
Journal of Applied Technology and Innovation (e -ISSN: 2600-7304) vol. 7, no. 3, (2023) 37

A Comparison Review of Optimizers and

Activation Functions For Convolutional Neural

Networks

Ahmad Awad

School of computing

Asia Pacific University of Technology

and Innovation (APU)

Kuala Lumpur, Malaysia

TP062406@mail.apu.edu.my

Toh Jian En

School of computing

Asia Pacific University of Technology

and Innovation (APU)

Kuala Lumpur, Malaysia

TP061216@mail.apu.edu.my

Tharun Muthukumaran Umadevi

School of computing

Asia Pacific University of Technology

and Innovation (APU)

Kuala Lumpur, Malaysia

TP066176@mail.apu.edu.my

Koo Susan

School of computing

Asia Pacific University of Technology

and Innovation (APU)

Kuala Lumpur, Malaysia

TP067306@mail.apu.edu.my

Joey Ng Ceng Yi

School of computing

Asia Pacific University of Technology

and Innovation (APU)

Kuala Lumpur, Malaysia

TP060794@mail.apu.edu.my

Zailan Arabee Abdul Salam

School of computing

Asia Pacific University of Technology

and Innovation (APU)

Kuala Lumpur, Malaysia

zailan@apu.edu.my

Abstract—Convolutional Neural Networks (CNN) are widely

used in today’s world for research on image classification and

image identification. In this research, exploration is made into

one type of CNN using transfer learning by implementing the

DensNet-161 model into classifying 133 different types of dog

breeds in a total of 8,351 images split between training,

validation, and testing. Only 7,515 images will be used for

training and validation of a ratio of 89:11 respectively. This

research aims to identify the accuracies and performances of

Rectified Linear Unit (ReLU), Leaky ReLU, and Exponential

Linear Unit (ELU) activation functions along with Adaptive

Moment Estimation (Adam), Adaptive Gradient Algorithm

(Adagrad), and Stochastic Gradient Descent (SGD)

optimization functions with learning rates (lr) of 0.001, 0.01, and

0.1.

Keywords— dog breed classification, convolutional neural

networks (cnn), artificial neural network (ann), transfer learning,

optimization functions, activation functions, learning rate.

I. INTRODUCTION

The evolution of dogs since time immemorial has
eventually led to hundreds of dog breeds in the world today.
According to Federation Cynologique Internationale (2023),
a total amount of 360 registered dog breeds exists in the
modern world and some of them even share the same features
despite being of different breeds (Oliver, 2023). Hence, it
could be extremely arduous even for dog experts to identify
and remember each dog breed. With the contemporary
advancements in Artificial Intelligence and introduction of
Machine Learning, more effective ways of identifying dog
breeds specifically using Deep Learning (DL) approaches
and Convolutional Neural Networks (CNN) were developed.
Convolutional Neural Networks are highly endorsed for
surveying visual images (Long K et al., 2022). However,
training a CNN model has been a tough, complicated, and
time-consuming task to do since it needs a large dataset to be
fed into it until it can become a usable model with high
accuracy (Castillo, 2023). For most of the research, the size
and the number of images contained in the dataset used might
be not sufficient to gain high accuracy (Koehrsen, 2021).
Furthermore, most researchers have difficulty creating a new

CNN model from scratch. This is where transfer learning
techniques are used to reduce time consumption on creating
multiple model architectures. Transfer learning is a technique
by reusing a pretrained model to solve a new problem that is
popular in the field of data science because it allows
researchers to train or work with the deep neural network with
only a relatively low amount of data (Sharma, 2021). By this,
a better and more compatible model is published. In this
research paper, the utility of transfer learning for identifying
dog breeds is explored. The research uses DenseNet-161 as
the pretrained model and initially uses the Rectified Linear
Unit (ReLU) as the activation function along with the
Adaptive Moment Estimation (Adam) optimization function.
The paper also explores the employment of Stochastic
Gradient Descent (SGD) and Adaptive Gradient Algorithm
(Adagrad) optimization functions in comparison to Adam and
the employment of Leaky Rectified Linear Unit (Leaky
ReLU) and Exponential Linear Unit (ELU) in comparison to
ReLU.

II. LITERATURE REVIEW

According to Naufal, Ema, and Gamma (2022), the
research was on dog breeds classification using
Convolutional Neural Network (CNN). That being said, CNN
faces great difficulty in differentiating groups of dogs with
similar physical characteristics, color, size, and shape. The
purpose of the research was to find out the performance of
using different ResNet architectures by examining the
accuracy using F1-score value. Five dog classes from the
sporting group were taken from the Tsinghua Dogs Dataset
which contains 9558 images and were resized to a resolution
of 224 x 224 pixels. Low- and high-resolution images were
provided by this dataset. The images were then split randomly
into 3 aspects which are training, validation, and testing with
ratios of 70%, 10% and 20% respectively. The ResNet50 and
ResNet 101 will be used as the pretrained models in the
research to test out which is the better model. The difference
between ResNet50 and ResNet101 is one has 50 neural
network layers and another one has 101 neural network
layers. Both are using convolutional layers in the variants
while dropout, pooling layers, and dense were added. The

Journal of Applied Technology and Innovation (e -ISSN: 2600-7304) vol. 7, no. 3, (2023) 38

model was run on 25 epochs, batch-size of 32 and 4 neural
network layers with 0.3 rate of two dropout layers, 2 dense
layers. Based on the training results, the validation loss
showed by the Resnet101 has less variation compared with
ResNet50. Next, to test the F1-score, the highest validation
accuracy from both variants based on the training results were
chosen. The testing result shows most of the image
classification was accurate. However, the results show that
ResNet101 performed slightly better than ResNet50 with a
superiority of 0.2. Moreover, the research also indicates that
the number of layers is a key factor in determining the results.
It does not necessarily mean that more layers are better;
sometimes, more layers do not make a significant difference
but can lead to longer training times.

