.IE‘JTI Journal of Applied Technology and Innovation (e -1ISSN: 2600-7304) vol. 7, no. 3, (2023) 63

Digits Classification Using Random Forest
Classifier

Ngan Junn Fai
School of Computing
Asia Pacific University of Technology
and Innovation (APU)
Kuala Lumpur, Malaysia
tp059397 @mail.apu.edu.my

Wong Kai Wey
School of Computing
Asia Pacific University of Technology
and Innovation (APU)
Kuala Lumpur, Malaysia
tp060469@mail.apu.edu.my

Abstract— The objective of this paper is to investigate the
performance of a random forest classifier for the task of digit
classification using a standard dataset of handwritten digits.
This paper focuses on hyperparameter tuning to evaluate the
individual and combined influence of different hyperparameter
settings on the accuracy of the random forest classifier, using
stratified-k fold cross-validation as the performance criteria.
The result of this study shows that the random forest classifier
achieves an accuracy of 0.9416. The impact of different
hyperparameter settings on the classifier's performance is also
analyzed and it is found that certain settings either improve or
diminish the accuracy of the model while some trade-off each
other. The findings demonstrate the effectiveness of the random
forest classifier for digit classification tasks and suggest that it
could be wuseful in other applications where accurate
classification is important.

Keywords—Random Forest, digits classification, parameter
tuning, Stratified K-Folds, multiclass classification

I. INTRODUCTION

Digits classification and recognition are done seamlessly
by humans through the frontoparietal cortex of the human
brain. The neurons in the human brain fire in a chain of events
which results in the identification of digits. In machine
learning, handwritten digits classification involves using
algorithms to recognize and classify handwritten digits based
on their visual appearance. This falls under the multiclass
classification as it classifies instances into one of three or more
classes.

To represent the handwritten digits in a way that can be
processed by a machine learning algorithm, it is common to
use features that capture various characteristics of the digits
through feature extraction, such as breaking pixels into
features with the pixel intensities being the variable of the
feature (Abdulrazzag and Saeed, 2019; Karakaya and Kazan,
2021). The algorithm learns to recognize patterns in the data
that are associated with each digit and the labelled class, and
it can then be used to classify new, unseen digits based on
these learned patterns.

Digit recognition can help to ease daily life problems by
automating tasks that would otherwise be time-consuming for
humans to perform. Digit classification can be used to

Keong Yan Qi
School of Computing
Asia Pacific University of Technology
and Innovation (APU)
Kuala Lumpur, Malaysia
tp060661@mail.apu.edu.my

Gan Jun Xian
School of Computing
Asia Pacific University of Technology
and Innovation (APU)
Kuala Lumpur, Malaysia
tp060912@mail.apu.edu.my

Raymond Jee Meng Chun
School of Computing
Asia Pacific University of Technology
and Innovation (APU)
Kuala Lumpur, Malaysia
tp060797 @mail.apu.edu.my

Zailan Arabee bin Abdul Salam
School of Computing
Asia Pacific University of Technology
and Innovation (APU)
Kuala Lumpur, Malaysia
zailan@apu.edu.my

automate data entry to automatically extract and transcribe
data from scanned documents or images. This can save time
and avoid overstraining caused by human transcription as the
machine learning algorithms can be trained to accurately
transcribe the data with a high degree of accuracy and making
it easier and more efficient for individuals or organizations to
manage and process large amounts of data. During the
unforeseen global pandemic, COVID-19, machine learning
technology experienced a groundbreaking upsurge in demand
worldwide (Fortune Business Insight, 2022). A higher growth
of 36.1% in 2020 compared to 2019 has been disclosed by the
global machine learning market.

There are many different approaches to handwritten digit
classification, and the choice of algorithm and features used
can have a significant impact on the performance of the
system. Thus, this paper aims to study the usability and
performance of using a Random Forest Classifier (RFC) to
classify handwritten digits.

