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Abstract— The objective of this paper is to investigate the 

performance of a random forest classifier for the task of digit 

classification using a standard dataset of handwritten digits. 

This paper focuses on hyperparameter tuning to evaluate the 

individual and combined influence of different hyperparameter 

settings on the accuracy of the random forest classifier, using 

stratified-k fold cross-validation as the performance criteria. 

The result of this study shows that the random forest classifier 

achieves an accuracy of 0.9416. The impact of different 

hyperparameter settings on the classifier's performance is also 

analyzed and it is found that certain settings either improve or 

diminish the accuracy of the model while some trade-off each 

other. The findings demonstrate the effectiveness of the random 

forest classifier for digit classification tasks and suggest that it 

could be useful in other applications where accurate 

classification is important. 

Keywords—Random Forest, digits classification, parameter 

tuning, Stratified K-Folds, multiclass classification  

I. INTRODUCTION 

 Digits classification and recognition are done seamlessly 
by humans through the frontoparietal cortex of the human 
brain. The neurons in the human brain fire in a chain of events 
which results in the identification of digits. In machine 
learning, handwritten digits classification involves using 
algorithms to recognize and classify handwritten digits based 
on their visual appearance. This falls under the multiclass 
classification as it classifies instances into one of three or more 
classes. 

 To represent the handwritten digits in a way that can be 
processed by a machine learning algorithm, it is common to 
use features that capture various characteristics of the digits 
through feature extraction, such as breaking pixels into 
features with the pixel intensities being the variable of the 
feature (Abdulrazzaq and Saeed, 2019; Karakaya and Kazan, 
2021). The algorithm learns to recognize patterns in the data 
that are associated with each digit and the labelled class, and 
it can then be used to classify new, unseen digits based on 
these learned patterns. 

 Digit recognition can help to ease daily life problems by 
automating tasks that would otherwise be time-consuming for 
humans to perform. Digit classification can be used to 

automate data entry to automatically extract and transcribe 
data from scanned documents or images. This can save time 
and avoid overstraining caused by human transcription as the 
machine learning algorithms can be trained to accurately 
transcribe the data with a high degree of accuracy and making 
it easier and more efficient for individuals or organizations to 
manage and process large amounts of data. During the 
unforeseen global pandemic, COVID-19, machine learning 
technology experienced a groundbreaking upsurge in demand 
worldwide (Fortune Business Insight, 2022). A higher growth 
of 36.1% in 2020 compared to 2019 has been disclosed by the 
global machine learning market. 

 There are many different approaches to handwritten digit 
classification, and the choice of algorithm and features used 
can have a significant impact on the performance of the 
system. Thus, this paper aims to study the usability and 
performance of using a Random Forest Classifier (RFC) to 
classify handwritten digits. 

II. LITERATURE REVIEW 

 The Random Forest Algorithm (RFA), an ensemble 
classifier that combines many decision trees to provide 
predictions, was reviewed by Parmar, Katariya, and Patel in 
2018. The background, key principles, and useful applications 
of the random forest approach are all covered in detail in this 
study. The random forest classifier creates several decision 
trees and then combines the decision trees' predictions to 
provide a final prediction. Each decision tree in the random 
forest is trained to provide predictions using a random subset 
of the features and a random subset of the training data. All of 
the decision trees in the random forest's predictions are then 
combined to produce the final prediction, which is usually 
decided by a majority vote. According to Parmar et al. (2018), 
the random forest classifier has strong classification accuracy 
with large datasets and is resistant to overfitting by handling 
noises present in data sets, making it a good option for many 
classification tasks. 