III. MATERIALS

A. Dataset

The image dataset is provided in GitHub by the author
where the folder was imported and unzipped. The dataset
contains a total of 8351 dog images split into training,
validation, and testing. The total combined number of
training and validation dataset is 7,515 images split into a
ratio of 89: 11 respectively. The images are re-sized to a
resolution of 256 x 256 pixels and then are cropped into a size
of 224 x 224 pixels. The dataset contains a total of 133 unique
outputs or dog classifications.

B. Hardware Specification

The platform used to run the code was Google Colab as it
is a widely popular platform that performs parallel processing
and is utilized for machine learning and neural network
training. The system hardware specifications used in Google
Colab are provided in Table I.

TABLE I. SYSTEM HARDWARE SPECIFICATIONS

Hardware Description

CPU Intel Xeon 2-core, 2.2 GHz

RAM 13 GB

GPU NVIDIA Tesla K80 with 24 GB of GDDR5 memory

(12 GB per GPU)

Storage 64 GB

The model imports torch and NumPy as two of the most

important libraries used for this research as they are widely
used for mathematical and scientific purposes, especially in
the domain of machine learning and neural network training.

IV. PROPOSED METHOD

The research aims to survey the performances of different
activation functions and optimization functions with various
learning rates. This gives an intuition as to which parameters
are ideal for the given problem. While the dataset size can be
considered relatively small, the research provides substantial
intuition at the implementation of high-performance
activation functions and optimization functions with respect
to each other.

A. Convolutional Neural Networks

A Convolutional Neural Network (CNN) is a deep
learning algorithm and a subset of Artificial Neural Network
(ANN) that classifies an image by implementing
convolutions, down sampling, and other pre-processing

procedures. CNN takes the input image, allocates the
appropriate weights and biases for classification (Saha,
2018). CNNs are discerned from other neural networks due
to their prevailing performance with image and audio inputs
(IBM, n.d). Every CNN contains 3 types of layers:
Convolutional, Pooling and Fully Connected (IBM, n.d). For
each layer, the CNN expands in its complexity, thus
navigating bigger sections of an image. CNN is modified in a
format such that it begins identifying small patterns into
classifying the required object. For each layer, the CNN
expands in its complexity, thus navigating bigger sections of
an image. CNN is modified in a format such that it begins
identifying small patterns into classifying the required object
(Abdo et al., 2022).

Recent developments in Convolutional Neural Networks
combine advancements from the deep learning field. They
have been a common choice for image recognition tasks, such
as handwritten numeric recognition. It is a popular discourse
that CNNs were the first to provide a robust implementation
which was successful using multilayer hierarchical networks.
CNNs can reduce the number of trainable network parameters
while improving the efficiency of backpropagation. (Seng et
al., 2021).

For our project, CNN will demonstrate the solution to the
problem by segmenting dog images based on the RGB color
planes (Saha, 2018). The dataset is first designated to the
convolution and pooling layers for feature extraction whilst
the fully connected layer draws the extracted features onto the
final output. The convolutional layers demonstrate vital
importance in the CNN to convolute the images using kernels
and matrix multiplication to extract high level features from
an image whereas the pooling layers are utilized as down
sampling computations, therefore reducing the processing
power necessitated (Yamashita. R et al., 2018). Pooling and
convolution calculations are continuously repeated where the
output of one layer dispenses as an input for the next layer as
the network becomes more complex (Yamashita. R et al.,
2018). In this research, a pre-defined model is implemented
with its own weights and biases already set for classification
of dog breeds.

B. Artificial Neural Networks

An Artificial Neural Network (ANN) consists of 3 layers:
input layer, hidden layer(s), and output layer. Each layer is
made up of neurons (nodes). The input layer is where data is
fed into the network, transformed into a format that can be
processed by the subsequent layers, and then passed to the
first hidden layer. Each node in the input layer represents a
feature of the input data (Raj, n.d). In the case of dog breed
identification for instance, features include shape of a dog’s
face, texture of the fur, color patterns, presence of certain
markings, etc.

The hidden layer(s) are where the heavy computations
will be performed to solve the target problem. The number of
hidden layers depend on the architecture of the ANN that is
being used, and this number can have a significant impact on
the model’s performance. Generally, more complex problems
require more neurons for processing and hence more layers.
Each neuron in the hidden layer(s) has an activation function,
which is used to determine the output of a neuron (i.e.,
whether to fire a neuron or not). Following are the steps that
are usually involved in computing the output of a neuron
(forward propagation):

Journal of Applied Technology and Innovation (e -ISSN: 2600-7304) vol. 7, no. 3, (2023) 39

1. The computation starts off at the input layer of the

network and progressively propagates towards the
output layer. To propagate forward, every neuron in
the same layer will receive inputs from the neurons
in the preceding layer to calculate the weighted sum
of inputs.

2. The weighted sum is then passed into the activation
function. If the value exceeds a certain threshold, the
neutron will be activated. Otherwise, the neutron
will be inactive.

3. Outputs from the activated neurons will be passed to
the neurons in the succeeding layer. On the other
hand, an inactive neuron will have output equal to 0
since it is being “turned off”. Therefore, inactive
neurons have no impact on the final prediction of the
model.

During model training, however, inactive neurons will
still play a role in the network. Loss or error is calculated at
the output layer and is then passed back to the hidden layers
to update the model’s weights and biases. This process is also
known as backpropagation (Seth, 2021).