Il. LITERATURE REVIEW

The Random Forest Algorithm (RFA), an ensemble
classifier that combines many decision trees to provide
predictions, was reviewed by Parmar, Katariya, and Patel in
2018. The background, key principles, and useful applications
of the random forest approach are all covered in detail in this
study. The random forest classifier creates several decision
trees and then combines the decision trees' predictions to
provide a final prediction. Each decision tree in the random
forest is trained to provide predictions using a random subset
of the features and a random subset of the training data. All of
the decision trees in the random forest's predictions are then
combined to produce the final prediction, which is usually
decided by a majority vote. According to Parmar et al. (2018),
the random forest classifier has strong classification accuracy
with large datasets and is resistant to overfitting by handling
noises present in data sets, making it a good option for many
classification tasks.

Research has been done on machine learning which
utilizes various algorithms such as SVM, KNN,
Convolutional Neural Networks (CNN), etc. Akhtar & Ali
(2020) implemented RFC as a character recognizer in their
work of proposing an automatic number plate recognition.

mailto:tp059397@mail.apu.edu.my
mailto:tp060469@mail.apu.edu.my
mailto:tp060661@mail.apu.edu.my
mailto:tp060912@mail.apu.edu.my
mailto:tp060797@mail.apu.edu.my
mailto:zailan@apu.edu.my

Jﬁl-n Journal of Applied Technology and Innovation (e -1ISSN: 2600-7304) vol. 7, no. 3, (2023) 64

They have compared four classifiers namely K-Nearest
Neighbor (KNN), Neural Network (NN), Support Vector
Machine (SVM) and RFC. The results depict that RFC is
prevalent with an accuracy of 90.9% whereby the others are
within 83 to 90 percent. Two parameters, the number of
features in each split (Fs) and the number of decision trees (Nt)
were set to the square root of the number of features for the
model and 100 respectively. This accuracy was due to RFC
thoroughly removing the ambiguity of certain similar
characters such as “G” and “6”. Therefore, the result was
justified due to the nature of RFC being a multiclass classifier
whereas SVM is fundamentally a binary classifier. However,
it has also been noted that RFC takes a slightly longer time as
compared to the other 3 classifiers (Akhtar & Ali, 2020).

Similar research has been done by Shamim et al. (2018)
describes that the RF algorithm, whether regression or
classification, contains a weakness when learning from an
extremely unbalanced training dataset. This is because RF is
designed to diminish the overall error rate. RF tends to focus
more on the prediction efficiency of the majority class,
resulting in consecutively poor accuracy for the minority
class. In their paper, the performances of different machine
learning algorithms including Multilayer Perceptron (MLP),
SVM, RF, Bayes Net, Naive Bayes, J48 and Random Tree
using the MNIST dataset. Among all the machine learning
algorithms used, the highest accuracy with a score of 90.37%
was achieved by MLP. RF came in third with an accuracy of
85.75% (Shamim et al., 2018). To prevent this issue, identical
prior probability for both classes (majority and minority)
should be done which results in the minority class being
overrepresented. This raises the class's posterior probability,
which shifts the class's classification boundary and causes
more observations to be classified to the class. The weightage
of the minority class is increased by defining the benefit of
selecting the best decision for a case from a minority class
should be more than the majority class (Zhou et al., 2020).

Literature by Moo et al. (2021) attempted to employ
Neural Network and Genetic Algorithm (GA) together to play
the snake game, where the NN controls the moving direction
while GA controls the snake’s evolution. Moo et al. attempted
to tune the mutation rate, population size, number of hidden
layers and number of hidden neurons, separately and one at a
time. Moo et al. subsequently identified the sole optimum
value for parameters that yields the most favourable results but
they have also suggested that a better result could be possibly
attained if these hyperparameters are cross-tuned
simultaneously. Although this piece of work studies
hyperparameter tuning, the cross-implementation of two
machine learning algorithms on one problem may have
influenced the learning process as it introduces a level of
uniqueness to the hybrid algorithm. Thus, it lacks a baseline
for comparison and has limited generalisability. The level of
significance for each parameter might have changed in the
cross-implementation.

