
Journal of Applied Technology and Innovation (e -ISSN: 2600-7304) vol. 7, no. 4, (2023) 11

Convolutional Neural Network for Fashion

Images Classification (Fashion-MNIST)

Tang Jian Shiun

School of computing

Asia Pacific University of Technology

and Innovation (APU)

Kuala Lumpur, Malaysia

tp068048@mail.apu.edu.my

Por Jia Xin

School of computing

Asia Pacific University of Technology

and Innovation (APU)

Kuala Lumpur, Malaysia

tp062856@mail.apu.edu.my

Tey Jia Yi

School of computing

Asia Pacific University of Technology

and Innovation (APU)

Kuala Lumpur, Malaysia

tp068626@mail.apu.edu.my

Voon Pei Yi

School of computing

Asia Pacific University of Technology

and Innovation (APU)

Kuala Lumpur, Malaysia

tp063378@mail.apu.edu.my

Pu Jun Yu

School of computing

Asia Pacific University of Technology

and Innovation (APU)

Kuala Lumpur, Malaysia

tp064307@mail.apu.edu.my

Zailan Arabee Abdul Salam

School of computing

Asia Pacific University of Technology

and Innovation (APU)

Kuala Lumpur, Malaysia

zailan@apu.edu.my

Abstract — Recognizing and classifying images is a

significant research topic in the widely used computing

technology nowadays – the computational vision. The common

ways for classifying image and performing recognition tasks

depending on deep learning such as the Convolutional Neural

Network (CNN). With the high impact resulting from Artificial

Intelligence identified through the transformation in the fashion

and apparel industry. It has then been realized that difficulty

has been found in terms of understanding the work performed

in the industry. In this research, it is aimed to focus on

identifying the parameters that are able to affect the accuracy

of the particular trained model for fashion image classification

using deep learning in neural networks such as CNN with the

fashion MNIST dataset.

Keywords—(CNN) Convolutional Neural Network, (ANN)-

Artificial Neural Network, tiny (VGG) Visual Geometry Group,

artificial intelligence, clothing classification.

I. INTRODUCTION

Fashion in society nowadays places a stronghold position as

most of the population in the globe has a certain idea and

practices with fashion. Unique apparels are able to reflect

self-concepts as well as lifestyles, indicating a change and

showing different times and places. Obtaining the visual

classification of clothing products with the extraction from

computer vision plays an important step in the fashion

industry. The automation in classifying garments based on

features allows both producers and data experts to have

awareness of general overall production, which is

fundamentally important to avoid duplication of products,

organization, categorization etc. which smooths the flow and

development process.

The MNIST dataset from Zalando’s research is used to train

models with sets of training and test samples. The purpose of

this model is to help with classifying the types of fashion

clothing which categorizes into T-shirts, trousers, pullovers,

dresses, coats, sandals, shirts, sneakers, bags and ankle boots

as the assigned labels. This model is able to help with the

usage of classification for clothes recycling or clothing

recognition for quick online shopping. It also serves the

general purposes of market research analysis as well as

evaluating fashion trend collections. Different approaches to

perform visual classification were used starting from image

processing to machine learning such as feature extraction,

image recognition and template matching etc.

A. Literature Review

Based on the works of (Ng et al., 2023) which analyse the

usage of CNN for classifying the images of fruits that is

merely like the fashion classification. They have used

(DCNN) which is known as the deep convolution neural

network which requires the high calculation of restricted

conditions hence denying the utilization of DCNN. They

have implemented the ANN algorithm to assist in fruit image

classification with pre-trained images. The ANN algorithm

used in the study was trained on the variation of fruit images

from the fruit datasets for identical features. The

hyperparameters that they modified were learning rates,

epochs and the variation of the activation function. At the end

of their study, they have obtained and identified that the

optimal option for learning rate is the default at 1e-5 despite

1e-3 allowing the trained model to be more optimal, but much

more time for the training process is required.

In the research of (A.Vijayaraj et al., 2022) similar usage and

datasets were used which is to perform deep learning in

classifying images using the MNIST dataset provided by

Zalando. ANN and CNN are both implemented in the stated

study. In addition to our current study the tinyVGG which is

the Visual Geometry Group, has been implemented for

improvements on the study clothing classification. In

Vijayaraj’s work, it has been found that CNN performs at a

better rate with the tested accuracy of 0.9452.

