
Journal of Applied Technology and Innovation (e -ISSN: 2600-7304) vol. 6, no. 1, (2022) 30

Docker container python IDE

Youssef Ehab Gamaledin

School of Computing

Asia Pacific University of Technology

& Innovation (APU)

Kuala Lumpur, Malaysia

TP047161@mail.apu.edu.my

Lee Kim Keong

School of Computing

Asia Pacific University of Technology

& Innovation (APU)

Kuala Lumpur, Malaysia

kimlee@staffemail.apu.edu.my

Imran Medi

School of Computing

Asia Pacific University of Technology

& Innovation (APU)

Kuala Lumpur, Malaysia

imran.medi@staffmail.apu.edu.my

Abstract—Current IDEs consumes a high amount of disk

memory while having poor usability. This project focuses on

developing a browser-based Python IDE with a friendly and

non-complex user interface developed based on their feedback.

Whilst consuming less disk memory by using Docker containers.

Keywords—Python, integrated development environment,

docker, user interface, disk storage, code editor, file viewer,

compiler, debugger

I. INTRODUCTION

The Docker container Python Integrated Development
Environment (IDE) project is about developing and designing
a browser-based Python IDE using Docker Containers. The
development of the Python IDE engages the integration of
various utilities, components, and tools. For an uncomplicated
development, integration, and maintenance of the Python IDE,
it will be broken into five main components. The five
components of the IDE are; user-interface, code editor, files
view, compiler, and debugger. After developing the Python
IDE, a docker image will be created and uploaded to the
Docker container registry. Docker containers are isolated
software packages, which bundle their configurations,
libraries, and software. Docker is a platform that operates a
virtual operating system level to deliver containers.

II. PROBLEM STATEMENT

Various Python IDEs have common essential components
such as; user-interface, code editor, files view, compiler, and
debugger [1]. These essential components are adequate to
construct a powerful Python IDE. Nevertheless, the most
powerful Python IDEs from well-reputed organisations have
several limitations, which may contribute to a bad experience
for the users.

A major limitation in most of the Python IDEs is their
unfriendly user interface and complex structure. A clogged
structure does not satisfy the user and can increase the churn
rate. It may also delay the code development and rise
confusion for the user. Furthermore, some of the modern
Python IDEs contains outdated graphics that might be misled
or misunderstood. Novice programmers find most IDE’s user
interface complex to understand [2]. Nowadays, Python IDEs
should be perfectly balanced between having a friendly user
interface and having a powerful development environment; to
ensure the best possible experience for both novice and expert
programmers. The user interface should have an organised
structure that downturn any confusion and get the user straight
to code development.

One of the noteworthy limitations in current Python IDEs
is their consumption of storage disks [2]. Most Python IDEs
consume an enormous amount of disk memory [3]. For
example, Microsoft Visual Studio 2019 consume 4GB for its

community version [4], and 10GB for its enterprise version
[4]. JetBrains’ PyCharm consume approximately 3.5GB of
disk memory [5]. As a result, the computer’s speed is
decelerated.

Thus, the problem statement can be summarized as that
most Python IDEs have poor usability while consuming a
large amount of disk storage.

III. LITERATURE REVIEW

As mentioned before the five main components of the
Python IDE are; User interface, Code editor, Files view,
Compiler, and Debugger. The user interface is the biggest
component among the five, as it characterizes how friendly
and noncomplex the user interface of the Python IDE is. The
code editor is the crucial and complex component, as this is
the main interaction between the user and the Python IDE. The
files view enables efficient project management related to the
project files organisation. The compiler for building and
running the code. The Debugger to perform a debugging
process on Python scripts. These five components are the
minimum requirements for the Python IDE.