Moving on, research done by Bernard et al. (2007) focuses
on imparting rules on parameter settings for RFC
practitioners. In their paper, it is stated that Breiman founded
the Bootstrap Aggregation (Bagging) technique which entails
creating a group of base classifiers, each of which has been
trained using a bootstrap replica of the training data. The
subsequent combination of outputs with a plurality or majority
vote results in predictions. Breiman then proposed Random
Forest a few years later which consists of a general strategy

for developing a Multiple Classifier System (MCS) that uses
Decision Trees as the fundamental classifiers. This ensemble
is unique in that each member must be constructed using a set
of random parameters. The essential point is that the ensemble
of the base classifiers becomes more diverse because of this
randomization (Bernard et al., 2007). Through this
understanding, Bernard et al. experimented with two
parameter values, the Number of Trees (L), and the Number
of Features preselected for the splitting process (K), and found
that the increase of L and K shows improvement in
recognition rates within a certain range (100 < L < 300; 5
< K < 20).

I11. MATERIALS AND METHODS

A. Selection of Materials

1) Source Code: The Python programming language
(version 3.10.1) was used to implement the Random Forest
Classifier in this study. It is a widely used, high-level
programming language known for its simplicity and
readability. The source code of the Random Forest Classifier
was obtained through the ensemble module of the Python
scikit-learn package (version 1.1.2).

2) Machine: A device running on Windows 11 Pro
(version 22H2, build 22621.963) operating system equipped
with a 12" Gen Intel® Core™ i5-12600 central processing
unit and 16 GB of RAM installed was deployed to conduct
this study.

3) Dataset: The digits dataset chosen is from scikit-learn
which is a collection of handwritten digits images that is
commonly used as a benchmark for machine learning
algorithms. It contains 1,797 images of handwritten digits
which ranges from 0 to 9 and are almost evenly distributed in
each class. Each image represents an 8 x 8 pixels grayscaled
digit, where each pixel’s intensity is indicated by an integer
value between 0 and 16. The dataset comprises 64 features in
total, which matches the number of pixels in the image. The
dataset is ready to use and no preprocessing is needed.

o 1 2 3 4 5 6

Fig. 1. Sample image in the scikit-learn digits dataset.

B. Algorithm Implementation

1) Decision Tree: A decision tree is a graphical
representation for making predictions or judgements
depending on certain conditions. The root node is at the top,
and the leaf nodes also known as terminal nodes are at the
bottom, making up the structure's nodes. The leaf nodes
reflect the potential outcomes of each decision, whereas each

JE‘JTI Journal of Applied Technology and Innovation (e -1ISSN: 2600-7304) vol. 7, no. 3, (2023) 65

node represents a decision or query. Based on the
circumstances at each node, the algorithm analyses the
information at hand to identify the most likely path through
the tree (Safavian et.al, 1991). The default division criterion,
also known as the split rule used by decision trees in the
scikit-learn package is the Gini index (Géron, 2017) and the
criterion will remain unchanged throughout the entire study.
Fig. 2 shows the illustration of how a decision tree works.

Fig. 2. Decision tree illustration (Zhou et al., 2020).

2) Random Forest: An RFC is utilized for this digit
classification study. RFC is a method that constructs a forest
which consists of a large number of decision trees at training
time and outputting the class that is the mode of the classes
(classification) yielded from the individual trees. Each
decision tree inside the forest was built and trained using a
random feature subset of fixed size. The final prediction made
by the random forest is the mode of the class predictions
made by the individual decision trees, also known as the
majority voting. In other words, the class label that is
predicted by most of the decision trees will be the final
prediction of the algorithm (Breiman, 2001). This concept of
random forest is to address the overfitting that can occur
when using only a single decision tree. Fig. 3 demonstrates
the algorithm’s logic in a schematic representation.

Voting

Ongnal

Tranng randonized

st T result

—

Fig. 3. Random forest schematic (Liu et al., 2012).

C. Parameters

In this study, one constant parameter was involved and three
hyperparameters will be modified or tuned to investigate the
influence of each studied hyperparameter on the model’s
performance. The default value will be compared together
with another four custom values, for each of the
hyperparameters to be tuned.