Based on the study of (Lead et al., 2021) which implemented

the architecture of different CNN models which are

GoogLeNet, MobileNet v2, ResNet-50, ResNeXt-50 as well

Wide ResNet-50 with the MNIST dataset for handwritten

digit recognition. The aim of the study is to propose an

architecture with faster and higher accuracy results. Based on

the findings the model of Wide ResNet-50 has obtained the

lowest Top-1 error at the result of 0.5278% and Top-5 error

of 0.0079% while MobileNet v2 has the fastest training time

among the models at 498 seconds (about 8 and a half

minutes). Other than the MNIST datasets, the study also

Journal of Applied Technology and Innovation (e -ISSN: 2600-7304) vol. 7, no. 4, (2023) 12

experimented on CIFAR-10 datasets for further research on

complex data.

The addition of factors that may contribute to the inaccuracy

of the CNN outcomes is based on the research of (Luca et al.,

2019) which studies feature extractions in images for fashion

product classification. It has been found that misclassification

may happen due to the lack of feature displays caused by the

solidity of the colours of the clothing. As well as another

study based on the analysis of convolutional neural networks

for image classification from the works of (Neha et al., 2018),

has been founded that CNN models tend to get confused with

live-tested objects than static which adds on that the

complexity of frames from the real-time data are able to cause

confusion to the network layers.

II. BACKGROUND

A. Image Database

The dataset used for our experiment is Fashion-MNIST
provided by Zalando Research and is open for public
download on Kaggle.com or GitHub.com. The Fashion-
MNIST dataset consists of approximately 70,000 images of
fashion products with 28x28 grayscale images of 10 distinct
fashion labels. The labels include T-shirts/tops, trousers,
pullovers, dresses, coats, sandals, shirts, sneakers, bags, and
ankle boots. A dataset of 70,000 images was divided into two
parts, with 60,000 images used as training data. The remaining
10,000 images were utilized as testing data for evaluating the
accuracy of the trained model (Yamazaki, 2018; Zalando
Research, 2020). The dataset is widely used in the
AI/machine learning community to build and test computer
vision models. It can also be used to benchmark the
performance of various AI algorithms. The Google Collab
platform will be utilized in our experiment. To enable easy
access to the downloaded dataset, the dataset is loaded onto
Google Drive, as both platforms can be integrated alongside
each other.

B. Image Classification

Image classification is a supervised learning problem in
which defines as a collection of target classes (entities to
recognize in pictures) and training models to identify them
using labelled images. A classification algorithm uses an
image as input and predicts which class it belongs to
depending on its features (Papers with Code, 2011; Google,
2022). Artificial Neural Networks (ANNs) are limited in their
ability to handle spatial structures, making CNNs a preferred
method for image classification. In image classification,
ANNs treat each pixel independently, hence resulting in poor
spatial reasoning results. CNNs are composed of
convolutional layers that extract features like edges and
textures; pooling layers and then down sampling the feature
maps to improve detail captures. To perform the final
classification, the fully connected layer flattens the spatially
organized feature maps, considering the spatial arrangement
of the features. By backpropagating through shared-weight
convolutional layers, overfitting can be reduced and efficiency
increased. As a result, CNNs can detect patterns, recognize
relevant features, and exploit spatial redundancy while
requiring fewer parameters (Meel, 2022; Sharma, 2023).
When it comes to challenging tasks like image classification,
CNN outperforms ANN. Therefore, fashion classification
tasks can benefit from CNNs despite requiring substantial

training data due to the high number of parameters and high
computational power.

III. ALGORITHMS AND APPROACHES

A. Artificial Neural Network

Neural networks, also known as artificial neural networks

(ANNs), are a subclass of machine learning that serves as the

basis for deep learning approaches. With pre-trained image

datasets downloaded from Zalando's article images, the ANN

method was used to help Fashion MNIST classify the images.

The source code used in this research belonged to mrdbourke

from Github and was written in Python. The design was

influenced by the way organic neurons communicate with

one another in the human brain (IBM, n.d.).

Fig. 1. Architecture of artificial neural network

An input layer, one or multiple hidden layers and an output

layer make up the node layer of an ANN as shown in Fig 1

(Upadhyay, 2023). Each node in ANN is interconnected with

a weight and threshold. A node is activated and contributes

data to the uppermost layer of the network if its output

exceeds the defined threshold value (IBM, n.d.). If the output

does not exceed the defined threshold value, data will not be

sent to the network's next tier. To develop and improve

accuracy over time, training data is crucial for neural

networks.