 Research has been done on machine learning which 
utilizes various algorithms such as SVM, KNN, 
Convolutional Neural Networks (CNN), etc. Akhtar & Ali 
(2020) implemented RFC as a character recognizer in their 
work of proposing an automatic number plate recognition. 
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They have compared four classifiers namely K-Nearest 
Neighbor (KNN), Neural Network (NN), Support Vector 
Machine (SVM) and RFC. The results depict that RFC is 
prevalent with an accuracy of 90.9% whereby the others are 
within 83 to 90 percent. Two parameters, the number of 
features in each split (Fs) and the number of decision trees (Nt) 
were set to the square root of the number of features for the 
model and 100 respectively. This accuracy was due to RFC 
thoroughly removing the ambiguity of certain similar 
characters such as “G” and “6”. Therefore, the result was 
justified due to the nature of RFC being a multiclass classifier 
whereas SVM is fundamentally a binary classifier. However, 
it has also been noted that RFC takes a slightly longer time as 
compared to the other 3 classifiers (Akhtar & Ali, 2020). 

  Similar research has been done by Shamim et al. (2018) 
describes that the RF algorithm, whether regression or 
classification, contains a weakness when learning from an 
extremely unbalanced training dataset. This is because RF is 
designed to diminish the overall error rate. RF tends to focus 
more on the prediction efficiency of the majority class, 
resulting in consecutively poor accuracy for the minority 
class. In their paper, the performances of different machine 
learning algorithms including Multilayer Perceptron (MLP), 
SVM, RF, Bayes Net, Naïve Bayes, J48 and Random Tree 
using the MNIST dataset. Among all the machine learning 
algorithms used, the highest accuracy with a score of 90.37% 
was achieved by MLP. RF came in third with an accuracy of 
85.75% (Shamim et al., 2018). To prevent this issue, identical 
prior probability for both classes (majority and minority) 
should be done which results in the minority class being 
overrepresented. This raises the class's posterior probability, 
which shifts the class's classification boundary and causes 
more observations to be classified to the class. The weightage 
of the minority class is increased by defining the benefit of 
selecting the best decision for a case from a minority class 
should be more than the majority class (Zhou et al., 2020). 

 Literature by Moo et al. (2021) attempted to employ 
Neural Network and Genetic Algorithm (GA) together to play 
the snake game, where the NN controls the moving direction 
while GA controls the snake’s evolution. Moo et al. attempted 
to tune the mutation rate, population size, number of hidden 
layers and number of hidden neurons, separately and one at a 
time. Moo et al. subsequently identified the sole optimum 
value for parameters that yields the most favourable results but 
they have also suggested that a better result could be possibly 
attained if these hyperparameters are cross-tuned 
simultaneously. Although this piece of work studies 
hyperparameter tuning, the cross-implementation of two 
machine learning algorithms on one problem may have 
influenced the learning process as it introduces a level of 
uniqueness to the hybrid algorithm. Thus, it lacks a baseline 
for comparison and has limited generalisability. The level of 
significance for each parameter might have changed in the 
cross-implementation. 

 Moving on, research done by Bernard et al. (2007) focuses 
on imparting rules on parameter settings for RFC 
practitioners. In their paper, it is stated that Breiman founded 
the Bootstrap Aggregation (Bagging) technique which entails 
creating a group of base classifiers, each of which has been 
trained using a bootstrap replica of the training data. The 
subsequent combination of outputs with a plurality or majority 
vote results in predictions. Breiman then proposed Random 
Forest a few years later which consists of a general strategy 

for developing a Multiple Classifier System (MCS) that uses 
Decision Trees as the fundamental classifiers. This ensemble 
is unique in that each member must be constructed using a set 
of random parameters. The essential point is that the ensemble 
of the base classifiers becomes more diverse because of this 
randomization (Bernard et al., 2007). Through this 
understanding, Bernard et al. experimented with two 
parameter values, the Number of Trees (L), and the Number 
of Features preselected for the splitting process (K), and found 
that the increase of L and K shows improvement in 

recognition rates within a certain range (100 ≤ L ≤ 300; 5 

≤ K ≤ 20). 

III. MATERIALS AND METHODS 

A. Selection of Materials 

1) Source Code: The Python programming language 

(version 3.10.1) was used to implement the Random Forest 

Classifier in this study. It is a widely used, high-level 

programming language known for its simplicity and 

readability. The source code of the Random Forest Classifier 

was obtained through the ensemble module of the Python 

scikit-learn package (version 1.1.2). 

