it to identify and extract 

features such as edges, corners, and textures (Yamashita, 

Nishio, Do, & Togashi, 2018). The output from these layers is 

then passed through one or more fully connected layers, which 

use weights to combine the features and produce the final 

output using an activation function. The Adam optimizer is a 

commonly used optimization algorithm for training CNNs, as 

it adapts the learning rate based on the history of gradients and 

adjusts the model parameters more efficiently than traditional 

optimization algorithms (Bock & Weiß, 2019). The specific 

architecture and hyperparameters of a CNN will largely 

depend on the particular task at hand, whether it may be image 

classification or object detection. 

A. Purpose 

As the learning rate decay hyperparameter has been 

recently deprecated and no longer in use for in the latest Keras 



Journal of Applied Technology and Innovation (e -ISSN: 2600-7304)   vol. 7, no. 3, (2023)                                   27 

 

optimizer, this study was done to find an alternative while also 

improving the original face mask detection model’s 

performance. Upon further research, it was found that not only 

was AdamW optimizer a viable option, but also turned out to 

be an improvement according to pass studies (Loshchilov & 

Hutter, Decoupled Weight Decay Regularization, 2019) 

AdamW optimizer was found to provide lower loss rates and 

better generalization in deep learning scenarios due to the 

adaptive gradient scaling by decoupling the weight decay 

from the Adam optimizer’s update rule. 

B. Parameters 

TABLE I.  PARAMETERS 

Parameter Value 

Learning rate 0.0005 

Batch size 32 

Number of epochs 100 

Loss function Binary cross-entropy 

Optimizer AdamW 

Weight decay 0.0001 

 

VI. DISCUSSION ON IMPLEMENTATION 

To start, we will first discuss the parameters shown in 
TABLE I. In order for a model to converge on an optimum 
solution in a reasonable amount of time during training, a 
delicate balance of learning rate, batch size, and number of 
epochs is a basic requirement. The model might overshoot the 
optimal solution if the learning rate is set too high and 
conversely may be stuck in a local optimum if set too low 
(Wanjau, Wambugu, & Oirere, 2021). 

In regard to batch size, a lower batch size would lead to a 
better optimization of the model, but the training speed of the 
model will slow down as a result (Jun & Wengdong, 2019). 
Therefore, choosing the right batch size is essentially a 
tradeoff between optimization and opportunity cost. On a 
surface level, one might think that the change in number of 
epochs has similar effects as batch size. However, the increase 
in the number of epochs can also cause overfitting while 
decreasing batch size only has a longer training time as a 
downside (Saahil & Smitha, 2020). Ultimately, the optimal 
number of epochs depends on the size and complexity of the 
dataset and the model’s architecture.  

As for loss function, it was found that the suitable loss 
functions for tasks with two outputs consist of binary cross-
entropy and hinge loss, where hinge loss is typically used in 
support vector machines (SVMs) instead, while binary cross-
entropy is designed for neural networks (Wang, Ma, Zhao, & 
Tian, 2022). 

In the context of AdamW, weight decay is a 
hyperparameter that can significantly impact the performance 
of a model as it controls the amount of regularization applied 
to the weights during training (Loshchilov & Hutter, Fixing 
Weight Decay Regularization in Adams, 2018) which can 
help prevent overfitting and allow for a model with improved 
generalization to be made. Compared to other 
hyperparameters in AdamW which influences regularization 
such as learning rate, weight decay can be seen to have a more 
direct impact (Loshchilov & Hutter, Decoupled Weight Decay 
Regularization, 2019). It is due to this very reason we have 

chosen to modify the weight decay in the AdamW optimizer 
in our paper to gather findings on the effects of weight decay 
on a CNN model such as this face mask detection system. 

 𝑔𝑡  =  𝛻𝑓𝑡(𝑤𝑡−1)  + 𝜆𝑤𝑡−1 () 

 𝑤𝑡  =  𝑤𝑡−1 − 𝛼(𝑚̂𝑡/(√𝑣̂𝑡  +  𝜀)) () 

Formula (1) represents the gradient calculation for the 
Adam with L2-regularization, which will later be used 
indirectly in formula (2)’s 𝒎𝒕 and 𝒗̂𝒕 values to obtain the said 
optimizer’s weight value (Loshchilov & Hutter, Decoupled 
Weight Decay Regularization, 2019). 