In this research, the ANN algorithm was used to train

various fashion apparel from the dataset and classify using

attributes that were the same in each image. The training

results were produced as a table to display the accuracy, loss

and training time level after 5 epochs for each batch of

images. A confusion matrix is also used to see the accuracy

of the result of the training.

B. Convolutional Neural Network

Fig. 2. Architecture of convolutional neural network

Convolutional Neural Network (CNN) is a type of Artificial

Neural Network that focuses on processing data for two-

Journal of Applied Technology and Innovation (e -ISSN: 2600-7304) vol. 7, no. 4, (2023) 13

dimensional graticule images. CNN is composed of multiple

mathematical operations, known as the convolution layers

which have specialized linear operations. In a digital image,

every feature represents a pixel value that is stored in a two-

dimensional (2D) grid, or array of numbers. To extract the

optimizable feature, a small grid of parameters called the

kernel is applied at each image position as shown in Fig 2

(Yamashita et al., 2018). The input data that needed to be

trained by the CNN model's architecture will be implemented

with weights and biases. This is to differentiate different

elements of the images to make them stand out from one

another. The output of the CNN model is known as feature

maps that are shown in arrays. This makes CNNs extremely

effective for image processing (Saha, 2018).
This study aims to use CNN algorithm model to uncover

key information in image data of the clothing image datasets

by processing images, performing classification,

segmentation and object recognition. To achieve this

objective, the CNN model was given many clothing images

prepared by Zalando research to identify the numerous

patterns present in each image and adjust the bias and weight

of the nodes. The RGB colour of the photos is first turned into

grayscale to simplify algorithms and as well eliminate the

complexities related to computational requirements, and then

the image representations are chosen and altered to facilitate

the training process (isahit, n.d.). Convolutional, pooling and

totally connected layers are the three layers that will be

employed in CNN. These levels each apply a different

operation to the incoming data. Features from the input image

are extracted using filters. Feature extraction and

classification must be done to meet the research’s goal. The

totally interconnected layer collects information from feature

maps and produces the final categorization (Kadam et al.,

2020).

C. TinyVGG

Convolutional neural networks (CNNs) that are used for

image processing and computer vision employ a sort of

architecture called TinyVGG. It is a scaled-down version of

the conventional deep CNN architecture, the VGGNet, which

has many layers (Boesch, n.d.). The goal of TinyVGG is to

be more effective than the original VGGNet while

maintaining its strength for a variety of application scenarios.

Convolutional layers in the TinyVGG design are completely

linked, which means that each neuron is coupled to every

other neuron in the layer below (CNN Explainer, n.d.).

Multiple convolution layers are stacked in the architecture,

however in shallow TinyVGG, just two sets of four

convolution layers are typically included. One of TinyVGG's

key qualities is the utilisation of all 3x3 filters (Sucky, 2023).

According to CNN Explainer (n.d.), the characteristics

that distinguish different images from one another in the

convolution layers are extracted by the learnt kernels

(weights) to form the basis of CNN. It will show connections

between the convolutional layer and the preceding layers as

working with the convolutional layer. The output or

activation map of the current convolutional neuron is

produced by the convolution process using a unique kernel

that is represented by each connection. (CNN Explainer,

n.d.). The previous layer and a distinct kernel are combined

in an element-wise dot product by the convolutional neuron

to produce an appropriate neuron. These distinct kernels will

provide an equal number of intermediate outcomes. The total

of all the intermediate findings plus the learnt bias yields the

convolutional neuron. (CNN Explainer, n.d.).

Hyperparameters inside the convolutional layers are included

below.

1. Padding is often necessary when the kernel extends

beyond the activation map. It enables an

architectural designer to create deeper networks by

maintaining the spatial scale of the input. Padding

will add a border at the boundaries of activation

maps, leading to superior productivity. (CNN

Explainer, n.d.).

2. Kernel size, also known as the filter size, refers to

the dimensions of the sliding window over the input.

The image classification job is significantly

impacted by the choice of this hyperparameter. For

instance, lower kernel sizes can extract from the

input a substantially greater amount of data

including extremely local characteristics. A lower

kernel size also results in a lesser drop in layer

dimensions, allowing for a deeper architecture.

