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Abstract—Convolutional Neural Networks (CNN) are widely 

used in today’s world for research on image classification and 

image identification. In this research, exploration is made into 

one type of CNN using transfer learning by implementing the 

DensNet-161 model into classifying 133 different types of dog 

breeds in a total of 8,351 images split between training, 

validation, and testing. Only 7,515 images will be used for 

training and validation of a ratio of 89:11 respectively. This 

research aims to identify the accuracies and performances of 

Rectified Linear Unit (ReLU), Leaky ReLU, and Exponential 

Linear Unit (ELU) activation functions along with Adaptive 

Moment Estimation (Adam), Adaptive Gradient Algorithm 

(Adagrad), and Stochastic Gradient Descent (SGD) 

optimization functions with learning rates (lr) of 0.001, 0.01, and 

0.1.  

Keywords— dog breed classification, convolutional neural 

networks (cnn), artificial neural network (ann), transfer learning, 

optimization functions, activation functions, learning rate. 

I. INTRODUCTION 

The evolution of dogs since time immemorial has 
eventually led to hundreds of dog breeds in the world today. 
According to Federation Cynologique Internationale (2023), 
a total amount of 360 registered dog breeds exists in the 
modern world and some of them even share the same features 
despite being of different breeds (Oliver, 2023). Hence, it 
could be extremely arduous even for dog experts to identify 
and remember each dog breed. With the contemporary 
advancements in Artificial Intelligence and introduction of 
Machine Learning, more effective ways of identifying dog 
breeds specifically using Deep Learning (DL) approaches 
and Convolutional Neural Networks (CNN) were developed. 
Convolutional Neural Networks are highly endorsed for 
surveying visual images (Long K et al., 2022). However, 
training a CNN model has been a tough, complicated, and 
time-consuming task to do since it needs a large dataset to be 
fed into it until it can become a usable model with high 
accuracy (Castillo, 2023). For most of the research, the size 
and the number of images contained in the dataset used might 
be not sufficient to gain high accuracy (Koehrsen, 2021). 
Furthermore, most researchers have difficulty creating a new 

CNN model from scratch. This is where transfer learning 
techniques are used to reduce time consumption on creating 
multiple model architectures. Transfer learning is a technique 
by reusing a pretrained model to solve a new problem that is 
popular in the field of data science because it allows 
researchers to train or work with the deep neural network with 
only a relatively low amount of data (Sharma, 2021). By this, 
a better and more compatible model is published. In this 
research paper, the utility of transfer learning for identifying 
dog breeds is explored. The research uses DenseNet-161 as 
the pretrained model and initially uses the Rectified Linear 
Unit (ReLU) as the activation function along with the 
Adaptive Moment Estimation (Adam) optimization function. 
The paper also explores the employment of Stochastic 
Gradient Descent (SGD) and Adaptive Gradient Algorithm 
(Adagrad) optimization functions in comparison to Adam and 
the employment of Leaky Rectified Linear Unit (Leaky 
ReLU) and Exponential Linear Unit (ELU) in comparison to 
ReLU. 

II. LITERATURE REVIEW 

According to Naufal, Ema, and Gamma (2022), the 
research was on dog breeds classification using 
Convolutional Neural Network (CNN). That being said, CNN 
faces great difficulty in differentiating groups of dogs with 
similar physical characteristics, color, size, and shape. The 
purpose of the research was to find out the performance of 
using different ResNet architectures by examining the 
accuracy using F1-score value. Five dog classes from the 
sporting group were taken from the Tsinghua Dogs Dataset 
which contains 9558 images and were resized to a resolution 
of 224 x 224 pixels. Low- and high-resolution images were 
provided by this dataset. The images were then split randomly 
into 3 aspects which are training, validation, and testing with 
ratios of 70%, 10% and 20% respectively. The ResNet50 and 
ResNet 101 will be used as the pretrained models in the 
research to test out which is the better model. The difference 
between ResNet50 and ResNet101 is one has 50 neural 
network layers and another one has 101 neural network 
layers. Both are using convolutional layers in the variants 
while dropout, pooling layers, and dense were added. The 
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model was run on 25 epochs, batch-size of 32 and 4 neural 
network layers with 0.3 rate of two dropout layers, 2 dense 
layers. Based on the training results, the validation loss 
showed by the Resnet101 has less variation compared with 
ResNet50. Next, to test the F1-score, the highest validation 
accuracy from both variants based on the training results were 
chosen. The testing result shows most of the image 
classification was accurate. However, the results show that 
ResNet101 performed slightly better than ResNet50 with a 
superiority of 0.2. Moreover, the research also indicates that 
the number of layers is a key factor in determining the results. 
It does not necessarily mean that more layers are better; 
sometimes, more layers do not make a significant difference 
but can lead to longer training times. 