A. Docker

Docker is a tool that enables us to quickly deploy
applications in a sandbox for execution on the host operating
system [6]. Sandboxes are containers that provide a logical
packaging approach for abstracting applications from their
actual running environment [7]. Due to this decoupling,
container-based applications are deployed with ease and
consistency. Eventually, containers lead to increased
efficiency, which results in better utilisation of computer’s
resources [6]. There are various alternatives to Docker, for
example, Hyper-V containers [8], LinuxContainers [9], and
rkt [10]. So what makes Docker the best choice in
containerising the Python IDE?

• Provides application packaging, together with all of its
dependencies, into a standardised unit for better utilisation
[7],

• Offers a low overhead, allowing for more efficient usage
of the underlying system and resources [7], and

• It runs containers without a hypervisor, an emulator that
generates and execute virtual machines, making it portable
and lightweight [7].

Docker operates as follows:

a) A dockerfile is created which includes the necessary
software to run the Python IDE,

b) A Docker image will be built from the dockerfile.
Docker images are the application’s blueprint that
serves as the foundation for containers.

mailto:TP047161@mail.apu.edu.my
mailto:kimlee@staffemail.apu.edu.my
mailto:imran.medi@staffmail.apu.edu.my

Journal of Applied Technology and Innovation (e -ISSN: 2600-7304) vol. 6, no. 1, (2022) 31

c) A Docker container is created to run the Docker

Image.

 The interaction with the operating system will be through
Docker’s background service, Docker daemon [7].
Eventually, the Python IDE’s docker image will be uploaded
to the Docker registry, which is a repository for Docker
images.

B. User Interface

Trachsler [11] stated that when designing a user interface

for an IDE, an important matter is to keep visual elements at

a minimum; providing only the essential functions.

According to him, a self-describing user interface is crucial

to allow users to use the IDE without any detailed

instructions. On the other hand, Staub [12] emphasized that

since all browsers are now resizable, the user interface should

be auto adjustable to fit the browser’s width. Additionally,

she added that the code editor and the files view should be

resizable by the user to match their preferences.

C. Code Editor

This is the crucial component, where all the interactions

between the user and the Python IDE go through. Thus, the

following features are important for the code editor; line

numeration, syntax highlighting, error line highlighting,

automatic indentation, and automatic closing brackets or

braces [11]. Additionally, another important feature is the

ability to highlight the same variable’s names when one of

them is clicked on or highlighted [13]. Both Trachsler [11]

and Staub [12] have stated that the following are the best

browser-based open-source code editors: 1) Ace; 2)

Codemirror (v6.0) [15]. The Ace is a stand-alone JavaScript

code editor while Codemirror is a versatile in-browser code

editor. Comparisons between them have been carried out in

Table I.

TABLE I. CODE EDITOR COMPARISONS

Code Editor Advantages Disadvantages

Ace

(v1.4)
− Compatible with

other libraries [12],

and

− Edit and load large

files rapidly [11].

− Berkeley Software

Distribution licenses

[14], and

− Support only new

versions of browsers

[14].

Codemirror

(v6.0)

− Excellent

documentation, and

− Multiple content

manipulation

methods.

− Text-area-based, not

a complete code

editor, and

− L2 code quality,

which only ensures
that the interfaces are

clean.

Codemirror is chosen over Ace because of its better

documentation, which will support its integration with the

Python IDE. Moreover, because of its content manipulation

methods, which will provide better options in the design

phase.

D. Files View

Files view are a bullet-point view of files uploaded or
created by the user. It enables observation of project files for
the user to operate over them. According to Staub [12],
developing a web-based files view with JavaScript is
recommended for better manipulation of files. Staub [12] have

explained how to create the files view component with
JavaScript in five steps:

a) Create an event listener for an event of a change to
the HTML element “<input>”.

b) Filter files selected to allow files only ending with
“py”.

c) Instantiate JavaScript FileReader to read the files
allowed.

d) A Files List is created to store the files.

e) Any existing files in the files list before the event of
change is removed and the editor is cleared.