However, a high kernel size extracts less data, which

causes a rapid drop in layer dimensions and

frequently results in lower productivity. Larger

features can be extracted more effectively from big

kernels. (CNN Explainer, n.d.).

3. Stride value specifies how many pixels the kernel

should move over each time. For instance, Tiny

VGG employs a stride of 1 for its convolutional

layers. This implies that the dot product is done on a

3x3 window of the input to generate an output value,

then is moved to the right by one pixel for every

subsequent operation. Like kernel size, stride

influences a CNN. More features are learnt when the

stride is shortened since more data is extracted,

which also results in larger output layers. (CNN

Explainer, n.d.).

Following that, the neural network will be developed

layer by layer by stacking hidden layers one after another

thanks to the model's sequential routing of its layers. The

deep neural network was altered using the sequential

technique in order to improve task recognition and execution.

A flattening layer, a dropout layer that prevents model

overfitting, and a dense layer that acts as the output layer and

uses ReLU as the activation function to aid with multi-class

classification were the layers’ parameters of the model.

Lastly, the entire process will be compiled and trained to

evaluate the model’s performance. The loss and accuracy will

be indicating the model’s performance.

IV. ALGORITHMS IMPLEMENTATION

A. Purpose

The raw clothing images are usually too large for the neural

network to compute. As mentioned above, the amount of

computation time and resources are abundant amount. Hence,

Journal of Applied Technology and Innovation (e -ISSN: 2600-7304) vol. 7, no. 4, (2023) 14

CNN’s mechanism of convolving and pooling the data while

transforming the data into a smaller set of tensors. This saves

a large amount of time by reducing the number of inputs for

the neural network which indirectly decreases the

computation resources maintaining the accuracy. As a result,

more resources for the experiment could be spent at the focus

of other aspects.

B. Environment Setup

With the dataset of clothing images from Zalando research,

the problem is approached with a model that is structured

with two two-dimension convolutional layers. The model is

programmed in Python which is mentioned in the section

above. As Google Colab provides cloud resources, the model

will be trained through its provided Cuda GPU and if not the

virtual machine’s CPU. In this experiment, the GPUs are

available as shown in Fig 3. By using the same hardware with

identical specifications, the factor of the inconsistent model

performance to hardware issues could be negligible. Thus, the

environment for experimentation regarding the model is

better.

Fig. 3. Google Colab GPU specification

C. Model Structure

In this scenario, the TinyVGG architecture will be

implemented for CNN. This structure could be achieved with

the help of the Pytorch library which consists of the functions

that are needed for this experiment. The layers of convolved

data will be passed into the pooling layers. Since the MaxPool

algorithm is used, the largest value along the matrix with a

size of two by two will be picked out to make the feature map.

This eventually creates a more abstract version of the feature

by acquiring the necessary data. Hence, it will result in using

more reasonable computation resources.

In the neural network, every node will have the function

to determine the transmission of signal over the other nodes

by a threshold. This function is known as the activation

function. In this CNN, the activation function used is the

rectified linear unit function (ReLU). The visualization of the

graph is plotted as Fig 4. As output, the input will range from

0 to the input value provided it is positive. The function

provides a range of positive outputs that is proportionally

different and not all near zero-values that is seen in other

activation functions such as the Sigmoid Function. As long as

the output is not 0, the nodes transmit the next signal. Aside

from this, the other aspects such as epochs, learning rate,

pooling layer, loss function and optimizer function.

Fig 4. ReLU function.

D. Parameters and Functions Modified

As the default model for comparison, several parameters

remain constant unless the parameter or function is being

experimented on. To note, the default model is set to have a

3 epoch, batch size of 32, learning rate of 0.1 with MaxPool

function for pooling layer, CrossEntropyLoss for loss

function and SGD as optimizer function.

Epochs are known as the number of times that the model

has forward pass and backpropagated the data through the

model. If a training sample is a thousand in size, one epoch is

the parameter to measure the amount of per forward pass and

backward propagation for all 1000 samples. In this process,

the training data will be trained on the network. Which

theoretically let the performance of the model increase after

each epoch. In the experiment, different numbers of epochs

will be used to verify the amount of difference in training loss

and accuracy differs.

Having many epochs may potentially increase the

performance of the model. The downside to this is that the

computation power needed to process all training samples in

one iteration is enormous. Hence, the role of another

parameter which is batch size may solve this. The batch size

refers to the number of samples that are used for one iteration.