1) ‘random_state’: To enable a fair evaluation of the
effects of each studied hyperparameter, the randomness will
be set to a static number, 42 so that the model behaves
consistently across different trials. In this source code, the
default value for this parameter is "None", which means that
the pseudorandom algorithm used to initialize the model will
not be initialized with a fixed seed value, and the results of
the model will not be reproducible.

2) “n_estimators : This parameter controls the number of
decision trees in the ensemble. The default value of this
parameter is 100, which means 100 decision trees will be
built in the forest. It is widely understood that increasing the
value of this parameter may allow for more diverse
predictions to be made. Another four custom values to be
studied are 50, 75, 125 and 150 respectively.

3) “max_depth™: This parameter controls the maximum
depth of each decision tree in the ensemble. The depth of a
decision tree refers to the number of splits that are made from
the root node to the leaf nodes. The default value of this
parameter is "None", which means that the trees in the forest
can grow indefinitely, hence the maximum model
complexity. Another four custom values to be studied are 2,
5, 8 and 10 respectively.

4) “max_features™: This parameter controls the number of
features that are randomly selected for the construction of
decision trees. The default value of this parameter is “sqrt’
which uses the square root of the total number of features
from the dataset. It is a well-established relationship that
increases the value of “max_features™ will make the model
access to more features when making split decisions, which
can increase the complexity of the model and potentially
improve its performance but also the risk of overfitting.
Another four custom values to be studied are 2, 4, 16 and 32
respectively.

D. Performance Criteria

The performance criteria that will be used in this study is
the stratified k-folds cross-validation. It involves dividing a
dataset into "k folds where the proportion of samples for each
class is approximately the same as the entire dataset in each
fold. Each fold represents a subset of the data. The model is
then trained and evaluated k™ times, with a different fold
being used as the test set and the rest will be the training data
in each iteration. This is important when the class distribution
is imbalanced, as it stratifies the dataset into "k’ chunks
accordingly to the original proportion of classes. It helps to
ensure that the model is trained and evaluated on a balanced
subset of the data, reducing the risk of bias in the evaluation
of the model's performance (Berrar, 2019).

IV. RESULTS AND DISCUSSION

Generalisation is the ability of a machine learning
algorithm to perform well on unobserved data. Generalisation
error is a measurement of the accuracy of the model when
acting on unseen data (Guissous, 2019). In the scenario where
the model performs poorly on unobserved data, there could be
two reasons. The first reason is that the model has insufficient
capacity and underfit the underlying function. The second
reason is the model has excessive capacity and overfits the

JE‘JTI Journal of Applied Technology and Innovation (e -1ISSN: 2600-7304) vol. 7, no. 3, (2023) 66

underlying function. In order to obtain a model with low
generalisation error, the training error and test error must be
low. In the instance where there is high training and testing
error, the model is said to be underfitted. The solution for this
is to increase the capacity by tuning the related
hyperparameters. On the other hand, low training error but
high testing error is a result of an overfitted model. The model
should decrease its capacity by shrinking techniques. This
reduces the variance of the model without causing a
significant increase in its bias. Fig. 4 delivers the above
concepts in a graphical view.

error
Optimal Capacity

.....

B T R

|

—— Training error
- - = Generalization error

} s capacity

Fig. 4. Generalisation error (Guissous, 2019).

The use of the precise capacity of a model is pivotal in
addressing the generalisation error complication. When a
model is underfitting, the performance of the model is said to
be critically inaccurate whereby the model fails to classify the
training dataset which leads to highly inaccurate predictions
of the unseen dataset. Meanwhile, an overfitted model is when
the model achieves high accuracy on the testing dataset but
fails to accurately predict the unseen dataset. This is due to the
model being overly sensitive to certain features which results
in the misclassification of unseen data. Fig. 5 illustrates the
model learning performance of each condition.

Underfit Good Generalization Overfit

Fig. 5. Underfit, good generalisation and overfit (Guissous, 2019).