E. Compiler

Developing a Python compiler from scratch is beyond

the scope of this project. The minimum requirements for a

compiler, apart from compiling code, are as follows;

• If an error is found by the compiler it should abort

the build [13],

• When an error is found, the compiler should be able

to track the name of the file where the error exists

[13],

• The compiler should provide error messages that are

easily comprehended [16], and

• The compiler should be quick so that the result can

be advantageous [13].

Therefore, an analysis is carried out, as shown in Table II,

to compare available Python in-browser compilers. To

develop the Python IDE upon the one that suits the scope of

this project. Brython [18], PyPy.js [19], Skulpt [20],

Transcrypt [21], and Pyodide [22] are the available open-

source Python in-browser compilers to choose from [17].

TABLE II. IN-BROWSER COMPILER COMPARISON

Compiler Description Advantages Disadvantages

Brython

Brython is a

client-side
Python

interpreter, it

replaces
JavaScript

with Python.

− Only 500kB

in size, with a
build-in

DOM, and

− Provides

bindings

customization
to browser

API.

− Poor

documentation
, and

− Lacks

development

tools,

compared to
the other

compilers.

PyPy.js Consists of a
PyPy Python

compiler,

compiled in

JavaScript.

− Provides a

rapid and

compliant

environment

for Python

development,

and

− Features a

Just-In-Time
compiler.

− 12MB in size,

and

− Limited built-

in Python

modules.

Skulpt A JavaScript

client-side
Python

interpreter.

− Supports

asynchronous
programming

, and

− It is 950kB in

size.

− Specifically

for small
Python

programs, and

− Short

documentatio

n.

Transcrypt A source-to-

source Python
− Supports

access to any

− Does not

support pure

Python

Journal of Applied Technology and Innovation (e -ISSN: 2600-7304) vol. 6, no. 1, (2022) 32

translator into

JavaScript.

JavaScript

library, and

− Better in

programming

front-end
Python

applications.

libraries like;

“Matplotlib”,

and

− Not the best in

compiling
complex

Python

programs since
it is just a

“transpiler”.

Pyodide Is a Python-to-

WebAssembly
compiler,

browser-based

Python
compiler via

WebAssembly

− Includes

most of

Python’s

popular
scientific

libraries, and

− Just-in-Time

compiler,

which
provides fast

and reliable

compilation.

− Compiler size

increases when

using many

libraries, and

− Development

stopped in
2019.

Pyodide is chosen over the rest of the Python in-browser

compilers; because of its Just-in-Time compiling feature and

transparent object conversion, which ensures quick output,

input, and errors. Additionally, Pyodide includes many of the

important Python’s scientific libraries.

F. Debugger

There are hardly any open-source Python debuggers.

Therefore, the development and integration of a Python

debugger from the compiler are required. Debugging is a

mechanism for discovering software bugs within a program.

Kohn and Manaris [23] added that debuggers are not entirely

for discovering bugs, but also to provide the user with an

observation of the internal state of a compiler when executing

programs. The execution of a debugger is performed by

aligning breakpoints to lines of code, which provide users

with the ability to interrupt their program using specific

conditions [24]. According to Naert, Azhari, and Dagenais

[24], condition checking should be executed in the program

context, which lead to faster condition checking and more

efficient debugging interaction with conditional breakpoints.

The debugger should be visualised to show the program’s

state; variables, lists, functions, and values [23]. Moreover,

Kohn and Manaris [23] have stated that it is crucial to

highlight any relationships in the program’s state; a

relationship between any functions, variables, and objects.

Additionally, according to them, any trace function invocated

should directly update the debugger’s visuals.

IV. SIMILAR SYSTEMS

 The Python IDE is a combination of a novice
programmer’s IDE and an expert programmer’s IDE. It is to
develop one platform that is efficient for all kinds of
programmers. Therefore, in terms of similar systems, we will
be looking at IDEs that are developed for experienced Python
programmers, and IDEs that are developed for Python-
learning programmers.

