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Abstract — Recognizing and classifying images is a 

significant research topic in the widely used computing 

technology nowadays – the computational vision. The common 

ways for classifying image and performing recognition tasks 

depending on deep learning such as the Convolutional Neural 

Network (CNN). With the high impact resulting from Artificial 

Intelligence identified through the transformation in the fashion 

and apparel industry. It has then been realized that difficulty 

has been found in terms of understanding the work performed 

in the industry. In this research, it is aimed to focus on 

identifying the parameters that are able to affect the accuracy 

of the particular trained model for fashion image classification 

using deep learning in neural networks such as CNN with the 

fashion MNIST dataset.  

Keywords—(CNN) Convolutional Neural Network, (ANN)- 

Artificial Neural Network, tiny (VGG) Visual Geometry Group, 

artificial intelligence, clothing classification. 

I. INTRODUCTION  

Fashion in society nowadays places a stronghold position as 

most of the population in the globe has a certain idea and 

practices with fashion. Unique apparels are able to reflect 

self-concepts as well as lifestyles, indicating a change and 

showing different times and places. Obtaining the visual 

classification of clothing products with the extraction from 

computer vision plays an important step in the fashion 

industry. The automation in classifying garments based on 

features allows both producers and data experts to have 

awareness of general overall production, which is 

fundamentally important to avoid duplication of products, 

organization, categorization etc. which smooths the flow and 

development process. 

The MNIST dataset from Zalando’s research is used to train 

models with sets of training and test samples. The purpose of 

this model is to help with classifying the types of fashion 

clothing which categorizes into T-shirts, trousers, pullovers, 

dresses, coats, sandals, shirts, sneakers, bags and ankle boots 

as the assigned labels. This model is able to help with the 

usage of classification for clothes recycling or clothing 

recognition for quick online shopping. It also serves the 

general purposes of market research analysis as well as 

evaluating fashion trend collections. Different approaches to 

perform visual classification were used starting from image 

processing to machine learning such as feature extraction, 

image recognition and template matching etc. 

A. Literature Review 

Based on the works of (Ng et al., 2023) which analyse the 

usage of CNN for classifying the images of fruits that is 

merely like the fashion classification. They have used 

(DCNN) which is known as the deep convolution neural 

network which requires the high calculation of restricted 

conditions hence denying the utilization of DCNN. They 

have implemented the ANN algorithm to assist in fruit image 

classification with pre-trained images. The ANN algorithm 

used in the study was trained on the variation of fruit images 

from the fruit datasets for identical features. The 

hyperparameters that they modified were learning rates, 

epochs and the variation of the activation function. At the end 

of their study, they have obtained and identified that the 

optimal option for learning rate is the default at 1e-5 despite 

1e-3 allowing the trained model to be more optimal, but much 

more time for the training process is required.  

In the research of (A.Vijayaraj et al., 2022) similar usage and 

datasets were used which is to perform deep learning in 

classifying images using the MNIST dataset provided by 

Zalando. ANN and CNN are both implemented in the stated 

study. In addition to our current study the tinyVGG which is 

the Visual Geometry Group, has been implemented for 

improvements on the study clothing classification. In 

Vijayaraj’s work, it has been found that CNN performs at a 

better rate with the tested accuracy of 0.9452.  

Based on the study of (Lead et al., 2021) which implemented 

the architecture of different CNN models which are 

GoogLeNet, MobileNet v2, ResNet-50, ResNeXt-50 as well 

Wide ResNet-50 with the MNIST dataset for handwritten 

digit recognition. The aim of the study is to propose an 

architecture with faster and higher accuracy results. Based on 

the findings the model of Wide ResNet-50 has obtained the 

lowest Top-1 error at the result of 0.5278% and Top-5 error 

of 0.0079% while MobileNet v2 has the fastest training time 

among the models at 498 seconds (about 8 and a half 

minutes). Other than the MNIST datasets, the study also 
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experimented on CIFAR-10 datasets for further research on 

complex data. 

