.IE‘JTI Journal of Applied Technology and Innovation (e -1ISSN: 2600-7304) vol. 6, no. 1, (2022) 30

Docker container python IDE

Youssef Ehab Gamaledin
School of Computing
Asia Pacific University of Technology
& Innovation (APU)
Kuala Lumpur, Malaysia
TP047161@mail.apu.edu.my

Abstract—Current IDEs consumes a high amount of disk
memory while having poor usability. This project focuses on
developing a browser-based Python IDE with a friendly and
non-complex user interface developed based on their feedback.
Whilst consuming less disk memory by using Docker containers.

Keywords—Python, integrated development environment,
docker, user interface, disk storage, code editor, file viewer,
compiler, debugger

l. INTRODUCTION

The Docker container Python Integrated Development
Environment (IDE) project is about developing and designing
a browser-based Python IDE using Docker Containers. The
development of the Python IDE engages the integration of
various utilities, components, and tools. For an uncomplicated
development, integration, and maintenance of the Python IDE,
it will be broken into five main components. The five
components of the IDE are; user-interface, code editor, files
view, compiler, and debugger. After developing the Python
IDE, a docker image will be created and uploaded to the
Docker container registry. Docker containers are isolated
software packages, which bundle their configurations,
libraries, and software. Docker is a platform that operates a
virtual operating system level to deliver containers.

Il. PROBLEM STATEMENT

Various Python IDEs have common essential components
such as; user-interface, code editor, files view, compiler, and
debugger [1]. These essential components are adequate to
construct a powerful Python IDE. Nevertheless, the most
powerful Python IDEs from well-reputed organisations have
several limitations, which may contribute to a bad experience
for the users.

A major limitation in most of the Python IDEs is their
unfriendly user interface and complex structure. A clogged
structure does not satisfy the user and can increase the churn
rate. It may also delay the code development and rise
confusion for the user. Furthermore, some of the modern
Python IDEs contains outdated graphics that might be misled
or misunderstood. Novice programmers find most IDE’s user
interface complex to understand [2]. Nowadays, Python IDEs
should be perfectly balanced between having a friendly user
interface and having a powerful development environment; to
ensure the best possible experience for both novice and expert
programmers. The user interface should have an organised
structure that downturn any confusion and get the user straight
to code development.

One of the noteworthy limitations in current Python IDEs
is their consumption of storage disks [2]. Most Python IDEs
consume an enormous amount of disk memory [3]. For
example, Microsoft Visual Studio 2019 consume 4GB for its

Lee Kim Keong
School of Computing
Asia Pacific University of Technology
& Innovation (APU)
Kuala Lumpur, Malaysia
kimlee@staffemail.apu.edu.my

Imran Medi
School of Computing
Asia Pacific University of Technology
& Innovation (APU)
Kuala Lumpur, Malaysia
imran.medi@staffmail.apu.edu.my

community version [4], and 10GB for its enterprise version
[4]. JetBrains’ PyCharm consume approximately 3.5GB of
disk memory [5]. As a result, the computer’s speed is
decelerated.

Thus, the problem statement can be summarized as that
most Python IDEs have poor usability while consuming a
large amount of disk storage.

I1l. LITERATURE REVIEW

As mentioned before the five main components of the
Python IDE are; User interface, Code editor, Files view,
Compiler, and Debugger. The user interface is the biggest
component among the five, as it characterizes how friendly
and noncomplex the user interface of the Python IDE is. The
code editor is the crucial and complex component, as this is
the main interaction between the user and the Python IDE. The
files view enables efficient project management related to the
project files organisation. The compiler for building and
running the code. The Debugger to perform a debugging
process on Python scripts. These five components are the
minimum requirements for the Python IDE.

A. Docker

Docker is a tool that enables us to quickly deploy
applications in a sandbox for execution on the host operating
system [6]. Sandboxes are containers that provide a logical
packaging approach for abstracting applications from their
actual running environment [7]. Due to this decoupling,
container-based applications are deployed with ease and
consistency. Eventually, containers lead to increased
efficiency, which results in better utilisation of computer’s
resources [6]. There are various alternatives to Docker, for
example, Hyper-V containers [8], LinuxContainers [9], and
rkt [10]. So what makes Docker the best choice in
containerising the Python IDE?

e Provides application packaging, together with all of its
dependencies, into a standardised unit for better utilisation

(71,

e Offers a low overhead, allowing for more efficient usage
of the underlying system and resources [7], and

e It runs containers without a hypervisor, an emulator that
generates and execute virtual machines, making it portable
and lightweight [7].