Codesters is an introductory web-based Python
programming environment, released in 2014 and used for
creating Python programs [25]. The strengths of Codesters
according to Šiaulys [25], is that it supports Python

conditionals, loops, variables, functions, and objects. On the
other hand, Codesters weakness is that it was developed
primarily for education and is not suitable for expert
programmers [26]. WebTigerJython is the web version of
TigerJython, released in 2018 and used for teaching
programming in Python [27]. The strengths of
WebTigerJython according to Schneider [27], is that it
supports Python 3 with two different debuggers; a step-by-
step debugger and a breakpoint debugger. Similarly,
WebTigerJython’s weakness is that it was mainly developed
for teaching programming and is not a platform for expert
programmers [28].

PythonAnywhere is also a web-based IDE, released in
2012 which executes Python and have a command-line
console [29]. According to Sutton and Swickard (2020),
PythonAnywhere provides running Python scripts with data
progressing rapidly and easily. Repl.IT is an online IDE,
released in 2016 which supports Python and other
programming languages [30]. According to Kusumaningtyas,
Nugroho, and Priadana [30], Repl.IT provides the most
popular Python libraries using a friendly user interface with
minimum internet data usage.

V. PROPOSED SYSTEM ARCHITECTURE

The Python IDE’s architecture is demonstrated in this

section along with Docker’s architecture, for a more

comprehensive approach on how the Python IDE operates

using Docker.

A. Docker

 Docker operates using client-server architecture, Docker
client and Docker daemon, both run on the same system. The
Docker client interacts with the Docker daemon to run, build,
and allocate Docker containers. The interactions between the
Docker client and the Docker daemon are fulfilled using
REST API through UNIX socket for macOS and Linux, and
through network interface for Windows operating system [7].
Fig. 1 manifests Docker’s architecture.

Fig. 1. Docker’s architecture [7]

The Docker client is what Docker users usually

communicate with, to send API requests to one or more

Docker daemon. The Docker daemon waits until it receives

an API request to and controls Docker’s networks, images,

and containers. The Docker registry is a public hub, where

images are stored. Docker is fully developed to deliver its

functionalities using the GO programming language, along

with various features of the Linux kernel [7]. For Docker to

run a container, it uses namespace technology to isolate

containers [7].

Journal of Applied Technology and Innovation (e -ISSN: 2600-7304) vol. 6, no. 1, (2022) 33

B. System Design

In this section, the appropriate design methodology is
chosen for a detailed system demonstration. Structured
System Analysis and Design Methodology (SSADM) is
chosen to demonstrate the Python IDE’s system. Therefore,
the context diagram, DFD level 0 and DFD level 1 are
provided below.

Fig. 2. Python IDE’s context diagram

As demonstrated in the Fig 2., Docker will containerise

the Python IDE with the web-worker related. A web-worker

is JavaScript running independently in the background. It is

used to prevent scripts from affecting the performance of the

Python IDE. Once the web worker is created, it will request

the compiler’s script (pyodide.js) from jsDeliver. The

jsDeliver is a Content Delivery Network (CDN), used to

deliver the compiler’s JavaScript to run in the web-worker

independently.

Fig. 3. Python IDE’s DFD Level 0

As demonstrated in Fig 3., the Python IDE is integrated

with four different processes. Code editor, Compiling and

debugging, Folder area, and Utilities. Each process provides

its name function, such as the code editor process provides all

code editor functionalities and features. On the other hand,

the utility process provides different necessary functions and

features, such as changing Python IDE’s mode/theme.

In Fig 4., the Compiling and debugging process is broken

down into its subprocesses. To demonstrate how the process

works internally.

Fig. 4. Python IDE’s compiling and debugging Level 1

The folder area process is decomposed into its

subprocesses in Fig 5. To illustrate how the internal process

operates.

Fig. 5. Python IDE’s folder area Level 1

The code editor process is divided down into its

subprocesses, as shown in the Fig. 6. To demonstrate how the

internal system operates.