III. MATERIALS 

A. Dataset 

The image dataset is provided in GitHub by the author 
where the folder was imported and unzipped. The dataset 
contains a total of 8351 dog images split into training, 
validation, and testing. The total combined number of 
training and validation dataset is 7,515 images split into a 
ratio of 89: 11 respectively. The images are re-sized to a 
resolution of 256 x 256 pixels and then are cropped into a size 
of 224 x 224 pixels. The dataset contains a total of 133 unique 
outputs or dog classifications. 

B. Hardware Specification 

The platform used to run the code was Google Colab as it 
is a widely popular platform that performs parallel processing 
and is utilized for machine learning and neural network 
training. The system hardware specifications used in Google 
Colab are provided in Table I.  

TABLE I.  SYSTEM HARDWARE SPECIFICATIONS 

Hardware Description 

CPU Intel Xeon 2-core, 2.2 GHz 

RAM 13 GB 

GPU NVIDIA Tesla K80 with 24 GB of GDDR5 memory 

(12 GB per GPU) 

Storage 64 GB 

 
The model imports torch and NumPy as two of the most 

important libraries used for this research as they are widely 
used for mathematical and scientific purposes, especially in 
the domain of machine learning and neural network training.  

IV. PROPOSED METHOD 

The research aims to survey the performances of different 
activation functions and optimization functions with various 
learning rates. This gives an intuition as to which parameters 
are ideal for the given problem. While the dataset size can be 
considered relatively small, the research provides substantial 
intuition at the implementation of high-performance 
activation functions and optimization functions with respect 
to each other. 

A. Convolutional Neural Networks 

A Convolutional Neural Network (CNN) is a deep 
learning algorithm and a subset of Artificial Neural Network 
(ANN) that classifies an image by implementing 
convolutions, down sampling, and other pre-processing 

procedures. CNN takes the input image, allocates the 
appropriate weights and biases for classification (Saha, 
2018). CNNs are discerned from other neural networks due 
to their prevailing performance with image and audio inputs 
(IBM, n.d). Every CNN contains 3 types of layers: 
Convolutional, Pooling and Fully Connected (IBM, n.d). For 
each layer, the CNN expands in its complexity, thus 
navigating bigger sections of an image. CNN is modified in a 
format such that it begins identifying small patterns into 
classifying the required object. For each layer, the CNN 
expands in its complexity, thus navigating bigger sections of 
an image. CNN is modified in a format such that it begins 
identifying small patterns into classifying the required object 
(Abdo et al., 2022). 

Recent developments in Convolutional Neural Networks 
combine advancements from the deep learning field. They 
have been a common choice for image recognition tasks, such 
as handwritten numeric recognition. It is a popular discourse 
that CNNs were the first to provide a robust implementation 
which was successful using multilayer hierarchical networks. 
CNNs can reduce the number of trainable network parameters 
while improving the efficiency of backpropagation. (Seng et 
al., 2021). 