The addition of factors that may contribute to the inaccuracy 

of the CNN outcomes is based on the research of (Luca et al., 

2019) which studies feature extractions in images for fashion 

product classification. It has been found that misclassification 

may happen due to the lack of feature displays caused by the 

solidity of the colours of the clothing. As well as another 

study based on the analysis of convolutional neural networks 

for image classification from the works of (Neha et al., 2018), 

has been founded that CNN models tend to get confused with 

live-tested objects than static which adds on that the 

complexity of frames from the real-time data are able to cause 

confusion to the network layers. 

II. BACKGROUND 

A. Image Database 

The dataset used for our experiment is Fashion-MNIST 
provided by Zalando Research and is open for public 
download on Kaggle.com or GitHub.com. The Fashion-
MNIST dataset consists of approximately 70,000 images of 
fashion products with 28x28 grayscale images of 10 distinct 
fashion labels. The labels include T-shirts/tops, trousers, 
pullovers, dresses, coats, sandals, shirts, sneakers, bags, and 
ankle boots. A dataset of 70,000 images was divided into two 
parts, with 60,000 images used as training data. The remaining 
10,000 images were utilized as testing data for evaluating the 
accuracy of the trained model (Yamazaki, 2018; Zalando 
Research, 2020).  The dataset is widely used in the 
AI/machine learning community to build and test computer 
vision models. It can also be used to benchmark the 
performance of various AI algorithms. The Google Collab 
platform will be utilized in our experiment. To enable easy 
access to the downloaded dataset, the dataset is loaded onto 
Google Drive, as both platforms can be integrated alongside 
each other. 

B. Image Classification 

Image classification is a supervised learning problem in 
which defines as a collection of target classes (entities to 
recognize in pictures) and training models to identify them 
using labelled images. A classification algorithm uses an 
image as input and predicts which class it belongs to 
depending on its features (Papers with Code, 2011; Google, 
2022). Artificial Neural Networks (ANNs) are limited in their 
ability to handle spatial structures, making CNNs a preferred 
method for image classification. In image classification, 
ANNs treat each pixel independently, hence resulting in poor 
spatial reasoning results. CNNs are composed of 
convolutional layers that extract features like edges and 
textures; pooling layers and then down sampling the feature 
maps to improve detail captures. To perform the final 
classification, the fully connected layer flattens the spatially 
organized feature maps, considering the spatial arrangement 
of the features. By backpropagating through shared-weight 
convolutional layers, overfitting can be reduced and efficiency 
increased. As a result, CNNs can detect patterns, recognize 
relevant features, and exploit spatial redundancy while 
requiring fewer parameters (Meel, 2022; Sharma, 2023). 
When it comes to challenging tasks like image classification, 
CNN outperforms ANN. Therefore, fashion classification 
tasks can benefit from CNNs despite requiring substantial 

training data due to the high number of parameters and high 
computational power.   

III. ALGORITHMS AND APPROACHES 

A. Artificial Neural Network 

Neural networks, also known as artificial neural networks 

(ANNs), are a subclass of machine learning that serves as the 

basis for deep learning approaches. With pre-trained image 

datasets downloaded from Zalando's article images, the ANN 

method was used to help Fashion MNIST classify the images. 

The source code used in this research belonged to mrdbourke 

from Github and was written in Python. The design was 

influenced by the way organic neurons communicate with 

one another in the human brain (IBM, n.d.). 

 

 
Fig. 1. Architecture of artificial neural network 
 

An input layer, one or multiple hidden layers and an output 

layer make up the node layer of an ANN as shown in Fig 1 

(Upadhyay, 2023). Each node in ANN is interconnected with 

a weight and threshold. A node is activated and contributes 

data to the uppermost layer of the network if its output 

exceeds the defined threshold value (IBM, n.d.). If the output 

does not exceed the defined threshold value, data will not be 

sent to the network's next tier. To develop and improve 

accuracy over time, training data is crucial for neural 

networks. 

 

In this research, the ANN algorithm was used to train 

various fashion apparel from the dataset and classify using 

attributes that were the same in each image. The training 

results were produced as a table to display the accuracy, loss 

and training time level after 5 epochs for each batch of 

images.  A confusion matrix is also used to see the accuracy 

of the result of the training. 