2) Machine: A device running on Windows 11 Pro 

(version 22H2, build 22621.963) operating system equipped 

with a 12th Gen Intel® Core™ i5-12600 central processing 

unit and 16 GB of RAM installed was deployed to conduct 

this study.  

3) Dataset: The digits dataset chosen is from scikit-learn 

which is a collection of handwritten digits images that is 

commonly used as a benchmark for machine learning 

algorithms. It contains 1,797 images of handwritten digits 

which ranges from 0 to 9 and are almost evenly distributed in 

each class. Each image represents an 8 x 8 pixels grayscaled 

digit, where each pixel’s intensity is indicated by an integer 

value between 0 and 16. The dataset comprises 64 features in 

total, which matches the number of pixels in the image. The 

dataset is ready to use and no preprocessing is needed. 

 

Fig. 1. Sample image in the scikit-learn digits dataset. 

B. Algorithm Implementation 

1) Decision Tree: A decision tree is a graphical 

representation for making predictions or judgements 

depending on certain conditions. The root node is at the top, 

and the leaf nodes also known as terminal nodes are at the 

bottom, making up the structure's nodes. The leaf nodes 

reflect the potential outcomes of each decision, whereas each 



Journal of Applied Technology and Innovation (e -ISSN: 2600-7304)   vol. 7, no. 3, (2023)                                    65 

 

node represents a decision or query. Based on the 

circumstances at each node, the algorithm analyses the 

information at hand to identify the most likely path through 

the tree (Safavian et.al, 1991). The default division criterion, 

also known as the split rule used by decision trees in the 

scikit-learn package is the Gini index (Géron, 2017) and the 

criterion will remain unchanged throughout the entire study. 

Fig. 2 shows the illustration of how a decision tree works. 

 

Fig. 2. Decision tree illustration (Zhou et al., 2020). 

2) Random Forest: An RFC is utilized for this digit 

classification study. RFC is a method that constructs a forest 

which consists of a large number of decision trees at training 

time and outputting the class that is the mode of the classes 

(classification) yielded from the individual trees. Each 

decision tree inside the forest was built and trained using a 

random feature subset of fixed size. The final prediction made 

by the random forest is the mode of the class predictions 

made by the individual decision trees, also known as the 

majority voting. In other words, the class label that is 

predicted by most of the decision trees will be the final 

prediction of the algorithm (Breiman, 2001). This concept of 

random forest is to address the overfitting that can occur 

when using only a single decision tree. Fig. 3 demonstrates 

the algorithm’s logic in a schematic representation. 

 

Fig. 3. Random forest schematic (Liu et al., 2012). 

C. Parameters 

In this study, one constant parameter was involved and three 
hyperparameters will be modified or tuned to investigate the 
influence of each studied hyperparameter on the model’s 
performance. The default value will be compared together 
with another four custom values, for each of the 
hyperparameters to be tuned. 

1) `random_state`: To enable a fair evaluation of the 

effects of each studied hyperparameter, the randomness will 

be set to a static number, 42 so that the model behaves 

consistently across different trials. In this source code, the 

default value for this parameter is `None`, which means that 

the pseudorandom algorithm used to initialize the model will 

not be initialized with a fixed seed value, and the results of 

the model will not be reproducible. 

2) `n_estimators`: This parameter controls the number of 

decision trees in the ensemble. The default value of this 

parameter is 100, which means 100 decision trees will be 

built in the forest. It is widely understood that increasing the 

value of this parameter may allow for more diverse 

predictions to be made. Another four custom values to be 

studied are 50, 75, 125 and 150 respectively. 

3) `max_depth`: This parameter controls the maximum 

depth of each decision tree in the ensemble. The depth of a 

decision tree refers to the number of splits that are made from 

the root node to the leaf nodes. The default value of this 

parameter is `None`, which means that the trees in the forest 

can grow indefinitely, hence the maximum model 

complexity. Another four custom values to be studied are 2, 

5, 8 and 10 respectively. 