For our project, CNN will demonstrate the solution to the 
problem by segmenting dog images based on the RGB color 
planes (Saha, 2018). The dataset is first designated to the 
convolution and pooling layers for feature extraction whilst 
the fully connected layer draws the extracted features onto the 
final output. The convolutional layers demonstrate vital 
importance in the CNN to convolute the images using kernels 
and matrix multiplication to extract high level features from 
an image whereas the pooling layers are utilized as down 
sampling computations, therefore reducing the processing 
power necessitated (Yamashita. R et al., 2018). Pooling and 
convolution calculations are continuously repeated where the 
output of one layer dispenses as an input for the next layer as 
the network becomes more complex (Yamashita. R et al., 
2018). In this research, a pre-defined model is implemented 
with its own weights and biases already set for classification 
of dog breeds. 

B. Artificial Neural Networks 

An Artificial Neural Network (ANN) consists of 3 layers: 
input layer, hidden layer(s), and output layer. Each layer is 
made up of neurons (nodes). The input layer is where data is 
fed into the network, transformed into a format that can be 
processed by the subsequent layers, and then passed to the 
first hidden layer. Each node in the input layer represents a 
feature of the input data (Raj, n.d). In the case of dog breed 
identification for instance, features include shape of a dog’s 
face, texture of the fur, color patterns, presence of certain 
markings, etc. 

The hidden layer(s) are where the heavy computations 
will be performed to solve the target problem. The number of 
hidden layers depend on the architecture of the ANN that is 
being used, and this number can have a significant impact on 
the model’s performance. Generally, more complex problems 
require more neurons for processing and hence more layers. 
Each neuron in the hidden layer(s) has an activation function, 
which is used to determine the output of a neuron (i.e., 
whether to fire a neuron or not). Following are the steps that 
are usually involved in computing the output of a neuron 
(forward propagation): 
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1. The computation starts off at the input layer of the 

network and progressively propagates towards the 
output layer. To propagate forward, every neuron in 
the same layer will receive inputs from the neurons 
in the preceding layer to calculate the weighted sum 
of inputs. 

2. The weighted sum is then passed into the activation 
function. If the value exceeds a certain threshold, the 
neutron will be activated. Otherwise, the neutron 
will be inactive.  

3. Outputs from the activated neurons will be passed to 
the neurons in the succeeding layer. On the other 
hand, an inactive neuron will have output equal to 0 
since it is being “turned off”. Therefore, inactive 
neurons have no impact on the final prediction of the 
model. 

During model training, however, inactive neurons will 
still play a role in the network. Loss or error is calculated at 
the output layer and is then passed back to the hidden layers 
to update the model’s weights and biases. This process is also 
known as backpropagation (Seth, 2021). 

In this project, the Rectified Linear Function (ReLU) has 
been used as the activation function for neurons in the hidden 
layers. ReLU is a piecewise linear function that will output a 
neuron’s weighted sum directly if the value is positive, and 
outputs 0 otherwise (Brownlee, 2020). 

The output layer is the layer that produces the result of the 
ANN. The number of nodes in the output layer depends on 
the number of output variables (or classes). For instance, the 
dog breed identification problem has 133 different types of 
dog breeds, that is, 133 output variables. Hence, the ANN 
may predict a dog’s breed among these 133 possible classes. 
Depending on the type of problem to be solved, an activation 
function in the output layer may be necessary (Raj, n.d). In 
this project, the Logarithm SoftMax (Log SoftMax) 
activation function is applied to the output layer since it is 
typically used for multi-class classification problems. 
SoftMax will first take a vector of real numbers from the 
outputs of the hidden layers. These numbers will then be 
converted into a probability distribution over the output 
variables, such that each number in the vector will be within 
the interval of [0,1] and the sum of all numbers will be 1.  

This way, the numbers can now be interpreted as the 
probabilities of the classes. For example, a probability 
distribution of [0.34201, 0.02413, 0.09031, …] means that 
there is a 34.201% chance of the dog being a Chihuahua 
breed, 2.413% chance of being a Papillon breed, 9.031% 
chance of being a Blenheim Spaniel breed, and so on. The 
purpose of Log is simply to achieve numeric stability by 
representing the SoftMax probabilities on a logarithmic scale 
(Abhirami, 2021). 