B. Convolutional Neural Network 

 
 
Fig. 2. Architecture of convolutional neural network 
 

Convolutional Neural Network (CNN) is a type of Artificial 

Neural Network that focuses on processing data for two-
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dimensional graticule images. CNN is composed of multiple 

mathematical operations, known as the convolution layers 

which have specialized linear operations. In a digital image, 

every feature represents a pixel value that is stored in a two-

dimensional (2D) grid, or array of numbers. To extract the 

optimizable feature, a small grid of parameters called the 

kernel is applied at each image position as shown in Fig 2 

(Yamashita et al., 2018). The input data that needed to be 

trained by the CNN model's architecture will be implemented 

with weights and biases. This is to differentiate different 

elements of the images to make them stand out from one 

another. The output of the CNN model is known as feature 

maps that are shown in arrays. This makes CNNs extremely 

effective for image processing (Saha, 2018). 
This study aims to use CNN algorithm model to uncover 

key information in image data of the clothing image datasets 

by processing images, performing classification, 

segmentation and object recognition. To achieve this 

objective, the CNN model was given many clothing images 

prepared by Zalando research to identify the numerous 

patterns present in each image and adjust the bias and weight 

of the nodes. The RGB colour of the photos is first turned into 

grayscale to simplify algorithms and as well eliminate the 

complexities related to computational requirements, and then 

the image representations are chosen and altered to facilitate 

the training process (isahit, n.d.). Convolutional, pooling and 

totally connected layers are the three layers that will be 

employed in CNN. These levels each apply a different 

operation to the incoming data. Features from the input image 

are extracted using filters. Feature extraction and 

classification must be done to meet the research’s goal. The 

totally interconnected layer collects information from feature 

maps and produces the final categorization (Kadam et al., 

2020). 

C. TinyVGG 

Convolutional neural networks (CNNs) that are used for 

image processing and computer vision employ a sort of 

architecture called TinyVGG. It is a scaled-down version of 

the conventional deep CNN architecture, the VGGNet, which 

has many layers (Boesch, n.d.). The goal of TinyVGG is to 

be more effective than the original VGGNet while 

maintaining its strength for a variety of application scenarios. 

Convolutional layers in the TinyVGG design are completely 

linked, which means that each neuron is coupled to every 

other neuron in the layer below (CNN Explainer, n.d.). 

Multiple convolution layers are stacked in the architecture, 

however in shallow TinyVGG, just two sets of four 

convolution layers are typically included. One of TinyVGG's 

key qualities is the utilisation of all 3x3 filters (Sucky, 2023). 

 

According to CNN Explainer (n.d.), the characteristics 

that distinguish different images from one another in the 

convolution layers are extracted by the learnt kernels 

(weights) to form the basis of CNN. It will show connections 

between the convolutional layer and the preceding layers as 

working with the convolutional layer. The output or 

activation map of the current convolutional neuron is 

produced by the convolution process using a unique kernel 

that is represented by each connection. (CNN Explainer, 

n.d.).  The previous layer and a distinct kernel are combined 

in an element-wise dot product by the convolutional neuron 

to produce an appropriate neuron. These distinct kernels will 

provide an equal number of intermediate outcomes. The total 

of all the intermediate findings plus the learnt bias yields the 

convolutional neuron. (CNN Explainer, n.d.).  

Hyperparameters inside the convolutional layers are included 

below. 

1. Padding is often necessary when the kernel extends 

beyond the activation map. It enables an 

architectural designer to create deeper networks by 

maintaining the spatial scale of the input. Padding 

will add a border at the boundaries of activation 

maps, leading to superior productivity. (CNN 

Explainer, n.d.). 

2. Kernel size, also known as the filter size, refers to 

the dimensions of the sliding window over the input. 

The image classification job is significantly 

impacted by the choice of this hyperparameter. For 

instance, lower kernel sizes can extract from the 

input a substantially greater amount of data 

including extremely local characteristics. A lower 

kernel size also results in a lesser drop in layer 

dimensions, allowing for a deeper architecture. 

However, a high kernel size extracts less data, which 

causes a rapid drop in layer dimensions and 

frequently results in lower productivity. Larger 

features can be extracted more effectively from big 

kernels. (CNN Explainer, n.d.). 

3. Stride value specifies how many pixels the kernel 

should move over each time. For instance, Tiny 

VGG employs a stride of 1 for its convolutional 

layers. This implies that the dot product is done on a 

3x3 window of the input to generate an output value, 

then is moved to the right by one pixel for every 

subsequent operation. Like kernel size, stride 

influences a CNN. More features are learnt when the 

stride is shortened since more data is extracted, 

which also results in larger output layers. (CNN 

Explainer, n.d.). 