In this project, the Rectified Linear Function (ReLU) has
been used as the activation function for neurons in the hidden
layers. ReLU is a piecewise linear function that will output a
neuron’s weighted sum directly if the value is positive, and
outputs 0 otherwise (Brownlee, 2020).

The output layer is the layer that produces the result of the
ANN. The number of nodes in the output layer depends on
the number of output variables (or classes). For instance, the
dog breed identification problem has 133 different types of
dog breeds, that is, 133 output variables. Hence, the ANN
may predict a dog’s breed among these 133 possible classes.
Depending on the type of problem to be solved, an activation
function in the output layer may be necessary (Raj, n.d). In
this project, the Logarithm SoftMax (Log SoftMax)
activation function is applied to the output layer since it is
typically used for multi-class classification problems.
SoftMax will first take a vector of real numbers from the
outputs of the hidden layers. These numbers will then be
converted into a probability distribution over the output
variables, such that each number in the vector will be within
the interval of [0,1] and the sum of all numbers will be 1.

This way, the numbers can now be interpreted as the
probabilities of the classes. For example, a probability
distribution of [0.34201, 0.02413, 0.09031, …] means that
there is a 34.201% chance of the dog being a Chihuahua
breed, 2.413% chance of being a Papillon breed, 9.031%
chance of being a Blenheim Spaniel breed, and so on. The
purpose of Log is simply to achieve numeric stability by
representing the SoftMax probabilities on a logarithmic scale
(Abhirami, 2021).

C. Vanishing Gradient Problem

In the backpropagation process of the network and as the
number of layers in the network increases, the rate of the
product of derivative decreases towards a point where the
partial derivative of the loss function merges towards zero,
thus, the partial derivative vanishes (Jacob T., 2022). This
means that the network is unable to learn effectively or at all.
This problem is common in activation functions such as
Sigmoid.

D. Dying ReLU Problem

The dying ReLU problem is a situation where numerous
ReLU neurons that are in the scope of negative values output
0 when activating (Leung, 2021). This issue becomes very
strenuous when most of the inputs to the ReLU neurons are
negative. Furthermore, this makes the entire network
inoperable when every node is a negative, by breaking down
the gradient during backpropagation and hence, failing to
update weights (Leung, 2021). The dying ReLU problem is
caused by a high learning rate and/or a high bias (Leung,
2021).

E. DenseNet-161

Transfer learning is a technique that uses a pre-trained
model and fine-tunes it for a new problem. In this project, a
pre-trained CNN model with the DenseNet-161 architecture
has been used to solve the dog breed identification problem.
As the name suggests, DesnseNet-161 has 161 layers, which
makes it a very deep neural network. The key idea behind
DenseNet is to connect every layer to every other layer in a
feed-forward fashion (Rao, 2020).

DenseNet is generally better than other deep neural
networks architectures like AlexNet, VGG, GoogLeNet,
MobileNet and SqueezeNet. Firstly, DenseNet has more
diversified features because every layer receives input from
all preceding layers. This introduces data with more variety
into the network, which can enhance the network’s
performance. On the contrary, network architectures like
AlexNet and VGG have very limited feature reuse because
the connections between layers are relatively simple, such
that a layer is only connected to its immediate layers. Besides,
DenseNets has a strong gradient flow. Dense connections
among layers help to preserve the gradients during
backpropagation, enabling the network to have a faster and
more stable learning process (Tsang, 2018). Meanwhile,
other network architectures except for ResNet, DenseNet,
LSTM, and Highway Networks are all susceptible to the
vanishing gradient problem, which can impede model
learning (Rao, 2020).

F. Activation Functions

1) Rectified Linear Unit (ReLU)

ReLU is a simple mathematical function that acts as the

identity function for all positive inputs and equals zero for all

negative inputs (Banerjee et al., 2019) as seen by equation

(1). It has been shown to decrease training time and increase

accuracy compared to other common activation functions like

the Sigmoid activation function, and Tanh function. ReLU

also has several variations such as Leaky Rectified Linear

Unity (Leaky ReLU) and Exponential Linear Unit (ELU)

(Banerjee et al., 2019).

𝑅𝑒𝐿𝑈(𝑥) = {
max (0, 𝑥) , 𝑥 >= 0

0 , 𝑥 < 0
 (1)

2) Exponential Linear Unit (ELU) and Leaky Rectified

Linear Unit (Leaky ReLU)
The Exponential Linear Unit (ELU) and Leaky Rectified

Linear Unit (LeakyReLU) are both activation functions that
are subsets of ReLU and designed to solve the dying ReLU
problem. ELU, however, is slower than LeakyReLU to its
non-linearity (Singh S., n.d). Both LeakyReLU and ELU
work on evading the vanishing gradient problem using the

Journal of Applied Technology and Innovation (e -ISSN: 2600-7304) vol. 7, no. 3, (2023) 40

same activation techniques as ReLU for positive values
(Clevert et al., 2016). However, ELU and LeakyReLU
include negative values as well that enables the mean of the
ELU activation function move towards 0. This enables the
training model to coincide quicker than other activation
functions (Singh S., n.d). The main difference between ELU
and LeakyReLU activation function is that ELU uses an
exponential slope as seen by equation (2) while LeakyReLU
uses a linear slope as seen by equation (3) for negative input
values (Liu, 2017).