Fig. 6. Python IDE’s code editor Level 1

VI. CONCLUSION

Conclusively, in this project, research was conducted to

understand more, find solutions, and discover development

methods to be able to fully develop the Python IDE to achieve

its requirements and objectives. A questionnaire was carried

out to support the designing stage of the Python IDE. To get

feedback from the users about the user interfaces created and

what can be improved, to ensure user-friendly interfaces.

Additionally, to understand what programmers prioritise

Journal of Applied Technology and Innovation (e -ISSN: 2600-7304) vol. 6, no. 1, (2022) 34

when choosing an IDE. The development stage started

shortly after the designing stage.

The code editor and the compiler were chosen to be open-

sourced and integrated with the Python IDE. The user

interface and the files view are to be developed from scratch,

and the debugger is to be developed from the compiler, to

ensure its suitability with the scope of the Python IDE. By

using the Docker container the Python IDE was able to fully

operate using a reduced amount of memory on the disk

storage.

The Python IDE’s system architecture was provided, as

well as the implementation and the integration of its

component for a more comprehended overview. Three types

of testing were conducted in the testing stage to ensure the

quality of the Python IDE and to validate the system. All the

test scenarios in the unit and integration testing have

successfully passed. The User Acceptance Test was very

helpful, as it has discovered a bug regarding the debugger

component which will be fixed in the next minor release,

version 2.1. Additionally, introduced very amazing features

to have in the Python IDE, all of them were noted and

scheduled to be added to the system in the next versions of

the Python IDE. Eventually, in the documentation stage, all

the above stages were documented in an academic writing

manner.

REFERENCES

[1] A. Walker, “What is an IDE (Integrated Development Environment)?
- G2,” 2018. [Online]. Available: https://www.g2.com/articles/ide.

[2] S. Travarca, “Reasons for an Integrated Development Environment,”
VantageOne Software, 2020. [Online]. Available:

https://vantageonesoftware.com/reasons-integrated-development-

environment/.

[3] Singh, “What is Pycharm Ide? what is PyCharm used for?,”

TechGeekBuzz, 2020. [Online]. Available:
https://www.techgeekbuzz.com/what-is-pycharm/.

[4] “Visual Studio 2019 system requirements,” Microsoft, 2019. [Online].

Available: https://docs.microsoft.com/en-
us/visualstudio/releases/2019/system-requirements.

[5] “Install PyCharm,” PyCharm, 2021. [Online]. Available:
https://www.jetbrains.com/help/pycharm/installation-guide.html.

[6] M. Özateş, “Things you need to know about docker to get started,”

Medium, 2020. [Online]. Available: https://medium.com/carbon-
consulting/things-you-need-to-know-about-docker-to-get-started-
565979482a86.

[7] “Why Docker?,” Docker, 2021. [Online]. Available:
https://www.docker.com/why-docker.

[8] F. Stroud, “What are Hyper-V containers?,” Webopedia, 24-May-
2021. [Online]. Available:
https://www.webopedia.com/definitions/hyper-v-containers/.

[9] “Container and virtualization tools,” Linux Containers, 2021. [Online].
Available: https://linuxcontainers.org/.

[10] “Rkt topic page,” Red hat, 2021. [Online]. Available:
https://cloud.redhat.com/learn/topics/rkt.

[11] N. Trachsler, “WebTigerJython - A Browser-based Programming IDE
for Education,” thesis, ETH Zurich, Zurich, 2018.

[12] J. Staub, “xLogo online - a web-based programming IDE for Logo.
Master Thesis,” thesis, ETH Zurich, Zurich, 2016.

[13] N. Mitchell, M. Kiefer, P. Iborra, L. Lau, Z. Duggal, H. Siebenhandl,

M. Pickering, and A. Zimmerman, “Building an Integrated
Development Environment (IDE) on top of a Build System,” IFL, vol.
2, no. 4, pp. 1–5, Sep. 2020.