Following that, the neural network will be developed 

layer by layer by stacking hidden layers one after another 

thanks to the model's sequential routing of its layers. The 

deep neural network was altered using the sequential 

technique in order to improve task recognition and execution. 

A flattening layer, a dropout layer that prevents model 

overfitting, and a dense layer that acts as the output layer and 

uses ReLU as the activation function to aid with multi-class 

classification were the layers’ parameters of the model. 

Lastly, the entire process will be compiled and trained to 

evaluate the model’s performance. The loss and accuracy will 

be indicating the model’s performance. 

IV. ALGORITHMS IMPLEMENTATION 

A. Purpose 

The raw clothing images are usually too large for the neural 

network to compute. As mentioned above, the amount of 

computation time and resources are abundant amount. Hence, 
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CNN’s mechanism of convolving and pooling the data while 

transforming the data into a smaller set of tensors. This saves 

a large amount of time by reducing the number of inputs for 

the neural network which indirectly decreases the 

computation resources maintaining the accuracy. As a result, 

more resources for the experiment could be spent at the focus 

of other aspects. 

B. Environment Setup 

With the dataset of clothing images from Zalando research, 

the problem is approached with a model that is structured 

with two two-dimension convolutional layers. The model is 

programmed in Python which is mentioned in the section 

above. As Google Colab provides cloud resources, the model 

will be trained through its provided Cuda GPU and if not the 

virtual machine’s CPU. In this experiment, the GPUs are 

available as shown in Fig 3. By using the same hardware with 

identical specifications, the factor of the inconsistent model 

performance to hardware issues could be negligible. Thus, the 

environment for experimentation regarding the model is 

better. 

 

 
Fig. 3.  Google Colab GPU specification 

 

C. Model Structure 

In this scenario, the TinyVGG architecture will be 

implemented for CNN. This structure could be achieved with 

the help of the Pytorch library which consists of the functions 

that are needed for this experiment. The layers of convolved 

data will be passed into the pooling layers. Since the MaxPool 

algorithm is used, the largest value along the matrix with a 

size of two by two will be picked out to make the feature map. 

This eventually creates a more abstract version of the feature 

by acquiring the necessary data. Hence, it will result in using 

more reasonable computation resources. 

In the neural network, every node will have the function 

to determine the transmission of signal over the other nodes 

by a threshold. This function is known as the activation 

function. In this CNN, the activation function used is the 

rectified linear unit function (ReLU). The visualization of the 

graph is plotted as Fig 4. As output, the input will range from 

0 to the input value provided it is positive. The function 

provides a range of positive outputs that is proportionally 

different and not all near zero-values that is seen in other 

activation functions such as the Sigmoid Function. As long as 

the output is not 0, the nodes transmit the next signal. Aside 

from this, the other aspects such as epochs, learning rate, 

pooling layer, loss function and optimizer function. 

 
Fig 4. ReLU function. 

 

D. Parameters and Functions Modified 

As the default model for comparison, several parameters 

remain constant unless the parameter or function is being 

experimented on. To note, the default model is set to have a 

3 epoch, batch size of 32, learning rate of 0.1 with MaxPool 

function for pooling layer, CrossEntropyLoss for loss 

function and SGD as optimizer function. 

Epochs are known as the number of times that the model 

has forward pass and backpropagated the data through the 

model. If a training sample is a thousand in size, one epoch is 

the parameter to measure the amount of per forward pass and 

backward propagation for all 1000 samples.  In this process, 

the training data will be trained on the network. Which 

theoretically let the performance of the model increase after 

each epoch. In the experiment, different numbers of epochs 

will be used to verify the amount of difference in training loss 

and accuracy differs. 

Having many epochs may potentially increase the 

performance of the model. The downside to this is that the 

computation power needed to process all training samples in 

one iteration is enormous. Hence, the role of another 

parameter which is batch size may solve this. The batch size 

refers to the number of samples that are used for one iteration. 

If the total training sample is a thousand in total, a 500-batch 

size will take two iterations to finish one epoch. By that, a 

few batch sizes will have experimented with a constant epoch 

of 3 in this test. 