 𝐸𝐿𝑈(𝑥, 𝛼) = {
 𝑥 , 𝑥 >= 0

𝛼(𝑒𝑥 − 1) , 𝑥 < 0
 (2)

𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈(𝑥, 𝛼) = {
 x , 𝑥 >= 0

𝛼𝑥 , 𝑥 < 0
 (3)

G. Optimization Functions

1) Stochastic Gradient Descent (SGD)
The first modification that has been done is by changing

the optimization function to Stochastic Gradient Descent
(SGD). One of the benefits of having SGD as the optimizer
is that the model can be trained much faster. This is because
SGD only uses a small subset of the training data to update
the model parameters at every iteration. This subset is also
known as a mini batch.

Besides that, SGD has smaller memory requirements
because it only needs to store the gradients for a single mini-
batch data. On the other hand, Adam optimizer needs to store
additional quantities such as the first and second moments of
gradients. Sometimes, SGD can provide better
generalizations compared to Adam optimizer because it is
more prone to finding flat minima in the optimization
landscape, making it less likely to overfit the training data. It
is also easier to tune the hyperparameters in SGD than in
Adam optimizer. In SGD, the only hyperparameter that is
involved is the learning rate, but Adam optimizer needs all
learning rates beta1, beta2, and epsilon.

2) Adaptive Moment Estimation (Adam)

Adam is a method for efficient stochastic optimization
that only requires first-order gradients with relatively lower
memory requirements. It computes individual adaptive
learning rates for different parameters based on the estimate
of the first and second moment of the gradients. This method
aims to combine the benefits of the ‘AdaGrad’ method
(Duchi et al, 2011) and RMSprop (Tieleman & Hinton,
2012). The AdaGrad function works well with sparse
gradients, whereas RMSprop works well in non-stationary
settings. As stated by the original paper, some of Adam’s
advantages include: the magnitudes of parameter updates are
invariant to rescaling of the gradient, its step sizes are
approximately bounded by the step size hyperparameter, it
does not require a stationary objective, it works with sparse
gradients, and it naturally performs a form of step size
annealing. (Kingma & Ba, 2015).

3) Adaptive Gradient Algorithm (Adagrad)

Adagrad is an optimization algorithm that adjusts the
learning rate for each parameter based on gradient history.
This is accomplished by dividing the current gradient in the
update rule by the sum of the previous gradients. As a result,

when the gradient is large, the learning rate is reduced, and
when it is small, the learning rate is increased. Adagrad can
speed up the learning process for sparse datasets because it
updates parameters associated with infrequent features more
quickly (Mayanglambam, 2020). It also eliminates the need
for manual learning rate tuning. However, one drawback is
that the learning rate can become too small over time,
resulting in slow convergence (Databricks, n.d.).

While Adagrad and Adam are better suited for complex and
sparse datasets, SGD is often more suitable for larger
datasets. This is because SGD is computationally more
efficient and requires less memory than Adagrad and Adam.
Adagrad and Adam are more adaptive and can handle
different learning rates for each parameter, while SGD
requires a carefully chosen learning rate that works well for

all parameters as it needs to set the learning rate manually.

V. DISCUSSION ON IMPLEMENTATION

The model implementation seeks to identify how
DenseNet-161 works with the Adaptive Moment Estimation
(Adam), Stochastic Gradient Descent (SGD) and Adaptive
Gradient Algorithm (Adagrad) with respect to different
learning rates, along with how extensions of Rectified Linear
Unit (ReLU) activation function such as Exponential Linear
Unit (ELU) and Leaky ReLU can be implemented with
respect to different learning rates.

VI. RESULTS

A. Result (Optimization Function)

In Fig 1 and 2., at learning rate 0.001, the default Adam
optimizer provides the best performance, reaching 85%
validation accuracy and 75% training accuracy. We also see
that Adagrad converges faster than its counterpart SGD
towards the performance achieved by Adam for validation.
Furthermore, Adam achieves the lowest loss both in training
and validation, followed by AdaGrad, which is then followed
by SGD.

As for Fig 3 and 4., with a learning rate of 0.01, Adagrad
provides the best results among all three optimizers that were
experimented with, as it has the highest accuracies (>70% in
training, >80% in validation) as well as the lowest loss scores
for both training and validation datasets. It can be observed
that SGD has very sharp increase in both training and
validation accuracies and very sharp decrease in training and
validation loss.

The accuracies and losses for training and validation on
Adam optimizer are stable even as the number of epochs
increases. This could be explained by 2 reasons:

1. The model has reached its optimal performance. In other
words, the model has already learned everything that it
can learn from the data, and there is nothing to improve
further (To make further progress, more data may be
required, or a different model architecture could improve
results).

2. Since the validation accuracy is higher than the training
accuracy and that both accuracies are quite stable, it may
suggest that the model might be overfitting the data. The
model is perhaps too complex that it starts learning the
noise in the training data.

Journal of Applied Technology and Innovation (e -ISSN: 2600-7304) vol. 7, no. 3, (2023) 41

As compared to Adam optimizer, SGD has a higher rate of
change in both accuracy and loss scores.

In Fig 5 and 6., the training and validation accuracies of
AdaGrad starts off low but improves over number of epochs
towards 60% for training and 76% for validation which is the
highest compared to the SGD and Adam, this could be due to
AdaGrad's adaptive learning rate mechanism, which adjusts
the learning rate for each parameter based on its historical
gradients, allowing it to converge faster and more accurately
in this case.

SGD showed a consistent improvement in training
accuracy over epochs, and this could be due to its use of a
fixed learning rate for all parameters, which can make it less
effective when the gradients for different parameters have
very different magnitudes. The default Adam optimizer
seems to have a lowest training and validation accuracy and
highest training and validation loss overall. Thus, Adam does
not perform well in steep learning rates.