C. Vanishing Gradient Problem 

In the backpropagation process of the network and as the 
number of layers in the network increases, the rate of the 
product of derivative decreases towards a point where the 
partial derivative of the loss function merges towards zero, 
thus, the partial derivative vanishes (Jacob T., 2022). This 
means that the network is unable to learn effectively or at all. 
This problem is common in activation functions such as 
Sigmoid.  

D. Dying ReLU Problem 

The dying ReLU problem is a situation where numerous 
ReLU neurons that are in the scope of negative values output 
0 when activating (Leung, 2021). This issue becomes very 
strenuous when most of the inputs to the ReLU neurons are 
negative. Furthermore, this makes the entire network 
inoperable when every node is a negative, by breaking down 
the gradient during backpropagation and hence, failing to 
update weights (Leung, 2021). The dying ReLU problem is 
caused by a high learning rate and/or a high bias (Leung, 
2021).  

E. DenseNet-161 

Transfer learning is a technique that uses a pre-trained 
model and fine-tunes it for a new problem. In this project, a 
pre-trained CNN model with the DenseNet-161 architecture 
has been used to solve the dog breed identification problem. 
As the name suggests, DesnseNet-161 has 161 layers, which 
makes it a very deep neural network. The key idea behind 
DenseNet is to connect every layer to every other layer in a 
feed-forward fashion (Rao, 2020). 

DenseNet is generally better than other deep neural 
networks architectures like AlexNet, VGG, GoogLeNet, 
MobileNet and SqueezeNet. Firstly, DenseNet has more 
diversified features because every layer receives input from 
all preceding layers. This introduces data with more variety 
into the network, which can enhance the network’s 
performance. On the contrary, network architectures like 
AlexNet and VGG have very limited feature reuse because 
the connections between layers are relatively simple, such 
that a layer is only connected to its immediate layers. Besides, 
DenseNets has a strong gradient flow. Dense connections 
among layers help to preserve the gradients during 
backpropagation, enabling the network to have a faster and 
more stable learning process (Tsang, 2018). Meanwhile, 
other network architectures except for ResNet, DenseNet, 
LSTM, and Highway Networks are all susceptible to the 
vanishing gradient problem, which can impede model 
learning (Rao, 2020). 

F. Activation Functions 

1) Rectified Linear Unit (ReLU) 

ReLU is a simple mathematical function that acts as the 

identity function for all positive inputs and equals zero for all 

negative inputs (Banerjee et al., 2019) as seen by equation 

(1). It has been shown to decrease training time and increase 

accuracy compared to other common activation functions like 

the Sigmoid activation function, and Tanh function. ReLU 

also has several variations such as Leaky Rectified Linear 

Unity (Leaky ReLU) and Exponential Linear Unit (ELU) 

(Banerjee et al., 2019). 
 

𝑅𝑒𝐿𝑈(𝑥) =  {
max (0, 𝑥)  , 𝑥 >= 0

0                , 𝑥 < 0
      (1) 

 

2) Exponential Linear Unit (ELU) and Leaky Rectified 

Linear Unit (Leaky ReLU) 
The Exponential Linear Unit (ELU) and Leaky Rectified 

Linear Unit (LeakyReLU) are both activation functions that 
are subsets of ReLU and designed to solve the dying ReLU 
problem. ELU, however, is slower than LeakyReLU to its 
non-linearity (Singh S., n.d). Both LeakyReLU and ELU 
work on evading the vanishing gradient problem using the 
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same activation techniques as ReLU for positive values 
(Clevert et al., 2016).  However, ELU and LeakyReLU 
include negative values as well that enables the mean of the 
ELU activation function move towards 0. This enables the 
training model to coincide quicker than other activation 
functions (Singh S., n.d). The main difference between ELU 
and LeakyReLU activation function is that ELU uses an 
exponential slope as seen by equation (2) while LeakyReLU 
uses a linear slope as seen by equation (3) for negative input 
values (Liu, 2017).  