4) `max_features`: This parameter controls the number of 

features that are randomly selected for the construction of 

decision trees. The default value of this parameter is `sqrt` 

which uses the square root of the total number of features 

from the dataset. It is a well-established relationship that 

increases the value of `max_features` will make the model 

access to more features when making split decisions, which 

can increase the complexity of the model and potentially 

improve its performance but also the risk of overfitting. 

Another four custom values to be studied are 2, 4, 16 and 32 

respectively. 

D. Performance Criteria 

The performance criteria that will be used in this study is 

the stratified k-folds cross-validation. It involves dividing a 

dataset into ̀ k` folds where the proportion of samples for each 

class is approximately the same as the entire dataset in each 

fold. Each fold represents a subset of the data. The model is 

then trained and evaluated `k` times, with a different fold 

being used as the test set and the rest will be the training data 

in each iteration. This is important when the class distribution 

is imbalanced, as it stratifies the dataset into `k` chunks 

accordingly to the original proportion of classes. It helps to 

ensure that the model is trained and evaluated on a balanced 

subset of the data, reducing the risk of bias in the evaluation 

of the model's performance (Berrar, 2019). 

IV. RESULTS AND DISCUSSION 

Generalisation is the ability of a machine learning 
algorithm to perform well on unobserved data. Generalisation 
error is a measurement of the accuracy of the model when 
acting on unseen data (Guissous, 2019). In the scenario where 
the model performs poorly on unobserved data, there could be 
two reasons. The first reason is that the model has insufficient 
capacity and underfit the underlying function. The second 
reason is the model has excessive capacity and overfits the 
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underlying function. In order to obtain a model with low 
generalisation error, the training error and test error must be 
low. In the instance where there is high training and testing 
error, the model is said to be underfitted. The solution for this 
is to increase the capacity by tuning the related 
hyperparameters. On the other hand, low training error but 
high testing error is a result of an overfitted model. The model 
should decrease its capacity by shrinking techniques. This 
reduces the variance of the model without causing a 
significant increase in its bias. Fig. 4 delivers the above 
concepts in a graphical view. 

 

Fig. 4. Generalisation error (Guissous, 2019). 

The use of the precise capacity of a model is pivotal in 
addressing the generalisation error complication. When a 
model is underfitting, the performance of the model is said to 
be critically inaccurate whereby the model fails to classify the 
training dataset which leads to highly inaccurate predictions 
of the unseen dataset. Meanwhile, an overfitted model is when 
the model achieves high accuracy on the testing dataset but 
fails to accurately predict the unseen dataset. This is due to the 
model being overly sensitive to certain features which results 
in the misclassification of unseen data. Fig. 5 illustrates the 
model learning performance of each condition. 

 

Fig. 5. Underfit, good generalisation and overfit (Guissous, 2019). 

A. `n_estimators` 

 Table I shows the results of stratified k-folds cross-
validation accuracy for different values of the `n_estimators` 
hyperparameter in the Random Forest classifier. The default 
value of 100 did not produce the most accurate result for digits 
classification as the default value returns an acceptable 
accuracy of 0.9394. However, when the `n_estimators` is set 
to 125, the model returns a slightly better accuracy which is 
also better than the result when `n_estimators` = 150. This 
result suggests that setting 125 for the `n_estimators` 
hyperparameter truly approximates the optimum model 
capacity compared to 100 and 150, among the 5 different 
values studied in this test. 

 

TABLE I.  ACCURACY FOR TUNING THE `N_ESTIMATORS ` 

HYPERPARAMETER 

 

 A higher value for `n_estimators` results in a more diverse 
and robust model but also increases the computational 
complexity, and time required to train and predict with the 
model. These results suggest that increasing the 
`n_estimators` can increase the stability of the Random Forest 
classifier, but the accuracy begins to diminish after a certain 
point as seen in Table I. The diminish occurs because the 
learning model starts to overfit. In this case, it is better to 
reduce the number instead of increasing it. Therefore, it is 
important to consider the trade-off between model 
performance and computational efficiency when tuning the 
value for `n_estimators`. 