The performance of optimizer functions can be sensitive
to the choice of hyperparameters. With Adam optimizer, if
the learning rate is too high, the optimizer overshoots the
optimal weight and oscillates around the minimum, resulting
in poor training and validation accuracy. On the other hand,
if the learning rate is too small, it could result in slow
convergence. It's important to choose a learning rate in the
range of 0.001 or lower. For AdaGrad, its ability to adjust the
learning rate for each parameter based on its historical
gradient information could help it converge faster and avoid
overshooting the optimal solution (Pramoditha, 2022).

B. Results (Activation Functions)

In Fig 7 and 8., when the learning rate is set to 0.001,
compared to the other functions, the Leaky ReLU function
begins from a lower loss value immediately from the first
epoch. It remains relatively non-variant, while also providing
the lowest training loss. Default ReLU and the ELU on the
other hand begin with training loss values of approximately
2.5 and 3.5 in training respectively and stabilize to nearly one
towards the final epochs. The training accuracy with Leaky
ReLU also remains relatively non-variant, rising from ~75%
to ~80% for training.

The other two functions reach a maximum training
accuracy around ~75%. Comparing validation loss, all three
functions converge to ~0.4. Like the previous case, the Leaky
ReLU starts with the lowest loss from the first epoch and
remains largely invariant. The default ReLU is the slowest to
stabilize, but nonetheless reaches equivalent accuracy. All
three functions perform roughly the same when comparing
validation accuracy.

In Fig 9 and 10., with the learning rate increases to 0.01,
ELU achieves higher training and validation loss. While the
default ReLU converges to the lowest training loss. In this
case, Leaky ReLU displays some fluctuations deviating
towards inferior performance towards the end of the iteration
in training and validation. The result indicates that ELU is
more sensitive to the learning rate. It is worth noting that ELU
provides the highest training accuracy despite achieving
higher training and validation loss. The default ReLU
conversely does not outperform the default ReLU and ELU
activation functions despite having the lowest training loss.

In Fig 11 and 12., by setting the learning rate to an adverse
value of 0.1, the behavior of the functions can be seen on a
poorer scale for training and validation loss being at
excessive values. Leaky ReLU, however, manages to gain a
significant upward trend in accuracy despite the steep
learning rate, reaching 50% and 60% in training and
validation accuracy, respectively. The default ReLU is
rendered completely ineffective at this learning rate for both
training and validation accuracies.

Hence, the comparison of the three activation functions
suggests that Leaky ReLU provides the highest performance
across a range of learning rates.

Fig. 1. (Results – Training and Validation Loss for different optimization

functions of lr 0.001)

Fig. 2. (Results – Training and Validation Accuracy for different

optimization functions of lr 0.001)

Journal of Applied Technology and Innovation (e -ISSN: 2600-7304) vol. 7, no. 3, (2023) 42

Fig. 3. (Results – Training and Validation Loss for different optimization

functions of lr 0.01)

Fig. 4. (Results – Training and Validation Accuracy for different

optimization functions of lr 0.01)

Fig. 5. (Results – Training and Validation Loss for different optimization

functions of lr 0.1)

Fig. 6. (Results – Training and Validation Accuracy for different

optimization functions of lr 0.1)

Journal of Applied Technology and Innovation (e -ISSN: 2600-7304) vol. 7, no. 3, (2023) 43

Fig. 7. (Results – Training and Validation Loss for different activation

functions of lr 0.001)

Fig. 8. (Results – Training and Validation Accuracy for different activation

functions of lr 0.001)

Fig. 9. (Results – Training and Validation Loss for different activation

functions of lr 0.01)

Fig. 10. (Results – Training and Validation Accuracy for different activation

functions of lr 0.01)

Journal of Applied Technology and Innovation (e -ISSN: 2600-7304) vol. 7, no. 3, (2023) 44

Fig. 11. (Results – Training and Validation Loss for different activation

functions of lr 0.1)

Fig. 12. (Results – Training and Validation Accuracy for different activation

functions of lr 0.1)

VII. CONCLUSION

The key findings of this research proposes that the
default optimizer Adam is more sensitive to higher learning
rates than Adagrad and SGD. Furthermore, Adagrad and
SGD both demonstrated relatively good results despite higher
learning rate and relatively small dataset size as well. Adam
nevertheless showed slightly superior performance when

using the default learning rate of 0.001. Thus, we can
conclude that Adam is only effective when lower learning
rates are implemented, while Adagrad is ideal for a wide
range of learning rates within the DenseNet architecture. As
for the activation functions, we saw multiple flaws with the
ReLU activation function when the learning rate increased.
This exposed the Dying ReLU problem which caused
neurons to be non-active because of large negative inputs.
LeakyReLU on the other hand, showed superb performance
despite the changes in learning rates. While ELU also showed
relatively high performance, the accuracies of LeakyReLU
signified that it is ideal for use with the DenseNet architecture
and large output classification problem.

VIII. LIMITATIONS

 The number of training and validation examples
presented with respect to the classification output are
considered to be relatively small for the given problem. The
model could be improvised by using a larger dataset such as
ImageNet or implementing data augmentation and fine tuning
to increase dataset size and prevent overfitting. It is also
worth noting that CNNs are susceptible to the noise in the
images of the training dataset (Lau, et al., 2021).
Furthermore, recent advancements in GPU hardware using
dedicated accelerators for machine learning has facilitated the
development of faster ML libraries. The training and
inference performance could be improved significantly by
using hardware acceleration using libraries like Nvidia
TensorRT, rather than the general purpose CUDA GPU
architecture used in this model.

ACKNOWLEDGMENT

 We would like to thank the pratyakshajha on GitHub
for creating the model and supplying the dataset needed for
this research to be made.