Docker operates as follows:

a) A dockerfile is created which includes the necessary
software to run the Python IDE,

b) A Docker image will be built from the dockerfile.
Docker images are the application’s blueprint that
serves as the foundation for containers.

mailto:TP047161@mail.apu.edu.my
mailto:kimlee@staffemail.apu.edu.my
mailto:imran.medi@staffmail.apu.edu.my

JE‘JTI Journal of Applied Technology and Innovation (e -1ISSN: 2600-7304) vol. 6, no. 1, (2022) 31

c) A Docker container is created to run the Docker
Image.

The interaction with the operating system will be through
Docker’s background service, Docker daemon [7].
Eventually, the Python IDE’s docker image will be uploaded
to the Docker registry, which is a repository for Docker
images.

B. User Interface

Trachsler [11] stated that when designing a user interface
for an IDE, an important matter is to keep visual elements at
a minimum; providing only the essential functions.
According to him, a self-describing user interface is crucial
to allow users to use the IDE without any detailed
instructions. On the other hand, Staub [12] emphasized that
since all browsers are now resizable, the user interface should
be auto adjustable to fit the browser’s width. Additionally,
she added that the code editor and the files view should be
resizable by the user to match their preferences.

C. Code Editor

This is the crucial component, where all the interactions
between the user and the Python IDE go through. Thus, the
following features are important for the code editor; line
numeration, syntax highlighting, error line highlighting,
automatic indentation, and automatic closing brackets or
braces [11]. Additionally, another important feature is the
ability to highlight the same variable’s names when one of
them is clicked on or highlighted [13]. Both Trachsler [11]
and Staub [12] have stated that the following are the best
browser-based open-source code editors: 1) Ace; 2)
Codemirror (v6.0) [15]. The Ace is a stand-alone JavaScript
code editor while Codemirror is a versatile in-browser code
editor. Comparisons between them have been carried out in
Table I.

TABLE I. CODE EDITOR COMPARISONS

Code Editor Advantages Disadvantages
Ace — Compatible with | — Berkeley Software
(v1.4) other libraries [12], Distribution licenses

and [14], and
— Edit and load large | — Support only new
files rapidly [11]. versions of browsers
[14].

Codemirror — Excellent — Text-area-based, not
(v6.0) documentation, and a complete code

— Multiple content editor, and
manipulation — L2 code quality,
methods. which only ensures

that the interfaces are
clean.

Codemirror is chosen over Ace because of its better
documentation, which will support its integration with the
Python IDE. Moreover, because of its content manipulation
methods, which will provide better options in the design
phase.

D. Files View

Files view are a bullet-point view of files uploaded or
created by the user. It enables observation of project files for
the user to operate over them. According to Staub [12],
developing a web-based files view with JavaScript is
recommended for better manipulation of files. Staub [12] have

explained how to create the files view component with
JavaScript in five steps:

a) Create an event listener for an event of a change to
the HTML element “<input>".

b) Filter files selected to allow files only ending with

py .

¢) Instantiate JavaScript FileReader to read the files
allowed.

d) A Files List is created to store the files.

e) Any existing files in the files list before the event of
change is removed and the editor is cleared.

E. Compiler

Developing a Python compiler from scratch is beyond
the scope of this project. The minimum requirements for a
compiler, apart from compiling code, are as follows;

o If an error is found by the compiler it should abort
the build [13],

e When an error is found, the compiler should be able
to track the name of the file where the error exists
[13],

e The compiler should provide error messages that are
easily comprehended [16], and

e The compiler should be quick so that the result can
be advantageous [13].

Therefore, an analysis is carried out, as shown in Table II,
to compare available Python in-browser compilers. To
develop the Python IDE upon the one that suits the scope of
this project. Brython [18], PyPy.js [19], Skulpt [20],
Transcrypt [21], and Pyodide [22] are the available open-
source Python in-browser compilers to choose from [17].