B. `max_depth` 

Table II shows the results of k-folds cross-validation 
accuracy for different values of the `max_depth` 
hyperparameter in the Random Forest classifier. The default 
value of `max_depth` (`None`) produced the most accurate 
result for digits classification which is 0.9394. By setting 
specific numbers for the `max_depth` hyperparameter, it 
showed lower accuracies compared with the default value. 
Thus, setting to `None` for the `max_depth` hyperparameter 
allows the model to approach its optimum capacity, among the 
5 different values studied in this test. 

TABLE II.  ACCURACY FOR TUNING THE `MAX_DEPTH` 

HYPERPARAMETER 

 

 A higher value of ̀ max_depth` results in a deeper tree thus 
a more complex model is made possible. These results suggest 
that decreasing the `max_depth` value reduces the complexity 
of the Random Forest classifier. A lower value indicates that 
the number of splits each tree can make is limited, thus when 
it reaches this limit, although the current nodes are still 
impure, no further split can be made. This consequentially 
made the impurities in each node stay and got classified into 
the wrong class. In short, the optimal value for `max_depth` 
still depends on the specific dataset, the classification task 
being performed and the desired outcomes. 

C. `max_features` 

The default value for `max_features` in this RFC model 
does not produce the most accurate result for digits 
classification. The default value of `max_features` is the 
square root of the total features in a class. Hence, the square 
root of 64, 8, returns an acceptable accuracy margin (0.9394). 
However, when the `max_features` value is set to 4, the model 
returns a consistently better result (0.9416) and it’s the optimal 
figure. This result suggests that setting 4 for the 
`max_features` hyperparameter truly approximates the 
optimum model capacity compared to 8, among the 5 different 
values studied in this experiment as tabulated in Table III. 

 

n_estimators 50 75 100 125 150 

Accuracy 0.9399 0.9371 0.9394 0.9416 0.9410 

max_depth 2 5 8 10 `None` 

Accuracy 0.7863 0.8904 0.9243 0.9371 0.9394 
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TABLE III.  ACCURACY FOR TUNING THE `MAX_FEATURES` 

HYPERPARAMETER 

 

 Increasing the number of features to consider for each tree 
does not always increase the accuracy of the result as the 
model tends to overfit while reducing the value of 
`max_features` reduces the model complexity thus making the 
model less sensitive to noise or anomalies, but may also 
underfit the training data. Therefore, it can be inferred that the 
default value of `max_features` does not always result in the 
best possible accuracy in an RFC model.   

D. Cross-Tuning of Three Hyperparameters 

After examining the influence of the sole hyperparameters 
on the model’s performance, Table IV tabulates the prediction 
accuracy when the three parameters aforementioned are cross-
tuned. 

Perusing the prediction accuracy of different `max_depth` 
values, the overall accuracy is increasing in relatively larger 
steps as the `max_depth` increases. Yet, it can be seen that no 
matter how the `max_features` and `n_estimators` parameters 
are being tuned, the accuracy doesn’t change much, unless the 
`max_depth` value was stepped up. Therefore, the 
`max_depth` hyperparameter is deemed to be the most 
influential among the three studied subjects. This 
hyperparameter is at the maximum capacity by default as it 
doesn’t have a finite limit, thus it is usually used to reduce the 
model compacity. This is warranted by the findings in Table 
IV, where the lowest accuracy among all 125 combinations of 
different hyperparameter tuning was when `max_depth` = 2, 
while the highest was found when `max_depth` = `None`. 

The `max_features` is deemed to be the second most 
influential. This is the only hyperparameter of the RFC model 
that can be used to both increases or decrease the model 
capacity. Despite the `max_depth` being tuned, a higher 
`max_features` results in the model overfitting the training 
data. This is because the model will consider more features in 
the construction of each tree, thus each feature is being learned 
by the model repeatedly, more frequently. Yet, although the 
`max_features` was set to 2, the decline in accuracy is not as 
drastic as `max_depth`, this is due to the `n_estimators` 
saturated the model’s access to each feature in the dataset, thus 
the underfitting was minimized. In particular, the 
`n_estimators` does not interfere with the construction of 
individual decision trees, but it affects the stability of the RFC 
model. 