REFERENCES

Abdo, N. A., Yusop, R. B., & Abdulla, R. (2022). Obstacle Avoidance Robot
Using Convolutional Neural Network. Journal of Applied
Technology and Innovation, 6(4), 27-33.
https://dif7uuh3zqcps.cloudfront.net/wp-
content/uploads/sites/11/2022/09/19105551/Volume6_Issue4_P
aper6_2022.pdf

Abhirami, V. S. (2021, October 10). Softmax vs LogSoftmax. Medium.
https://medium.com/@AbhiramiVS/softmax-vs-logsoftmax-
eb94254445a2.

Banerjee, C., Mukherjee, T., & Pasiliao, E. L. (2019). An Empirical Study
on Generalizations of the ReLU Activation Function. ACM
Southeast Regional Conference.
https://doi.org/10.1145/3299815.3314450.

Brownlee, J. (2020, August 20). A Gentle Introduction to the Rectified Linear
Unit (ReLU). Machine Learning Mastery.
https://machinelearningmastery.com/rectified-linear-activation-
function-for-deep-learning-neural-networks/.

Castillo, D. (2023, February 21). Transfer Learning for Machine Learning.
Seldon. https://www.seldon.io/transfer-
learning#:~:text=Transfer%20learning%20is%20generally%20u
sed,categorisation%20or%20natural%20language%20processin
g.

Clevert, D.-A., Unterthiner, T., & Hochreiter, S. (2016). Fast and Accurate
Deep Network Learning by Exponential Linear Units (ELUs).
ArXiv:1511.07289 [Cs], 5(arXiv:1511.07289).
https://arxiv.org/abs/1511.07289v5.

Databricks. (n.d.). What is AdaGrad? Databricks.
https://www.databricks.com/glossary/adagrad.

https://dif7uuh3zqcps.cloudfront.net/wp-content/uploads/sites/11/2022/09/19105551/Volume6_Issue4_Paper6_2022.pdf
https://dif7uuh3zqcps.cloudfront.net/wp-content/uploads/sites/11/2022/09/19105551/Volume6_Issue4_Paper6_2022.pdf
https://dif7uuh3zqcps.cloudfront.net/wp-content/uploads/sites/11/2022/09/19105551/Volume6_Issue4_Paper6_2022.pdf
https://medium.com/@AbhiramiVS/softmax-vs-logsoftmax-eb94254445a2
https://medium.com/@AbhiramiVS/softmax-vs-logsoftmax-eb94254445a2
https://doi.org/10.1145/3299815.3314450
https://machinelearningmastery.com/rectified-linear-activation-function-for-deep-learning-neural-networks/
https://machinelearningmastery.com/rectified-linear-activation-function-for-deep-learning-neural-networks/
https://www.seldon.io/transfer-learning#:~:text=Transfer%20learning%20is%20generally%20used,categorisation%20or%20natural%20language%20processing
https://www.seldon.io/transfer-learning#:~:text=Transfer%20learning%20is%20generally%20used,categorisation%20or%20natural%20language%20processing
https://www.seldon.io/transfer-learning#:~:text=Transfer%20learning%20is%20generally%20used,categorisation%20or%20natural%20language%20processing
https://www.seldon.io/transfer-learning#:~:text=Transfer%20learning%20is%20generally%20used,categorisation%20or%20natural%20language%20processing
https://arxiv.org/abs/1511.07289v5

Journal of Applied Technology and Innovation (e -ISSN: 2600-7304) vol. 7, no. 3, (2023) 45

Duchi, J., Hazan, E., & Singer, Y. (2011). Adaptive Subgradient Methods

for Online Learning and Stochastic Optimization. Journal of
Machine Learning Research, 12.
https://dl.acm.org/doi/10.5555/1953048.2021068.

i2tutorials. (2019, September 9). What is the difference between Adagrad,
Adadelta and Adam? I2tutorials.
https://www.i2tutorials.com/what-is-the-difference-between-
adagrad-adadelta-and-adam/.

Jacob, T. (2022, February 25). Vanishing Gradient Problem, Explained.
KDnuggets. https://www.kdnuggets.com/2022/02/vanishing-
gradient-
problem.html#:~:text=When%20there%20are%20more%20laye
rs .

Kingma, D. P., & Ba, J. (2015). Adam: A Method for Stochastic
Optimization. ArXiv (Cornell University).
https://doi.org/10.48550/arxiv.1412.6980.

Koehrsen, W. (2021, December 6). Transfer Learning with Convolutional
Neural Networks in PyTorch. Medium. Retrieved March 8, 2023,
from https://towardsdatascience.com/transfer-learning-with-
convolutional-neural-networks-in-pytorch-
dd09190245ce#:~:text=Most%20categories%20only%20have%
2050,trained%20model%20applying%20transfer%20learning.

Lau, Y., Sim, W., Chew, K., & Ng, Y. (2021). Understanding how noise
affects the accuracy of CNN image classification. Journal of
Applied Technology and Innovation (JATI), 5(2), 2600–7304.
#84-JATI-Understanding How Noise Affects The Accuracy of
CNN Image Classification (dif7uuh3zqcps.cloudfront.net)

Leung, K. (2021, July 27). The Dying ReLU Problem, Clearly Explained.
Medium. https://towardsdatascience.com/the-dying-relu-
problem-clearly-explained-42d0c54e0d24.

Liu, D. (2017, November 30). A Practical Guide to ReLU - Danqing Liu -
Medium. Medium. Retrieved March 15, 2023, from
https://medium.com/@danqing/a-practical-guide-to-relu-
b83ca804f1f7.