If the total training sample is a thousand in total, a 500-batch

size will take two iterations to finish one epoch. By that, a

few batch sizes will have experimented with a constant epoch

of 3 in this test.

Another layer of the model for feature extraction includes

the pooling layer. The former pooling layer is MaxPool which

extracts the max value out of the feature map. This function

takes the value that is max out of the pool size matrix. For the

experiment, the pooling layer will be formed using the

AveragePool function. This function will eventually take the

average value of the pool.

After having the features extracted in the pooling layer,

the loss function comes to play to evaluate the overall

accuracy loss of the model. Based on the loss function, an

overall loss will be calculated between the output and

targeted value. In the default model, the cross-entropy loss

function is used. In the experiment, other loss functions such

as MultiMarginLoss and NLLLoss functions will be used.

The learning rate is the amount that the optimizer adjusts

the weights of the model. This parameter is constant when

paired with optimizer functions such as SGD which is in the

Journal of Applied Technology and Innovation (e -ISSN: 2600-7304) vol. 7, no. 4, (2023) 15

default model. The smaller learning rate could mean that the

model converges in small steps but could end up in local

minima. Hence, different learning rates are used in the

experiment.

Lastly, the optimizer function plays the role to tune the

weights to optimize the model. In the default model, SGD is

used as it works with a constant learning rate. In the

experiment, the Adam optimizer function will be used. As

this optimizer uses an adaptive learning rate as time goes by,

it will be able to optimize the model without being stuck in a

local minimum.

V. RESULT AND DISCUSSION

After changing different parameters, we obtain all the

results of the parameters. We collect all the training loss,

training accuracy, testing loss, testing accuracy and time to

compare the parameters.
TABLE I shows the result of using different optimizer.

There are two different optimizers, one is SGD optimizer and
another one is Adam optimizer. Comparing the training loss
and accuracy, we can notice that the result of SGD optimizer
is much better than Adam optimizer. The training accuracy of
the Adam is only 9.79% which is very low. It means that SGD
optimizer is more effective to minimize the training loss and
improve the model accuracy during training. Comparing the
testing loss and accuracy, the result of SGD optimizer is also
better than Adam optimizer. Regarding the time, time used by
SGD optimizer is a bit lower than Adam optimizer. Based on
the observations, we can conclude that in this dataset by using
TingVGG architecture, SGD optimizer performs better than
Adam optimizer in terms of both training and testing.

TABLE I. RESULTS OF DIFFERENT OPTIMIZER

Optimizer Training
loss

Training
Accuracy

Testing
loss

Testing
Accuracy

Time
(seconds)

SGD 0.32377 88.29% 0.33105 87.92% 40.085

Adam 2.31583 9.79% 2.31064 10.00% 42.254

TABLE II shows the results of using different loss functions.
From the result, we can notice that different loss functions
have different loss, accuracy, and time to train. The result
shows that the MultiMarginLoss is the is better than
CrossEntropyLoss function and NLLLoss function. It has the
highest accuracy and lowest loss. CrossEntropyLoss and
NLLLoss have similar model accuracy, but CrossEntropyLoss
has a lower accuracy and a higher loss. By comparing the time,
we notice that CrossEntropyLoss takes the shortest time,
which is 133.081 seconds. The second is the MultiMarginLoss
function, it takes 333.40 seconds. NLLLoss function has the
longest training time among the three loss functions. In
conclusion. We can conclude that if the purpose of achieving
the highest accuracy, NLLLoss performs better than the two
functions. If a good balance between accuracy and training
time function is needed, CrossEntropyLoss and NLLLoss can
be the option.

TABLE II. RESULTS OF DIFFERENT LOSS FUNCTION

Loss Function Model
Loss

Model
Accuracy

Time
(Seconds)

CrossEntropyLoss 0.32341 88.64& 133.081

MultiMarginLoss 0.0336 99.67% 333.40

NLLLoss 0.2578 90.58% 438.27

 TABLE III shows the result of using different batch sizes.
There are three different batch sizes, which are 8, 32, and 128.
Based on the table, we can notice that the loss will become
lower if we change the batch size from 8 to 32 but increase a
bit when we change the batch size from 32 to 128. Besides
that, the accuracy of the training and testing also increases
when we change the batch size from 8 to 32 and decreases
when we change the batch size to 128. For overall accuracy
and loss, batch size 32 has a better performance. For the time
taken, increasing the batch size will decrease the time. This is
because larger batch sizes only require fewer iterations to
process the whole dataset. Therefore, it will increase the speed
of training and decrease the time for training.