When tuning each of the three hyperparameters separately, 
the optimum values identified were `n_estimators` = 125, 
`max_depth` = `None` and `max_features` = 4. When these 
three parameters were conjunctively tuned to their respective 
solo optimum value, its model’s accuracy is very high, yet it 
was not the highest instance of accuracy found in these 125  
hyperparameter combinations. Vice versa, the solo inferior 
values of each parameter do not make up the lowest accuracy 
in this experiment. A simple inference can be made whereas 
different parameters would trade-off each other’s influences, 
even though each parameter is tuned to its solo peak value. 

 

TABLE IV.  ACCURACY FOR CROSS-TUNING THREE 

HYPERPARAMETERS 

 

V. CONCLUSION 

Random Forest Classifier (RFC) algorithm has been used 
to classify digits by their respective class. Initial results using 
default parameter values were fairly decent but unsatisfactory. 
Hence, through the implementation of hyperparameter tuning, 
each substantial hyperparameter is delicately tuned to achieve 
the lowest possible generalisation error which corresponds to 
the model approaching the approximate optimal model 
capacity. This returns the best possible accuracy. However, for 

max_features 2 4 sqrt/8 16 32 

Accuracy 0.9349 0.9416 0.9394 0.9399 0.9266 

max_ 

depth 

max_ 

features 

n_estimators 

50 75 100 125 150 

2 

2 0.7986 0.8063 
0.804

7 

0.811

9 

0.819

7 

4 0.8186 0.8225 
0.819

1 

0.821

9 

0.827

5 

sqrt/8 0.7780 0.7869 
0.786

3 
0.784

1 
0.792

4 

16 0.7290 0.7301 
0.731

8 

0.733

4 

0.884

8 

32 0.6522 0.6611 
0.673

9 
0.676

7 
0.678

9 

 

5 

2 0.8871 0.8932 
0.892

1 
0.898

2 
0.894

8 

4 0.8993 0.9015 
0.902

1 

0.902

1 

0.904

9 

sqrt/8 0.8909 0.8871 
0.890

4 

0.895

4 

0.893

2 

16 0.8848 0.8876 
0.894

8 
0.895

4 
0.894

8 

32 0.8698 0.8732 
0.873

2 

0.871

5 

0.874

3 

 

8 

2 0.9260 0.9266 
0.925

5 

0.931

6 

0.932

1 

4 0.9277 0.9305 
0.931

6 
0.933

8 
0.934

4 

sqrt/8 0.9271 0.9249 
0.924

3 

0.926

6 

0.932

1 

16 0.9210 0.9204 
0.922

1 

0.923

8 

0.924

9 

32 0.9110 0.9149 
0.912

1 
0.913

8 
0.916

0 

 

10 

2 0.9255 0.9305 
0.931

0 
0.934

9 
0.935

5 

4 0.9371 0.9394 
0.939

9 

0.939

4 

0.940

5 

sqrt/8 0.9377 0.9371 
0.937

1 
0.938

3 
0.936

6 

16 0.9321 0.9310 
0.934

9 

0.938

2 

0.937

7 

32 0.9199 0.9210 
0.923

8 

0.924

9 

0.927

7 

 

`None` 

2 0.9332 0.9338 
0.934

9 

0.937

1 

0.936

6 

4 0.9355 0.9394 
0.941

6 
0.941

0 
0.939

4 

sqrt/8 0.9399 0.9371 
0.939

4 

0.941

6 

0.941

0 

16 0.9382 0.9377 
0.939

9 

0.936

6 

0.936

6 

32 0.9243 0.9260 
0.926

6 

0.925

5 

0.926

6 
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the model to truly reach true optimal capacity, it would be 
time-consuming and costly. It has been noted throughout the 
research that hyperparameter tuning in an RFC is 
comparatively simpler and visualizable by graphical or tabular 
representation. Besides that, RFC by its nature, is a 
generalisation algorithm because of the involvement of 
multiple decision trees in its ensemble. This results in RFC 
being less prone to overfitting. Hence, RFC is objectively 
suitable for new machine learning practitioners as resources 
are abundantly available and arguably easy to comprehend 
and implement. 
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