A. "n_estimators’

Table I shows the results of stratified k-folds cross-
validation accuracy for different values of the “n_estimators
hyperparameter in the Random Forest classifier. The default
value of 100 did not produce the most accurate result for digits
classification as the default value returns an acceptable
accuracy of 0.9394. However, when the “n_estimators’ is set
to 125, the model returns a slightly better accuracy which is
also better than the result when “n_estimators™ = 150. This
result suggests that setting 125 for the “n_estimators’
hyperparameter truly approximates the optimum model
capacity compared to 100 and 150, among the 5 different
values studied in this test.

TABLE I. ACCURACY FOR TUNING THE 'N_ESTIMATORS
HYPERPARAMETER
n_estimators 50 75 100 125 150
Accuracy 0.9399 | 0.9371 | 0.9394 0.9416 0.9410

A higher value for "n_estimators’ results in a more diverse
and robust model but also increases the computational
complexity, and time required to train and predict with the
model. These results suggest that increasing the
“n_estimators can increase the stability of the Random Forest
classifier, but the accuracy begins to diminish after a certain
point as seen in Table 1. The diminish occurs because the
learning model starts to overfit. In this case, it is better to
reduce the number instead of increasing it. Therefore, it is
important to consider the trade-off between model
performance and computational efficiency when tuning the
value for "n_estimators’.

B. ‘max_depth’

Table Il shows the results of k-folds cross-validation
accuracy for different values of the “max_depth’
hyperparameter in the Random Forest classifier. The default
value of “'max_depth™ ("None’) produced the most accurate
result for digits classification which is 0.9394. By setting
specific numbers for the “max_depth’ hyperparameter, it
showed lower accuracies compared with the default value.
Thus, setting to "None™ for the "max_depth™ hyperparameter
allows the model to approach its optimum capacity, among the
5 different values studied in this test.

TABLE Il. ACCURACY FOR TUNING THE "MAX_DEPTH"
HYPERPARAMETER
max_depth 2 5 8 10 “None®
Accuracy 0.7863 | 0.8904 | 0.9243 | 0.9371 0.9394

A higher value of 'max_depth’ results in a deeper tree thus
a more complex model is made possible. These results suggest
that decreasing the ‘max_depth” value reduces the complexity
of the Random Forest classifier. A lower value indicates that
the number of splits each tree can make is limited, thus when
it reaches this limit, although the current nodes are still
impure, no further split can be made. This consequentially
made the impurities in each node stay and got classified into
the wrong class. In short, the optimal value for “max_depth
still depends on the specific dataset, the classification task
being performed and the desired outcomes.

C. “max_features

The default value for “max_features™ in this RFC model
does not produce the most accurate result for digits
classification. The default value of ‘max_features™ is the
square root of the total features in a class. Hence, the square
root of 64, 8, returns an acceptable accuracy margin (0.9394).
However, when the ‘max_features value is set to 4, the model
returns a consistently better result (0.9416) and it’s the optimal
figure. This result suggests that setting 4 for the
‘max_features® hyperparameter truly approximates the
optimum model capacity compared to 8, among the 5 different
values studied in this experiment as tabulated in Table I11.

JE‘JTI Journal of Applied Technology and Innovation (e -1ISSN: 2600-7304) vol. 7, no. 3, (2023) 67

TABLE 1. ACCURACY FOR TUNING THE "MAX_FEATURES"
HYPERPARAMETER
max_features 2 4 sqrt/8 16 32
Accuracy 0.9349 | 0.9416 | 0.9394 | 0.9399 0.9266

Increasing the number of features to consider for each tree
does not always increase the accuracy of the result as the
model tends to overfit while reducing the value of
“max_features” reduces the model complexity thus making the
model less sensitive to noise or anomalies, but may also
underfit the training data. Therefore, it can be inferred that the
default value of “max_features™ does not always result in the
best possible accuracy in an RFC model.

D. Cross-Tuning of Three Hyperparameters

After examining the influence of the sole hyperparameters
on the model’s performance, Table IV tabulates the prediction
accuracy when the three parameters aforementioned are cross-
tuned.