TABLE II. IN-BROWSER COMPILER COMPARISON
Compiler Description Advantages Disadvantages
Brython Brython is a | — Only 500kB | — Poor

client-side in size, with a documentation
Python build-in , and
interpreter, it DOM, and — Lacks
replaces — Provides development
JavaScript bindings tools,
with Python. customization compared to
to browser the other
APL. compilers.
PyPy.js Consists of a | — Provides a | — 12MB in size,
PyPy Python rapid and and
compiler, compliant — Limited built-
compiled in environment in Python
JavaScript. for Python modules.
development,
and
— Features a
Just-In-Time
compiler.
Skulpt A JavaScript | — Supports — Specifically
client-side asynchronous for small
Python programming Python
interpreter. , and programs, and
— Itis950kB in | — Short
size. documentatio
n.
Transcrypt | A source-to- | — Supports — Does not
source Python access to any support pure
Python

JE‘JTI Journal of Applied Technology and Innovation (e -1ISSN: 2600-7304) vol. 6, no. 1, (2022) 32

translator into JavaScript libraries like;
JavaScript. library, and “Matplotlib”,
Better in and
programming Not the best in
front-end compiling
Python complex
applications. Python
programs since
it is just a
“transpiler”.
Pyodide Is a Python-to- Includes Compiler size
WebAssembly most of increases when
compiler, Python’s using many
browser-based popular libraries, and
Python scientific Development
compiler via libraries, and stopped in
WebAssembly Just-in-Time 2019.
compiler,
which
provides fast
and reliable
compilation.

Pyodide is chosen over the rest of the Python in-browser
compilers; because of its Just-in-Time compiling feature and
transparent object conversion, which ensures quick output,
input, and errors. Additionally, Pyodide includes many of the
important Python’s scientific libraries.

F. Debugger

There are hardly any open-source Python debuggers.
Therefore, the development and integration of a Python
debugger from the compiler are required. Debugging is a
mechanism for discovering software bugs within a program.
Kohn and Manaris [23] added that debuggers are not entirely
for discovering bugs, but also to provide the user with an
observation of the internal state of a compiler when executing
programs. The execution of a debugger is performed by
aligning breakpoints to lines of code, which provide users
with the ability to interrupt their program using specific
conditions [24]. According to Naert, Azhari, and Dagenais
[24], condition checking should be executed in the program
context, which lead to faster condition checking and more
efficient debugging interaction with conditional breakpoints.

The debugger should be visualised to show the program’s
state; variables, lists, functions, and values [23]. Moreover,
Kohn and Manaris [23] have stated that it is crucial to
highlight any relationships in the program’s state; a
relationship between any functions, variables, and objects.
Additionally, according to them, any trace function invocated
should directly update the debugger’s visuals.

IV. SIMILAR SYSTEMS

The Python IDE is a combination of a novice
programmer’s IDE and an expert programmer’s IDE. It is to
develop one platform that is efficient for all kinds of
programmers. Therefore, in terms of similar systems, we will
be looking at IDEs that are developed for experienced Python
programmers, and IDEs that are developed for Python-
learning programmers.

Codesters is an introductory web-based Python
programming environment, released in 2014 and used for
creating Python programs [25]. The strengths of Codesters
according to Siaulys [25], is that it supports Python

conditionals, loops, variables, functions, and objects. On the
other hand, Codesters weakness is that it was developed
primarily for education and is not suitable for expert
programmers [26]. WebTigerJython is the web version of
TigerJython, released in 2018 and used for teaching
programming in Python [27]. The strengths of
WebTigerJython according to Schneider [27], is that it
supports Python 3 with two different debuggers; a step-by-
step debugger and a breakpoint debugger. Similarly,
WebTigerJython’s weakness is that it was mainly developed
for teaching programming and is not a platform for expert
programmers [28].

PythonAnywhere is also a web-based IDE, released in
2012 which executes Python and have a command-line
console [29]. According to Sutton and Swickard (2020),
PythonAnywhere provides running Python scripts with data
progressing rapidly and easily. Repl.IT is an online IDE,
released in 2016 which supports Python and other
programming languages [30]. According to Kusumaningtyas,
Nugroho, and Priadana [30], Repl.IT provides the most
popular Python libraries using a friendly user interface with
minimum internet data usage.

V. PROPOSED SYSTEM ARCHITECTURE

The Python IDE’s architecture is demonstrated in this
section along with Docker’s architecture, for a more
comprehensive approach on how the Python IDE operates
using Docker.