 𝑔𝑡  =  𝛻𝑓𝑡(𝑤𝑡−1) () 

 𝑤𝑡  =  𝑤𝑡−1 −  𝛼(𝑚̂𝑡/(√𝑣̂𝑡  +  𝜀)  +  𝜆𝑤𝑡−1) () 

Formula (3) and formula (4) show the gradient formula as 
well as the weight calculation respectively for the AdamW 
optimizer based on the study by (Loshchilov & Hutter, 
Decoupled Weight Decay Regularization, 2019). 

Through these formulas, g is the representation for the 
gradient value and ∇ ft is the calculation function for g. wt on 
the other hand represents the calculated weight value after 
applying the weight update rule, while wt-1 refers to the 
weight value before the said rule application. As for α, it 
simply refers to the learning rate value. According to 
(Kingma & Ba, 2015), 𝒎𝒕 represents the corrected biased of 
the moving average of gradient, mt. mt is the mean of the 
gradient and requires its own value to be included upon 
calculating mt itself. As mt is initially set to 0, this would 
cause biasness to occur, thus required to be corrected. 𝒗̂𝒕 

works similarly to 𝒎𝒕  but instead, vt represents the 
uncentered variance of the gradient, or squared gradient. As 
for epsilon, ε, it is a parameter used in the update rule to 
ensure that the 𝒎𝒕is never divided by 0. λ is the previously 
discussed weight decay value. Table II shows the symbols 
and descriptions for all four (4) of the formulas above. 

TABLE II.  UPDATE RULE SYMBOLS 

Symbol Description 

g Gradient 

∇ f Gradient function 

w Weight 

α Learning rate 

𝑚̂ 
Corrected bias of moving average 

of gradient 

𝑣 Corrected bias of squared gradient 

ε Epsilon 

λ Weight decay 

 

As one may see in formula (1) and formula (2), the weight 
decay value, λ, was used as part of the gradient’s calculation 
before being indirectly used by 𝒎𝒕 and 𝒗̂𝒕 ’s calculations 
respectively. Thus, causing the significance of λ to be 
lessened. On the other hand, notice how the λ has been 
decoupled from the gradient formula in formula (3) and 
instead being included in weight update formula, formula (4). 
This allows λ to provide a more significant impact to the 
weight update, making the penalization more effective. 
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 λ = λnorms√𝑏 𝐵𝑇⁄  () 

According to the authors of AdamW, it was found that the 
optimal weight decay value for a model can be determined 
using the formula as given above, where λnorms represents the 
normalized weight decay value while b as the batch size. B 
on the other hand represents the total training points, and T 
for the total epochs (Loshchilov & Hutter, Decoupled Weight 
Decay Regularization, 2019). As (Loshchilov & Hutter, 
Decoupled Weight Decay Regularization, 2019), had used a 
normalized weight decay ranging from 0.025 to 0.05, it was 
assumed by (Lo, 2021), that this can be a decent starting 
point. That said, as our model is a relatively small compared 
to the one used by (Loshchilov & Hutter, Decoupled Weight 
Decay Regularization, 2019), the normalized weight decay 
value that was tested for our model ranges from 0.001 to 0.01. 
Given that the face mask detection system model has a batch 
size of 32, trained with 3200 sample images, and had a total 
number of 100 epochs, a good start for the weight decay 
value, λ, can be calculated to range from 0.00001 to 0.0001. 

VII. RESULTS 

TABLE III.  FACE MASK DETETCION MODEL OUTPUT RESULTS 

Weight decay, λ Run Accuracy, % 

0.0001 
1 97 

2 97 

0.00001 
1 97 

2 98 

0.00005 
1 97 

2 98 

0.00009 

1 98 

2 98 

3 98 

4 98 

 

The face mask detection model was trained separately 
using four (4) different weight decay, λ, values including 
0.0001, 0.0001, 0.00005 and 0.00009 as shown in Table III, 
with at least two runs for each weight decay value. 