 

               𝐸𝐿𝑈(𝑥, 𝛼) =  {
             𝑥            , 𝑥 >= 0

𝛼(𝑒𝑥 − 1)    , 𝑥 < 0
                (2) 

 

𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈(𝑥, 𝛼) =  {
     x              , 𝑥 >= 0

𝛼𝑥             , 𝑥 < 0
                (3) 

 

G. Optimization Functions 

1) Stochastic Gradient Descent (SGD) 
The first modification that has been done is by changing 

the optimization function to Stochastic Gradient Descent 
(SGD). One of the benefits of having SGD as the optimizer 
is that the model can be trained much faster. This is because 
SGD only uses a small subset of the training data to update 
the model parameters at every iteration. This subset is also 
known as a mini batch.  

Besides that, SGD has smaller memory requirements 
because it only needs to store the gradients for a single mini-
batch data. On the other hand, Adam optimizer needs to store 
additional quantities such as the first and second moments of 
gradients. Sometimes, SGD can provide better 
generalizations compared to Adam optimizer because it is 
more prone to finding flat minima in the optimization 
landscape, making it less likely to overfit the training data. It 
is also easier to tune the hyperparameters in SGD than in 
Adam optimizer. In SGD, the only hyperparameter that is 
involved is the learning rate, but Adam optimizer needs all 
learning rates beta1, beta2, and epsilon.  

2) Adaptive Moment Estimation (Adam) 

Adam is a method for efficient stochastic optimization 
that only requires first-order gradients with relatively lower 
memory requirements. It computes individual adaptive 
learning rates for different parameters based on the estimate 
of the first and second moment of the gradients. This method 
aims to combine the benefits of the ‘AdaGrad’ method 
(Duchi et al, 2011) and RMSprop (Tieleman & Hinton, 
2012). The AdaGrad function works well with sparse 
gradients, whereas RMSprop works well in non-stationary 
settings. As stated by the original paper, some of Adam’s 
advantages include: the magnitudes of parameter updates are 
invariant to rescaling of the gradient, its step sizes are 
approximately bounded by the step size hyperparameter, it 
does not require a stationary objective, it works with sparse 
gradients, and it naturally performs a form of step size 
annealing. (Kingma & Ba, 2015). 

3) Adaptive Gradient Algorithm (Adagrad) 

Adagrad is an optimization algorithm that adjusts the 
learning rate for each parameter based on gradient history. 
This is accomplished by dividing the current gradient in the 
update rule by the sum of the previous gradients. As a result, 

when the gradient is large, the learning rate is reduced, and 
when it is small, the learning rate is increased. Adagrad can 
speed up the learning process for sparse datasets because it 
updates parameters associated with infrequent features more 
quickly (Mayanglambam, 2020). It also eliminates the need 
for manual learning rate tuning. However, one drawback is 
that the learning rate can become too small over time, 
resulting in slow convergence (Databricks, n.d.).  

  

While Adagrad and Adam are better suited for complex and 
sparse datasets, SGD is often more suitable for larger 
datasets. This is because SGD is computationally more 
efficient and requires less memory than Adagrad and Adam. 
Adagrad and Adam are more adaptive and can handle 
different learning rates for each parameter, while SGD 
requires a carefully chosen learning rate that works well for 

all parameters as it needs to set the learning rate manually.  

V. DISCUSSION ON IMPLEMENTATION 

The model implementation seeks to identify how 
DenseNet-161 works with the Adaptive Moment Estimation 
(Adam), Stochastic Gradient Descent (SGD) and Adaptive 
Gradient Algorithm (Adagrad) with respect to different 
learning rates, along with how extensions of Rectified Linear 
Unit (ReLU) activation function such as Exponential Linear 
Unit (ELU) and Leaky ReLU can be implemented with 
respect to different learning rates. 