TABLE III. RESULTS OF DIFFERENT BATCH SIZE

Batch
Size

Training
Loss

Training

Accuracy

Testing
Loss

Testing
Accuracy

Time
(Seconds)

8 0.35989 86.81% 0.35696 86.77% 76.311

32 0.32362 88.23% 0.32483 88.47% 48.381

128 0.39404 85.80% 0.37490 86.82% 32.522

 TABLE IV shows the result of using different epochs.
There are three different epochs, which are 1, 3 and 21. Based
on the table, we can notice that when the number of epochs
increases, the training loss and testing loss will decrease.
Besides that, we also notice that when the number of epochs
increases, the accuracy of the result also increases, but from.
Based on the observations, it indicates that more epochs will
decrease the loss and increase the accuracy. Therefore, more
epochs allow the model to optimize and fit the training data
better. In terms of the training time, we notice that the time
will increase when the number of epochs increases. It is
because more epochs require more iterations over the training
data. Therefore, it will require longer training time and
increase the time.

TABLE IV. RESULTS OF DIFFERENT EPOCHS

Epochs Training
Loss

Training
Accuracy

Testing
Loss

Testing
Accuracy

Time
(Seconds)

1 0.59329 78.43% 0.37961 86.37% 14.180

3 0.31741 88.59% 0.31458 88.82% 53.098

21 0.22457 91.80% 0.28633 89.91% 300.709

 TABLE V shows the results of different learning rates.
From the table, we can notice that the training loss will
decrease when the learning rate increases. This is due to the
reason that a higher learning rate can help the model converge
faster. Therefore, it will have a lower training loss. Regarding
the accuracy of the model, it shows that the result is like the
loss, which means when the learning rate increase, the
accuracy of the model will also increase. This implies that the
higher learning rate can help the model generalize better to the
data. In term of the training time, it shows that the training
time increases when the learning rates increases. This is

Journal of Applied Technology and Innovation (e -ISSN: 2600-7304) vol. 7, no. 4, (2023) 16

because higher learning rates can cause the model to converge
faster, but it requires more iterations. Therefore, it will cause
the training time to become longer.

TABLE V. RESULTS OF DIFFERENT LEARNING RATE

Learnin
g Rate

Trainin
g Loss

Training
Accurac
y

Testin
g loss

Testing
Accurac
y

Time
(Seconds
)

0.001 0.60513 78.10% 0.6194
0

76.78% 105.216

0.01 0.34034 87.80% 0.3598
6

87.41% 113.379

0.1 0.26431 90.29% 0.2979
6

89.45% 106.413

 TABLE VI shows the results of using different pooling
layers. From the table, we notice that the loss for both pooling
layers is quite similar. Regarding the accuracy of the model,
we also notice that the accuracy for both Maxpool2d and
Avgpool2d is also relatively similar with an insignificant
difference of <1%. Both pooling layers are suitable for this
model since they improve generalizability and produce high-
accuracy results while reducing loss effectively, but
Maxpool2d requires slightly more training time than
Avgpool2. This is likely due to the different computational
requirements of the two pooling layers. In conclusion, we can
deduce that both Maxpool2d and Avgpool2d show
comparable performance in terms of loss and accuracy.
However, Maxpool2d training time will be slightly longer
than Avgpool2d by approximately 9 seconds.

TABLE VI. RESULTS OF DIFFERENT POOLING LAYER

Pooling
Layer

Trainin
g Loss

Training
Accurac
y

Testin
g Loss

Testing
Accurac
y

Time
(Seconds
)

Maxpool2
d

0.32373 88.21% 0.3256
6

88.42% 50.361

Avgpool2
d

0.33087 87.95% 0.3307
1

87.78% 41.623

 ACKNOWLEDGMENT

We would like to thank Zalando Research for their

generosity in making the Fashion-MNIST dataset available to

the public on Kaggle and GitHub, which is essential for our

research. Without Zalando, this study would not have been

feasible.