Perusing the prediction accuracy of different ‘max_depth
values, the overall accuracy is increasing in relatively larger
steps as the “max_depth’ increases. Yet, it can be seen that no
matter how the “'max_features™ and "n_estimators™ parameters
are being tuned, the accuracy doesn’t change much, unless the
“max_depth® value was stepped up. Therefore, the
“max_depth™ hyperparameter is deemed to be the most
influential among the three studied subjects. This
hyperparameter is at the maximum capacity by default as it
doesn’t have a finite limit, thus it is usually used to reduce the
model compacity. This is warranted by the findings in Table
IV, where the lowest accuracy among all 125 combinations of
different hyperparameter tuning was when "max_depth™ = 2,
while the highest was found when “max_depth™ = "None".

The “max_features” is deemed to be the second most
influential. This is the only hyperparameter of the RFC model
that can be used to both increases or decrease the model
capacity. Despite the “max_depth™ being tuned, a higher
“max_features™ results in the model overfitting the training
data. This is because the model will consider more features in
the construction of each tree, thus each feature is being learned
by the model repeatedly, more frequently. Yet, although the
“max_features™ was set to 2, the decline in accuracy is not as
drastic as “max_depth’, this is due to the “n_estimators
saturated the model’s access to each feature in the dataset, thus
the underfitting was minimized. In particular, the
“n_estimators” does not interfere with the construction of
individual decision trees, but it affects the stability of the RFC
model.

When tuning each of the three hyperparameters separately,
the optimum values identified were “n_estimators’ = 125,
“max_depth™ = "None™ and “max_features™ = 4. When these
three parameters were conjunctively tuned to their respective
solo optimum value, its model’s accuracy is very high, yet it
was not the highest instance of accuracy found in these 125
hyperparameter combinations. Vice versa, the solo inferior
values of each parameter do not make up the lowest accuracy
in this experiment. A simple inference can be made whereas
different parameters would trade-off each other’s influences,
even though each parameter is tuned to its solo peak value.

TABLE IV. ACCURACY FOR CROSS-TUNING THREE
HYPERPARAMETERS
max_ max_ n_estimators
depth | features 50 75 100 125 150
2 0.7986 | 0.8063 0-304 0.%11 o.ilg
4 0.8186 | 0.8225 0-?9 0-%21 o.a;z7
2 sqrt'8 | 0.7780 | 0.7869 0-7386 0-7184 0.192
16 0.7290 | 0.7301 0-231 0-133 0.8884
32 06522 | 0.6611 0-%73 0-6776 0.373
2 0.8871 | 0.8932 o.aigz 0-&;98 0.8894
4 0.8993 | 0.9015 0-5;02 0-5102 0.304
5 sqrus | 08909 | ogery | 090 | 0895 1 0893
16 0.8848 | 0.8876 0-8894 0.i95 0.8894
32 08698 | 0g732 | 0873 | 0871 | 0874
2 5 3
2 09260 | 0.9266 0-%25 0-9631 0.&;32
4 09277 | 0.9305 0-%31 0.%33 0_334
8 sqr8 | 09271 | 0.9249 0-9324 0.9626 o.siaz
16 09210 | 0.9204 0-5122 0-9823 0%24
32 09110 | 0.9149 0-312 0-?313 0.%16
2 0.9255 | 0.9305 0-%31 0-%34 0-%35
4 09371 | 0.9394 0'%39 0-‘-239 0-%40
10 sqr8 | 09377 | 0.9371 0-9137 0.9338 0.9636
16 09321 | 0.9310 0-%34 0-238 0.5;37
32 09199 | 09210 | 0923 | 0.924 | 0.927
8 9 7
2 09332 | 09338 0'%34 0-‘-137 0-9636
4 0.9355 | 0.9394 0-%41 0-%41 0.339
‘None® | sqrt8 | 09399 | 0.9371 0-5139 0-%41 o.%41
16 0.9382 | 09377 0-%39 0-9636 0-%36
32 09243 | 0.9260 0-9626 0-%25 o.%ze