VI. RESULTS 

A. Result (Optimization Function) 

In Fig 1 and 2., at learning rate 0.001, the default Adam 
optimizer provides the best performance, reaching 85% 
validation accuracy and 75% training accuracy. We also see 
that Adagrad converges faster than its counterpart SGD 
towards the performance achieved by Adam for validation. 
Furthermore, Adam achieves the lowest loss both in training 
and validation, followed by AdaGrad, which is then followed 
by SGD. 

As for Fig 3 and 4., with a learning rate of 0.01, Adagrad 
provides the best results among all three optimizers that were 
experimented with, as it has the highest accuracies (>70% in 
training, >80% in validation) as well as the lowest loss scores 
for both training and validation datasets. It can be observed 
that SGD has very sharp increase in both training and 
validation accuracies and very sharp decrease in training and 
validation loss. 

The accuracies and losses for training and validation on 
Adam optimizer are stable even as the number of epochs 
increases. This could be explained by 2 reasons: 

1. The model has reached its optimal performance. In other 
words, the model has already learned everything that it 
can learn from the data, and there is nothing to improve 
further (To make further progress, more data may be 
required, or a different model architecture could improve 
results). 

2. Since the validation accuracy is higher than the training 
accuracy and that both accuracies are quite stable, it may 
suggest that the model might be overfitting the data. The 
model is perhaps too complex that it starts learning the 
noise in the training data.  
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As compared to Adam optimizer, SGD has a higher rate of 
change in both accuracy and loss scores.  

In Fig 5 and 6., the training and validation accuracies of 
AdaGrad starts off low but improves over number of epochs 
towards 60% for training and 76% for validation which is the 
highest compared to the SGD and Adam, this could be due to 
AdaGrad's adaptive learning rate mechanism, which adjusts 
the learning rate for each parameter based on its historical 
gradients, allowing it to converge faster and more accurately 
in this case.  

SGD showed a consistent improvement in training 
accuracy over epochs, and this could be due to its use of a 
fixed learning rate for all parameters, which can make it less 
effective when the gradients for different parameters have 
very different magnitudes. The default Adam optimizer 
seems to have a lowest training and validation accuracy and 
highest training and validation loss overall. Thus, Adam does 
not perform well in steep learning rates. 

The performance of optimizer functions can be sensitive 
to the choice of hyperparameters. With Adam optimizer, if 
the learning rate is too high, the optimizer overshoots the 
optimal weight and oscillates around the minimum, resulting 
in poor training and validation accuracy. On the other hand, 
if the learning rate is too small, it could result in slow 
convergence. It's important to choose a learning rate in the 
range of 0.001 or lower. For AdaGrad, its ability to adjust the 
learning rate for each parameter based on its historical 
gradient information could help it converge faster and avoid 
overshooting the optimal solution (Pramoditha, 2022). 

B. Results (Activation Functions) 

In Fig 7 and 8., when the learning rate is set to 0.001, 
compared to the other functions, the Leaky ReLU function 
begins from a lower loss value immediately from the first 
epoch. It remains relatively non-variant, while also providing 
the lowest training loss. Default ReLU and the ELU on the 
other hand begin with training loss values of approximately 
2.5 and 3.5 in training respectively and stabilize to nearly one 
towards the final epochs. The training accuracy with Leaky 
ReLU also remains relatively non-variant, rising from ~75% 
to ~80% for training.  

The other two functions reach a maximum training 
accuracy around ~75%. Comparing validation loss, all three 
functions converge to ~0.4. Like the previous case, the Leaky 
ReLU starts with the lowest loss from the first epoch and 
remains largely invariant. The default ReLU is the slowest to 
stabilize, but nonetheless reaches equivalent accuracy. All 
three functions perform roughly the same when comparing 
validation accuracy. 