REFERENCES

Brendan, F. (n.d.). Activation Functions — ML Glossary documentation.

https://mlcheatsheet.readthedocs.io/en/latest/activation_function
s.html

Boesch, G. (n.d.). VGG Very Deep Convolutional Networks (VGGNet) -
What you need to know. Viso.ai. https://viso.ai/deep-
learning/vgg-very-deep-convolutional-networks/

CNN Explainer. (n.d.). Poloclub.github.io. https://poloclub.github.io/cnn-
explainer/

Donati, L., Iotti, E., Mordonini, G., & Prati, A. (2019). Fashion Product
Classification through Deep Learning and Computer Vision.
Applied Sciences, 9(7), 1385.
https://doi.org/10.3390/app9071385

Google. (2022, July 19). ML Practicum: Image Classification. Google
Developers. https://developers.google.com/machine-
learning/practica/image-
classification#:~:text=Image%20classification%20is%20a%20s
upervised

IBM. (n.d.). What are Neural Networks?. IBM.
https://www.ibm.com/topics/neural-
networks#:~:text=Neural%20networks%2C%20also%20known
%20as

isahit. (n.d.). Why to use grayscale conversion during image
processing? (n.d.). isahit. https://www.isahit.com/blog/why-to-
use-grayscale-conversion-during-image-
processing#:~:text=Why%20is%20grayscale%20needed%20for

Kadam, S. S., Adamuthe, A. C., & Patil, A. B. (2020). CNN model for image
classification on MNIST and Fashion-MNIST dataset. Journal of
Scientific Research, 64(2), 374–384.
https://doi.org/10.37398/jsr.2020.640251

Lead, M. S., Chen, B. B. C., Tan, G. Y., Chai, H. T., & Abdul Salam, Z. A.
(2021). MNIST handwritten digit recognition with different CNN
architectures. Journal of Applied Technology and Innovation,
5(1), 2600–7304. https://dif7uuh3zqcps.cloudfront.net/wp-
content/uploads/sites/11/2021/01/17192613/MNIST-
Handwritten-Digit-Recognition-with-Different-CNN-
Architectures.pdf

Meel, V. (2022, February 1). ANN and CNN: Analyzing Differences and
Similarities. Viso.ai. https://viso.ai/deep-learning/ann-and-cnn-
analyzing-differences-and-
similarities/#:~:text=ANN%20is%20ideal%20for%20solving

Ng, Y. R., How, Y. H., Cheong, Y. K., Omer, M., & Abdul Salam, Z. A.
(2023). Convolutional Neural Network for Fruit Image
Classification. Journal of Applied Technology and Innovation,
7(1). https://dif7uuh3zqcps.cloudfront.net/wp-
content/uploads/sites/11/2022/12/14090157/Volume7_Issue1_P
aper5_2023.pdf

Papers with Code. (2011). Papers With Code : Image Classification.
Paperswithcode.com. https://paperswithcode.com/task/image-
classification

Saha, S. (2018, December 16). A comprehensive guide to Convolutional
Neural Networks — the ELI5 way. Towards Data Science.
https://towardsdatascience.com/a-comprehensive-guide-to-
convolutional-neural-networks-the-eli5-way-3bd2b1164a53

Sharma, P. (2023, April 13). CNN vs ANN for Image Classification.
Www.tutorialspoint.com. https://www.tutorialspoint.com/cnn-
vs-ann-for-image-classification

Sucky, R. N. (2023, February 28). Complete implementation of a mini VGG
Network for image recognition. Towards Data Science.
https://towardsdatascience.com/complete-implementation-of-a-
mini-vgg-network-for-image-recognition-849299480356

Upadhyay, A. (2023, July 10). 20 Must-Know Topics in Deep Learning for
Beginners. Medium.
https://medium.com/@aspershupadhyay/mastering-deep-
learning-20-key-concepts-explained-ea405aa6603d

Vijayaraj, A., Vasanth Raj, P. T., Jebakumar, R., Gururama Senthilvel, P.,
Kumar, N., Suresh Kumar, R., & Dhanagopal, R. (2022). Deep
Learning Image Classification for Fashion Design. Wireless
Communications and Mobile Computing, 2022(Volume 2022),
e7549397. https://doi.org/10.1155/2022/7549397

Yamashita, R., Nishio, M., Do, R. K. G., & Togashi, K. (2018).
Convolutional Neural Networks: An overview and application in
radiology. Insights into Imaging, 9(4), 611–629.
https://doi.org/10.1007/s13244-018-0639-9