Long, K., Nataraj, C., & Susiapan, Y. (2022). Autonomous Garbage-
Collecting Robot For Beaches With Deep Learning Approach
and Improved Cleaning Technique handwritten digit recognition
with different CNN architectures. Journal of Applied Technology
and Innovation, 5(1), 2600–7304. Journal of Applied Technology
and Innovation, 6(2), 2600-7304.
https://dif7uuh3zqcps.cloudfront.net/wp-
content/uploads/sites/11/2022/03/06191655/Volume6_Issue2_P
aper1_2022.pdf

Mayanglambam, G. (2020, November 18). Deep Learning Optimizers.
Medium. https://towardsdatascience.com/deep-learning-
optimizers-436171c9e23f.

Oliver. J. (2023, February 9). How Many Dog Breeds Are There in the
World? (2023 Update). Pet Keen. Retrieved March 8, 2023, from
https://petkeen.com/how-many-dog-breeds-in-the-world/.

Pramoditha, R. (2022, October 6). How to Choose the Optimal Learning Rate
for Neural Networks. Medium.
https://towardsdatascience.com/how-to-choose-the-optimal-
learning-rate-for-neural-networks-
362111c5c783#:~:text=Code%20by%20author)-.

Pratama, N. H., Rachmawati, E., & Kosala, G. (2022, November).
Classification Of Dog Breeds From Sporting Groups Using
Convolutional Neural Network.Researchgate.net.
https://www.researchgate.net/publication/368822454_classificat
ion_of_dog_breeds_from_sporting_groups_using_convolutional
_neural_network.

Raj, R. (n.d.). Components of an Artificial Neural Network. Enjoy
Algorithms.
https://www.enjoyalgorithms.com/blog/components-of-ann.

Rakhecha, A. (2019, July 7). Understanding Learning Rate. Medium.
https://towardsdatascience.com/https-medium-com-
dashingaditya-rakhecha-understanding-learning-rate-
dd5da26bb6de#:~:text=If%20the%20learning%20rate%20is.

Rao, S. S. (2020, May 9). Exploring DenseNets and a comparison with other
Deep Architectures. Medium. https://medium.com/analytics-

vidhya/exploring-densenets-and-a-comparison-with-other-deep-
architectures-85f02597400a.

Saha, S. (2018, December 16). A comprehensive guide to Convolutional
Neural Networks - the eli5 way. Medium. Retrieved March 7,
2023, from https://towardsdatascience.com/a-comprehensive-
guide-to-convolutional-neural-networks-the-eli5-way-
3bd2b1164a53.

Seng, M., Chen Chiang, B. B., Abdul Salam, Z. A., Yih Tan, G., & Tong
Chai, H. (2021). MNIST handwritten digit recognition with
different CNN architectures. Journal of Applied Technology and
Innovation, 5(1), 2600–7304. MNIST Handwritten digit
recognition with different CNN architectures
(dif7uuh3zqcps.cloudfront.net)

Seth, N. (2021, June 8). How does Backward Propagation Work in Neural
Networks? Analytics Vidhya.
https://www.analyticsvidhya.com/blog/2021/06/how-does-
backward-propagation-work-in-neural-networks/.

Sharma, P. (2021, October 30). Understanding Transfer Learning for Deep
Learning. Analytics Vidhya. Retrieved March 8, 2023, from
https://www.analyticsvidhya.com/blog/2021/10/understanding-
transfer-learning-for-deep-learning/.

Singh, S. (2020, June 5). ELU as an Activation Function in Neural Networks
. Deep Learning University.
https://deeplearninguniversity.com/elu-as-an-activation-
function-in-neural-networks/.

Stanford Dogs Dataset. (2019, November 13). Kaggle. Retrieved March 8,
2023, from
https://www.kaggle.com/datasets/jessicali9530/stanford-dogs-
dataset.

Tsang, S.-H. (2018, November 25). Review: DenseNet — Dense
Convolutional Network (Image Classification). Medium.
https://towardsdatascience.com/review-densenet-image-
classification-b6631a8ef803.

Turing. (2022, May 28). Softmax: Multiclass Neural Networks. Turing.
https://www.turing.com/kb/softmax-multiclass-neural-networks.

What are Convolutional Neural Networks? | IBM. (n.d.). Www.ibm.com.
Retrieved March 7, 2023, from https://www.ibm.com/my-
en/topics/convolutional-neural-networks.

Yamashita, R., Nishio, M., Do, R. K. G., & Togashi, K. (2018).
Convolutional neural networks: an overview and application in
radiology. Insights into Imaging, 9(4), 611–629.
https://doi.org/10.1007/s13244-018-0639-9.