Throughout the training and testing process of the face 
mask detection model, λ = 0.0001 was chosen as the initial 
tested value for the weight decay hyperparameter. It was 
found that the accuracies for both different runs were 97%, 
showing a promising output due to its consistency. As our 
model is considered a simpler model, λ = 0.00001 was carried 
out and obtained accuracy rates of 97% for the first run, and 
98% for the second run; improved accuracy with less 
consistency. Upon adjusting to a larger λ value, 0.00005, it 
was again found that the outcomes were similar to the ones 
from λ = 0.00001. While the accuracy rates for both λ = 
0.00001 and λ = 0.00005 can go up to 98%, it was found to 
be less consistent compared to the models with λ = 0.0001. 
For the final tested λ, the value of 0.00009 was chosen as it is 
closer to the first tested weight decay value, λ = 0.0001. The 
tests had shown promising results of 98% accuracy for both 
the separate models, making it worth the further validations 
on these improved accuracies to ensure consistency. Two 
more separate models were then trained again using the same 
λ value of 0.00009 to validate the previous two results, and to 
one’s surprise, the accuracy remained at 98%. Not only does 
this proves that λ = 0.00009 can achieve a higher accuracy of 

98% compared to λ = 0.0001 but is also considered to be a 
significant finding as the consistency is proven to be there. 

VIII. CONCLUSION 

All in all, the key takeaway point is that AdamW 
optimizer was found to be a better optimizer compared to 
Adam with L2-regularization optimizer when it comes to 
updating and controlling the weight of the model as discussed 
earlier. Through multiple experiments with different weight 
decay values, a model with a consistent accuracy of 98% was 
achieved using the AdamW optimizer with a weight decay of 
0.00009. AdamW optimizers are considered to provide state-
of-the-art performance when it comes to tasks such as image 
classification, object detection, segmentation, and other deep 
learning image processes. As such, models that require high 
accuracy and convergence speed while working on a rather 
complex dataset may consider the AdamW optimizer as a 
viable option. This includes models from the medical field 
such as medical diagnosis models and automotive industries 
with their gaining popularity of autonomous driving (Lima, 
Brito, Martins, Lima, & Pedrosa, 2019; Fujiyoshi, Hirakawa, 
& Yamashita, 2019). As the accuracy produced by different 
optimizers may vary from one another, this journal article 
will provide insights to those who are new to AdamW and are 
looking for a starting point. To obtain a starting weight decay 
value, one may use formula (5) to calculate the optimal 
weight decay range based on their specific models, or by 
simply implementing the transfer learning method using this 
study’s system. 

IX. LIMITATION AND FUTURE ENHANCEMENTS 

The one limitation to the AdamW optimizer is the 
computational power that is considered to be relatively 
expensive as every weight in the optimizer requires more 
calculation as well as memory compared to Adam. Not to 
mention new hyperparameters such as weight decay 
coefficient in AdamW that was never in the Adam optimizer 
which also contributes to the increment in computational 
power required. There are also several unexplored areas when 
considering AdamW’s improvement in performance 
including the use of batch normalization and dropout 
techniques. It was found that batch normalization allows the 
input of every layer to be normalized by controlling the mean 
and variance of the input to maintain better consistency upon 
each batch’s input (Ioffe & Szegedy, 2015). That said, studies 
mentioned that there are cases where removing batch 
normalization from a model may improve the model’s 
accuracy rather than decreasing it, which would be worth the 
study (Brock, De, Smith, & Simonyan, 2021). The dropout 
technique on the other hand was said to simply drop random 
neurons upon passing through each layer to prevent 
overfitting to occur (Nitish Srivastava, 2014). Finally, it is 
possible to implement more data augmentation methods such 
as CutMix, MixUp, gaussian noise, and color jittering to 
increase the data variation for a more robust model (Tufail, et 
al., 2022; Hao, et al., 2020; Walawalkar, Shen, Liu, & 
Savvides, 2021). 
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