Yamazaki, N. (2018, January 11). Zalando Engineering Blog - The Faces
Behind the Fashion-MNIST. Zalando Engineering Blog.
https://engineering.zalando.com/posts/2018/01/faces-behind-
fashion-mnist.html

Zalando Research. (2020, November 15). zalandoresearch/fashion-mnist.
GitHub. https://github.com/zalandoresearch/fashion-mnist

https://mlcheatsheet.readthedocs.io/en/latest/activation_functions.html
https://mlcheatsheet.readthedocs.io/en/latest/activation_functions.html
https://viso.ai/deep-learning/vgg-very-deep-convolutional-networks/
https://viso.ai/deep-learning/vgg-very-deep-convolutional-networks/
https://developers.google.com/machine-learning/practica/image-classification#:~:text=Image%20classification%20is%20a%20supervised
https://developers.google.com/machine-learning/practica/image-classification#:~:text=Image%20classification%20is%20a%20supervised
https://developers.google.com/machine-learning/practica/image-classification#:~:text=Image%20classification%20is%20a%20supervised
https://developers.google.com/machine-learning/practica/image-classification#:~:text=Image%20classification%20is%20a%20supervised
https://www.ibm.com/topics/neural-networks#:~:text=Neural%20networks%2C%20also%20known%20as
https://www.ibm.com/topics/neural-networks#:~:text=Neural%20networks%2C%20also%20known%20as
https://www.ibm.com/topics/neural-networks#:~:text=Neural%20networks%2C%20also%20known%20as
https://www.isahit.com/blog/why-to-use-grayscale-conversion-during-image-processing#:~:text=Why%20is%20grayscale%20needed%20for
https://www.isahit.com/blog/why-to-use-grayscale-conversion-during-image-processing#:~:text=Why%20is%20grayscale%20needed%20for
https://www.isahit.com/blog/why-to-use-grayscale-conversion-during-image-processing#:~:text=Why%20is%20grayscale%20needed%20for
https://doi.org/10.37398/jsr.2020.640251
https://dif7uuh3zqcps.cloudfront.net/wp-content/uploads/sites/11/2021/01/17192613/MNIST-Handwritten-Digit-Recognition-with-Different-CNN-Architectures.pdf
https://dif7uuh3zqcps.cloudfront.net/wp-content/uploads/sites/11/2021/01/17192613/MNIST-Handwritten-Digit-Recognition-with-Different-CNN-Architectures.pdf
https://dif7uuh3zqcps.cloudfront.net/wp-content/uploads/sites/11/2021/01/17192613/MNIST-Handwritten-Digit-Recognition-with-Different-CNN-Architectures.pdf
https://dif7uuh3zqcps.cloudfront.net/wp-content/uploads/sites/11/2021/01/17192613/MNIST-Handwritten-Digit-Recognition-with-Different-CNN-Architectures.pdf
https://viso.ai/deep-learning/ann-and-cnn-analyzing-differences-and-similarities/#:~:text=ANN%20is%20ideal%20for%20solving
https://viso.ai/deep-learning/ann-and-cnn-analyzing-differences-and-similarities/#:~:text=ANN%20is%20ideal%20for%20solving
https://viso.ai/deep-learning/ann-and-cnn-analyzing-differences-and-similarities/#:~:text=ANN%20is%20ideal%20for%20solving
https://dif7uuh3zqcps.cloudfront.net/wp-content/uploads/sites/11/2022/12/14090157/Volume7_Issue1_Paper5_2023.pdf
https://dif7uuh3zqcps.cloudfront.net/wp-content/uploads/sites/11/2022/12/14090157/Volume7_Issue1_Paper5_2023.pdf
https://dif7uuh3zqcps.cloudfront.net/wp-content/uploads/sites/11/2022/12/14090157/Volume7_Issue1_Paper5_2023.pdf
https://paperswithcode.com/task/image-classification
https://paperswithcode.com/task/image-classification
https://www.tutorialspoint.com/cnn-vs-ann-for-image-classification
https://www.tutorialspoint.com/cnn-vs-ann-for-image-classification
https://medium.com/@aspershupadhyay/mastering-deep-learning-20-key-concepts-explained-ea405aa6603d
https://medium.com/@aspershupadhyay/mastering-deep-learning-20-key-concepts-explained-ea405aa6603d
https://doi.org/10.1007/s13244-018-0639-9
https://github.com/zalandoresearch/fashion-mnist