https://dl.acm.org/doi/10.5555/1953048.2021068
https://www.i2tutorials.com/what-is-the-difference-between-adagrad-adadelta-and-adam/
https://www.i2tutorials.com/what-is-the-difference-between-adagrad-adadelta-and-adam/
https://www.kdnuggets.com/2022/02/vanishing-gradient-problem.html#:~:text=When%20there%20are%20more%20layers
https://www.kdnuggets.com/2022/02/vanishing-gradient-problem.html#:~:text=When%20there%20are%20more%20layers
https://www.kdnuggets.com/2022/02/vanishing-gradient-problem.html#:~:text=When%20there%20are%20more%20layers
https://www.kdnuggets.com/2022/02/vanishing-gradient-problem.html#:~:text=When%20there%20are%20more%20layers
https://towardsdatascience.com/transfer-learning-with-convolutional-neural-networks-in-pytorch-dd09190245ce#:~:text=Most%20categories%20only%20have%2050,trained%20model%20applying%20transfer%20learning
https://towardsdatascience.com/transfer-learning-with-convolutional-neural-networks-in-pytorch-dd09190245ce#:~:text=Most%20categories%20only%20have%2050,trained%20model%20applying%20transfer%20learning
https://towardsdatascience.com/transfer-learning-with-convolutional-neural-networks-in-pytorch-dd09190245ce#:~:text=Most%20categories%20only%20have%2050,trained%20model%20applying%20transfer%20learning
https://towardsdatascience.com/transfer-learning-with-convolutional-neural-networks-in-pytorch-dd09190245ce#:~:text=Most%20categories%20only%20have%2050,trained%20model%20applying%20transfer%20learning
https://dif7uuh3zqcps.cloudfront.net/wp-content/uploads/sites/11/2021/03/15102550/Volume5_Issue2_Paper4_2021.pdf
https://dif7uuh3zqcps.cloudfront.net/wp-content/uploads/sites/11/2021/03/15102550/Volume5_Issue2_Paper4_2021.pdf
https://towardsdatascience.com/the-dying-relu-problem-clearly-explained-42d0c54e0d24
https://towardsdatascience.com/the-dying-relu-problem-clearly-explained-42d0c54e0d24
https://medium.com/@danqing/a-practical-guide-to-relu-b83ca804f1f7
https://medium.com/@danqing/a-practical-guide-to-relu-b83ca804f1f7
https://dif7uuh3zqcps.cloudfront.net/wp-content/uploads/sites/11/2022/03/06191655/Volume6_Issue2_Paper1_2022.pdf
https://dif7uuh3zqcps.cloudfront.net/wp-content/uploads/sites/11/2022/03/06191655/Volume6_Issue2_Paper1_2022.pdf
https://dif7uuh3zqcps.cloudfront.net/wp-content/uploads/sites/11/2022/03/06191655/Volume6_Issue2_Paper1_2022.pdf
https://towardsdatascience.com/deep-learning-optimizers-436171c9e23f
https://towardsdatascience.com/deep-learning-optimizers-436171c9e23f
https://petkeen.com/how-many-dog-breeds-in-the-world/
https://towardsdatascience.com/how-to-choose-the-optimal-learning-rate-for-neural-networks-362111c5c783#:~:text=Code%20by%20author)-
https://towardsdatascience.com/how-to-choose-the-optimal-learning-rate-for-neural-networks-362111c5c783#:~:text=Code%20by%20author)-
https://towardsdatascience.com/how-to-choose-the-optimal-learning-rate-for-neural-networks-362111c5c783#:~:text=Code%20by%20author)-
https://www.researchgate.net/publication/368822454_classification_of_dog_breeds_from_sporting_groups_using_convolutional_neural_network
https://www.researchgate.net/publication/368822454_classification_of_dog_breeds_from_sporting_groups_using_convolutional_neural_network
https://www.researchgate.net/publication/368822454_classification_of_dog_breeds_from_sporting_groups_using_convolutional_neural_network
https://www.enjoyalgorithms.com/blog/components-of-ann
https://towardsdatascience.com/https-medium-com-dashingaditya-rakhecha-understanding-learning-rate-dd5da26bb6de#:~:text=If%20the%20learning%20rate%20is
https://towardsdatascience.com/https-medium-com-dashingaditya-rakhecha-understanding-learning-rate-dd5da26bb6de#:~:text=If%20the%20learning%20rate%20is
https://towardsdatascience.com/https-medium-com-dashingaditya-rakhecha-understanding-learning-rate-dd5da26bb6de#:~:text=If%20the%20learning%20rate%20is
https://medium.com/analytics-vidhya/exploring-densenets-and-a-comparison-with-other-deep-architectures-85f02597400a
https://medium.com/analytics-vidhya/exploring-densenets-and-a-comparison-with-other-deep-architectures-85f02597400a
https://medium.com/analytics-vidhya/exploring-densenets-and-a-comparison-with-other-deep-architectures-85f02597400a
https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53
https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53
https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53
https://dif7uuh3zqcps.cloudfront.net/wp-content/uploads/sites/11/2021/01/17192613/MNIST-Handwritten-Digit-Recognition-with-Different-CNN-Architectures.pdf
https://dif7uuh3zqcps.cloudfront.net/wp-content/uploads/sites/11/2021/01/17192613/MNIST-Handwritten-Digit-Recognition-with-Different-CNN-Architectures.pdf
https://dif7uuh3zqcps.cloudfront.net/wp-content/uploads/sites/11/2021/01/17192613/MNIST-Handwritten-Digit-Recognition-with-Different-CNN-Architectures.pdf
https://www.analyticsvidhya.com/blog/2021/06/how-does-backward-propagation-work-in-neural-networks/
https://www.analyticsvidhya.com/blog/2021/06/how-does-backward-propagation-work-in-neural-networks/
https://www.analyticsvidhya.com/blog/2021/10/understanding-transfer-learning-for-deep-learning/
https://www.analyticsvidhya.com/blog/2021/10/understanding-transfer-learning-for-deep-learning/
https://deeplearninguniversity.com/elu-as-an-activation-function-in-neural-networks/
https://deeplearninguniversity.com/elu-as-an-activation-function-in-neural-networks/
https://www.kaggle.com/datasets/jessicali9530/stanford-dogs-dataset
https://www.kaggle.com/datasets/jessicali9530/stanford-dogs-dataset
https://towardsdatascience.com/review-densenet-image-classification-b6631a8ef803
https://towardsdatascience.com/review-densenet-image-classification-b6631a8ef803
https://www.turing.com/kb/softmax-multiclass-neural-networks
http://www.ibm.com/
https://www.ibm.com/my-en/topics/convolutional-neural-networks
https://www.ibm.com/my-en/topics/convolutional-neural-networks
https://doi.org/10.1007/s13244-018-0639-9