Another layer of the model for feature extraction includes 

the pooling layer. The former pooling layer is MaxPool which 

extracts the max value out of the feature map. This function 

takes the value that is max out of the pool size matrix. For the 

experiment, the pooling layer will be formed using the 

AveragePool function. This function will eventually take the 

average value of the pool.  

After having the features extracted in the pooling layer, 

the loss function comes to play to evaluate the overall 

accuracy loss of the model. Based on the loss function, an 

overall loss will be calculated between the output and 

targeted value. In the default model, the cross-entropy loss 

function is used. In the experiment, other loss functions such 

as MultiMarginLoss and NLLLoss functions will be used. 

The learning rate is the amount that the optimizer adjusts 

the weights of the model. This parameter is constant when 

paired with optimizer functions such as SGD which is in the 
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default model. The smaller learning rate could mean that the 

model converges in small steps but could end up in local 

minima. Hence, different learning rates are used in the 

experiment. 

Lastly, the optimizer function plays the role to tune the 

weights to optimize the model. In the default model, SGD is 

used as it works with a constant learning rate. In the 

experiment, the Adam optimizer function will be used. As 

this optimizer uses an adaptive learning rate as time goes by, 

it will be able to optimize the model without being stuck in a 

local minimum. 

V. RESULT AND DISCUSSION 

After changing different parameters, we obtain all the 

results of the parameters. We collect all the training loss, 

training accuracy, testing loss, testing accuracy and time to 

compare the parameters. 
TABLE I shows the result of using different optimizer. 

There are two different optimizers, one is SGD optimizer and 
another one is Adam optimizer. Comparing the training loss 
and accuracy, we can notice that the result of SGD optimizer 
is much better than Adam optimizer. The training accuracy of 
the Adam is only 9.79% which is very low. It means that SGD 
optimizer is more effective to minimize the training loss and 
improve the model accuracy during training. Comparing the 
testing loss and accuracy, the result of SGD optimizer is also 
better than Adam optimizer. Regarding the time, time used by 
SGD optimizer is a bit lower than Adam optimizer. Based on 
the observations, we can conclude that in this dataset by using 
TingVGG architecture, SGD optimizer performs better than 
Adam optimizer in terms of both training and testing. 

TABLE I.  RESULTS OF DIFFERENT OPTIMIZER 

Optimizer Training 
loss 

Training 
Accuracy 

Testing 
loss 

Testing 
Accuracy 

Time 
(seconds) 

SGD 0.32377 88.29% 0.33105 87.92% 40.085 

Adam 2.31583 9.79% 2.31064 10.00% 42.254 

 

TABLE II shows the results of using different loss functions. 
From the result, we can notice that different loss functions 
have different loss, accuracy, and time to train. The result 
shows that the MultiMarginLoss is the is better than 
CrossEntropyLoss function and NLLLoss function. It has the 
highest accuracy and lowest loss. CrossEntropyLoss and 
NLLLoss have similar model accuracy, but CrossEntropyLoss 
has a lower accuracy and a higher loss. By comparing the time, 
we notice that CrossEntropyLoss takes the shortest time, 
which is 133.081 seconds. The second is the MultiMarginLoss 
function, it takes 333.40 seconds. NLLLoss function has the 
longest training time among the three loss functions. In 
conclusion. We can conclude that if the purpose of achieving 
the highest accuracy, NLLLoss performs better than the two 
functions. If a good balance between accuracy and training 
time function is needed, CrossEntropyLoss and NLLLoss can 
be the option. 

TABLE II.  RESULTS OF DIFFERENT LOSS FUNCTION 

Loss Function Model 
Loss 

Model 
Accuracy 

Time 
(Seconds) 

CrossEntropyLoss 0.32341 88.64& 133.081 

MultiMarginLoss 0.0336 99.67% 333.40 

NLLLoss 0.2578 90.58% 438.27 

 

 TABLE III shows the result of using different batch sizes. 
There are three different batch sizes, which are 8, 32, and 128. 
Based on the table, we can notice that the loss will become 
lower if we change the batch size from 8 to 32 but increase a 
bit when we change the batch size from 32 to 128. Besides 
that, the accuracy of the training and testing also increases 
when we change the batch size from 8 to 32 and decreases 
when we change the batch size to 128. For overall accuracy 
and loss, batch size 32 has a better performance. For the time 
taken, increasing the batch size will decrease the time. This is 
because larger batch sizes only require fewer iterations to 
process the whole dataset. Therefore, it will increase the speed 
of training and decrease the time for training. 