V. CONCLUSION

Random Forest Classifier (RFC) algorithm has been used
to classify digits by their respective class. Initial results using
default parameter values were fairly decent but unsatisfactory.
Hence, through the implementation of hyperparameter tuning,
each substantial hyperparameter is delicately tuned to achieve
the lowest possible generalisation error which corresponds to
the model approaching the approximate optimal model
capacity. This returns the best possible accuracy. However, for

JE‘JTI Journal of Applied Technology and Innovation (e -1ISSN: 2600-7304) vol. 7, no. 3, (2023) 68

the model to truly reach true optimal capacity, it would be
time-consuming and costly. It has been noted throughout the
research that hyperparameter tuning in an RFC is
comparatively simpler and visualizable by graphical or tabular
representation. Besides that, RFC by its nature, is a
generalisation algorithm because of the involvement of
multiple decision trees in its ensemble. This results in RFC
being less prone to overfitting. Hence, RFC is objectively
suitable for new machine learning practitioners as resources
are abundantly available and arguably easy to comprehend
and implement.

ACKNOWLEDGMENT

The authors would like to thank to all School of
Computing members who involved in this study. This study
was conducted for the purpose of digits classification using
random forest classifier project.

REFERENCES

Abdulrazzag, M. B., & Saeed, J. N. (2019, April). A comparison of three
classification algorithms for handwritten digit recognition. In 2019
International Conference on Advanced Science and Engineering
(ICOASE) (pp. 58-63). IEEE.

Akhtar, Z., & Ali, R. (2020). Automatic number plate recognition using
random forest classifier. SN Computer Science, 1(3), 1-9.

Bernard, S., Adam, S., & Heultte, L. (2007, September). Using random forests
for handwritten digit recognition. In Ninth international conference on
document analysis and recognition (ICDAR 2007) (Vol. 2, pp. 1043-
1047). IEEE.

Berrar, D. (2019). Cross-Validation. Encyclopedia of Bioinformatics and
Computational Biology, 542-545.

Breiman, L. (2001). Random forests. Machine learning, 45(1), 5-32.

Fortune Business Insight. (2022). Market Research Report. In Fortune
Business Insight (No. FBI102226). Retrieved December 21, 2022, from
https://www.fortunebusinessinsights.com/machine-learning-market-
102226.

Géron, A. (2017). Hands-on machine learning with scikit-learn and
tensorflow: Concepts. Tools, and Techniques to build intelligent systems.

Guissous, A. E. (2019). Skin lesion classification using deep neural
network. arXiv preprint arXiv:1911.07817.

Karakaya, R., & Kazan, S. (2021). Handwritten digit recognition using
machine learning. Sakarya University Journal of Science, 25(1), 65-71.

Liu, Y., Wang, Y., & Zhang, J. (2012, September). New machine learning
algorithm: Random forest. In International Conference on Information
Computing and Applications (pp. 246-252). Springer, Berlin,
Heidelberg.

Moo, C. Y., Lee, W. Y., Chen, E. Y.K,, Syed, S. Q. & Salam, Z. A. A. (2021).
Investigating parameters of genetic algorithm and neural network on
classic snake game. Journal of Applied Technology and Innovation, 5(2).

Parmar, A., Katariya, R., & Patel, V. (2018, August). A review on random
forest: An ensemble classifier. In International Conference on Intelligent
Data Communication Technologies and Internet of Things (pp. 758-763).
Springer, Cham.

Safavian, S. R., & Landgrebe, D. (1991). A survey of decision tree classifier
methodology. IEEE transactions on systems, man, and cybernetics,
21(3), 660-674.

Shamim, S. M., Miah, M. B. A., Angona Sarker, M. R., & Al Johair, A.
(2018). Handwritten digit recognition using machine learning
algorithms. Global Journal Of Computer Science And Technology.

Zhou, X., Lu, P., Zheng, Z., Tolliver, D., & Keramati, A. (2020). Accident
prediction accuracy assessment for highway-rail grade crossings using
random forest algorithm compared with decision tree. Reliability
Engineering & System Safety, 200, 106931.

https://www.fortunebusinessinsights.com/machine-learning-market-102226
https://www.fortunebusinessinsights.com/machine-learning-market-102226