In Fig 9 and 10., with the learning rate increases to 0.01, 
ELU achieves higher training and validation loss. While the 
default ReLU converges to the lowest training loss. In this 
case, Leaky ReLU displays some fluctuations deviating 
towards inferior performance towards the end of the iteration 
in training and validation. The result indicates that ELU is 
more sensitive to the learning rate. It is worth noting that ELU 
provides the highest training accuracy despite achieving 
higher training and validation loss. The default ReLU 
conversely does not outperform the default ReLU and ELU 
activation functions despite having the lowest training loss. 

In Fig 11 and 12., by setting the learning rate to an adverse 
value of 0.1, the behavior of the functions can be seen on a 
poorer scale for training and validation loss being at 
excessive values. Leaky ReLU, however, manages to gain a 
significant upward trend in accuracy despite the steep 
learning rate, reaching 50% and 60% in training and 
validation accuracy, respectively. The default ReLU is 
rendered completely ineffective at this learning rate for both 
training and validation accuracies.   

Hence, the comparison of the three activation functions 
suggests that Leaky ReLU provides the highest performance 
across a range of learning rates. 

 

 

Fig. 1. (Results – Training and Validation Loss for different optimization 

functions of lr 0.001) 

 

 

Fig. 2. (Results – Training and Validation Accuracy for different 

optimization functions of lr 0.001) 
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Fig. 3. (Results – Training and Validation Loss for different optimization 

functions of lr 0.01) 

 
 

 

 
 

Fig. 4. (Results – Training and Validation Accuracy for different 

optimization functions of lr 0.01) 

 

 

Fig. 5. (Results – Training and Validation Loss for different optimization 

functions of lr 0.1) 

 

 

 

Fig. 6. (Results – Training and Validation Accuracy for different 

optimization functions of lr 0.1) 
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Fig. 7. (Results – Training and Validation Loss for different activation 

functions of lr 0.001) 

 

 

Fig. 8. (Results – Training and Validation Accuracy for different activation 

functions of lr 0.001) 

 

 

Fig. 9. (Results – Training and Validation Loss for different activation 

functions of lr 0.01) 

 

 

Fig. 10. (Results – Training and Validation Accuracy for different activation 

functions of lr 0.01) 
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Fig. 11. (Results – Training and Validation Loss for different activation 

functions of lr 0.1) 

 

 

 

Fig. 12. (Results – Training and Validation Accuracy for different activation 

functions of lr 0.1) 

VII. CONCLUSION 

The key findings of this research proposes that the 
default optimizer Adam is more sensitive to higher learning 
rates than Adagrad and SGD. Furthermore, Adagrad and 
SGD both demonstrated relatively good results despite higher 
learning rate and relatively small dataset size as well. Adam 
nevertheless showed slightly superior performance when 

using the default learning rate of 0.001. Thus, we can 
conclude that Adam is only effective when lower learning 
rates are implemented, while Adagrad is ideal for a wide 
range of learning rates within the DenseNet architecture. As 
for the activation functions, we saw multiple flaws with the 
ReLU activation function when the learning rate increased. 
This exposed the Dying ReLU problem which caused 
neurons to be non-active because of large negative inputs. 
LeakyReLU on the other hand, showed superb performance 
despite the changes in learning rates. While ELU also showed 
relatively high performance, the accuracies of LeakyReLU 
signified that it is ideal for use with the DenseNet architecture 
and large output classification problem. 

VIII. LIMITATIONS 

         The number of training and validation examples 
presented with respect to the classification output are 
considered to be relatively small for the given problem. The 
model could be improvised by using a larger dataset such as 
ImageNet or implementing data augmentation and fine tuning 
to increase dataset size and prevent overfitting. It is also 
worth noting that CNNs are susceptible to the noise in the 
images of the training dataset (Lau, et al., 2021). 
Furthermore, recent advancements in GPU hardware using 
dedicated accelerators for machine learning has facilitated the 
development of faster ML libraries. The training and 
inference performance could be improved significantly by 
using hardware acceleration using libraries like Nvidia 
TensorRT, rather than the general purpose CUDA GPU 
architecture used in this model.  
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