[14] “The High Performance Code Editor for the web,” Ace. [Online].
Available: https://ace.c9.io/.

[15] “Codemirror,” CodeMirror, 2021. [Online]. Available:
https://codemirror.net/.

[16] A. Henley, J. Ball, B. Klein, A. Rutter, and D. Lee, “An Inquisitive

Code Editor for Addressing Novice Programmers' Misconceptions of
Program Behavior,” thesis, Cornell University, New York, 2021.

[17] Y. Khalid, “Running Python in the Browser,” Yasoob, 2019. [Online].

Available: https://yasoob.me/2019/05/22/running-python-in-the-
browser/.

[18] P. Quentel, Brython, 2021. [Online]. Available: https://brython.info/.

[19] PyPy.js, 2021. [Online]. Available: https://pypyjs.org/.

[20] Skulpt, 2021. [Online]. Available: https://skulpt.org/.

[21] “Python in the browser,” Transcrypt, 2018. [Online]. Available:
https://www.transcrypt.org/.

[22] Pyodide, 2019. [Online]. Available: https://pyodide.org/.

[23] T. Kohn and B. Manaris, “Tell me what's wrong,” Proceedings of the

51st ACM Technical Symposium on Computer Science Education,
2020.

[24] P. Naert, S. V. Azhari, and M. Dagenais, “Interactive and targeted

runtime verification using a debugger-based architecture,” Journal of
Systems Architecture, vol. 115, 2021.

[25] T. Šiaulys, “Modelling the System For Interactive Tasks Development:
Engagement Taxonomy For Introductory Programming Tools,” thesis,
Vilnius University, Vilnius, 2020.

[26] Codesters, 2020. [Online]. Available: https://www.codesters.com/.

[27] J. Schneider, “Design and Implementation of a Graphics Window and
Debugger for WebTigerJython,” thesis, ETH Zurich, Zurich, 2020.

[28] WebTigerJython, 2018. [Online]. Available:
https://webtigerjython.ethz.ch/.

[29] S. Sutton and K. Swickard, “Text mining 101,” The Serials Librarian,
vol. 78, no. 1-4, pp. 3–8, 2020.

[30] K. Kusumaningtyas, E. D. Nugroho, and A. Priadana, “Online
integrated development environment (IDE) in supporting computer

programming learning process during COVID-19 pandemic: A

comparative analysis,” IJID (International Journal on Informatics for

Development), vol. 9, no. 2, pp. 66–71, 2020.

https://www.g2.com/articles/ide
https://vantageonesoftware.com/reasons-integrated-development-environment/
https://vantageonesoftware.com/reasons-integrated-development-environment/
https://www.techgeekbuzz.com/what-is-pycharm/
https://docs.microsoft.com/en-us/visualstudio/releases/2019/system-requirements
https://docs.microsoft.com/en-us/visualstudio/releases/2019/system-requirements
https://www.jetbrains.com/help/pycharm/installation-guide.html
https://medium.com/carbon-consulting/things-you-need-to-know-about-docker-to-get-started-565979482a86
https://medium.com/carbon-consulting/things-you-need-to-know-about-docker-to-get-started-565979482a86
https://medium.com/carbon-consulting/things-you-need-to-know-about-docker-to-get-started-565979482a86
https://www.docker.com/why-docker
https://www.webopedia.com/definitions/hyper-v-containers/
https://linuxcontainers.org/
https://cloud.redhat.com/learn/topics/rkt
https://ace.c9.io/
https://codemirror.net/
https://yasoob.me/2019/05/22/running-python-in-the-browser/
https://yasoob.me/2019/05/22/running-python-in-the-browser/
https://brython.info/
https://pypyjs.org/
https://skulpt.org/
https://www.transcrypt.org/
https://pyodide.org/
https://www.codesters.com/
https://webtigerjython.ethz.ch/