TABLE III.  RESULTS OF DIFFERENT BATCH SIZE 

Batch 
Size 

Training 
Loss 

Training 

Accuracy 

Testing 
Loss 

Testing 
Accuracy 

Time 
(Seconds) 

8 0.35989 86.81% 0.35696 86.77% 76.311 

32 0.32362 88.23% 0.32483 88.47% 48.381 

128 0.39404 85.80% 0.37490 86.82% 32.522 

 

 TABLE IV shows the result of using different epochs. 
There are three different epochs, which are 1, 3 and 21. Based 
on the table, we can notice that when the number of epochs 
increases, the training loss and testing loss will decrease. 
Besides that, we also notice that when the number of epochs 
increases, the accuracy of the result also increases, but from. 
Based on the observations, it indicates that more epochs will 
decrease the loss and increase the accuracy. Therefore, more 
epochs allow the model to optimize and fit the training data 
better. In terms of the training time, we notice that the time 
will increase when the number of epochs increases. It is 
because more epochs require more iterations over the training 
data. Therefore, it will require longer training time and 
increase the time. 

TABLE IV.  RESULTS OF DIFFERENT EPOCHS 

Epochs Training 
Loss 

Training 
Accuracy 

Testing 
Loss 

Testing 
Accuracy 

Time 
(Seconds) 

1 0.59329 78.43% 0.37961 86.37% 14.180 

3 0.31741 88.59% 0.31458 88.82% 53.098 

21 0.22457 91.80% 0.28633 89.91% 300.709 

 

 TABLE V shows the results of different learning rates. 
From the table, we can notice that the training loss will 
decrease when the learning rate increases. This is due to the 
reason that a higher learning rate can help the model converge 
faster. Therefore, it will have a lower training loss. Regarding 
the accuracy of the model, it shows that the result is like the 
loss, which means when the learning rate increase, the 
accuracy of the model will also increase. This implies that the 
higher learning rate can help the model generalize better to the 
data. In term of the training time, it shows that the training 
time increases when the learning rates increases. This is 
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because higher learning rates can cause the model to converge 
faster, but it requires more iterations. Therefore, it will cause 
the training time to become longer. 

TABLE V.  RESULTS OF DIFFERENT LEARNING RATE 

Learnin
g Rate 

Trainin
g Loss 

Training 
Accurac
y 

Testin
g loss 

Testing 
Accurac
y 

Time 
(Seconds
) 

0.001 0.60513 78.10% 0.6194
0 

76.78% 105.216 

0.01 0.34034 87.80% 0.3598
6 

87.41% 113.379 

0.1 0.26431 90.29% 0.2979
6 

89.45% 106.413 

 

 TABLE VI shows the results of using different pooling 
layers. From the table, we notice that the loss for both pooling 
layers is quite similar. Regarding the accuracy of the model, 
we also notice that the accuracy for both Maxpool2d and 
Avgpool2d is also relatively similar with an insignificant 
difference of <1%. Both pooling layers are suitable for this 
model since they improve generalizability and produce high-
accuracy results while reducing loss effectively, but 
Maxpool2d requires slightly more training time than 
Avgpool2. This is likely due to the different computational 
requirements of the two pooling layers. In conclusion, we can 
deduce that both Maxpool2d and Avgpool2d show 
comparable performance in terms of loss and accuracy. 
However, Maxpool2d training time will be slightly longer 
than Avgpool2d by approximately 9 seconds. 

TABLE VI.  RESULTS OF DIFFERENT POOLING LAYER 

Pooling 
Layer 

Trainin
g Loss 

Training 
Accurac
y 

Testin
g Loss 

Testing 
Accurac
y 

Time 
(Seconds
) 

Maxpool2
d 

0.32373 88.21% 0.3256
6 

88.42% 50.361 

Avgpool2
d 

0.33087 87.95% 0.3307
1 

87.78% 41.623 
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