A. Docker

Docker operates using client-server architecture, Docker
client and Docker daemon, both run on the same system. The
Docker client interacts with the Docker daemon to run, build,
and allocate Docker containers. The interactions between the
Docker client and the Docker daemon are fulfilled using
REST API through UNIX socket for macOS and Linux, and
through network interface for Windows operating system [7].
Fig. 1 manifests Docker’s architecture.

docker build :-{-:-: ?{

DOCKER_HOST

Docker daemon

\

Containers }— N W

docker pull - _'

docker run

000
¢

Fig. 1. Docker’s architecture [7]

The Docker client is what Docker users usually
communicate with, to send API requests to one or more
Docker daemon. The Docker daemon waits until it receives
an API request to and controls Docker’s networks, images,
and containers. The Docker registry is a public hub, where
images are stored. Docker is fully developed to deliver its
functionalities using the GO programming language, along
with various features of the Linux kernel [7]. For Docker to
run a container, it uses namespace technology to isolate
containers [7].

JTI Journal of Applied Technology and Innovation (e -1ISSN: 2600-7304) vol. 6, no. 1, (2022) 33

B. System Design

In this section, the appropriate design methodology is
chosen for a detailed system demonstration. Structured
System Analysis and Design Methodology (SSADM) is
chosen to demonstrate the Python IDE’s system. Therefore,
the context diagram, DFD level 0 and DFD level 1 are
provided below.

Docker

Upload, Create, or Delete files—»- ;
Container

Displays current files
Request to Download file—»
Downloads file—

Display file's text
Request folding code-»-
Displays folded code»

|

v

Types bracketbrace-» Reset Worker—»| |
«-Auto closes brackebrace— | Request compiling—»- Deliver
User I Edit file's text—» Request debugging—»- seript
Python IDE |<_Sends output : 1 jsDeliver
<Sends outpu feb-We
Request changes mode-»| A P! Web-Worker | (vodidejs)
5 «-Sends error- . Request
t Display requested mode <—Request input script
Enters input—» Sends input—»

Stop running process—»
Request for input

Displ. ror—|
play

Request debugging of script—-

Request compiling of script-»

Fig. 2. Python IDE’s context diagram

As demonstrated in the Fig 2., Docker will containerise
the Python IDE with the web-worker related. A web-worker
is JavaScript running independently in the background. It is
used to prevent scripts from affecting the performance of the
Python IDE. Once the web worker is created, it will request
the compiler’s script (pyodide.js) from jsDeliver. The
jsDeliver is a Content Delivery Network (CDN), used to
deliver the compiler’s JavaScript to run in the web-worker
independently.

~—Upload, Create, or Delete files— | 1.0 Docker
Container

—Displays current files
Request to Download file———»| poi a0 ‘1

Downloads file

Sends file’s text to auto-save

~Display file's text—————)0
Request folding code - - N
[Displays folded cod
A vil "
—Types bracket/brace - - Code Editor

~=—Auto closes bracket/brace——|

Edit file's text——»!

User

<—Displays debugger's active line——

Request changes mode—s»| 30

[
T _ Utilities
Display requested mode—|

Sends debugger's active line number

40

. Reset Worker—s|
L Entersinput——— = " -

Stop running process—————» : anest

L_Request for input Compiling and [" 40 output
Displays cutput/input/erro debugging | «-Sends error.

Request debugging of script - - «—Request input

—Request compiling of script - Sends il

Web-Worker

T
Deliver Request
script script

JsDeliver
(pyodide.js)

Fig. 3. Python IDE’s DFD Level 0

As demonstrated in Fig 3., the Python IDE is integrated
with four different processes. Code editor, Compiling and
debugging, Folder area, and Utilities. Each process provides
its name function, such as the code editor process provides all
code editor functionalities and features. On the other hand,
the utility process provides different necessary functions and
features, such as changing Python IDE’s mode/theme.

In Fig 4., the Compiling and debugging process is broken
down into its subprocesses. To demonstrate how the process
works internally.

Docker
Container
Displays debugger’s active line

Resets Web-worker

$ Requests compilation
Sends debugger's T ™
active line number Requests debugging
| . Sends output
,

Request to reset web-worker-» 5 < Sends error—
User Request input-

Sends script a
for
o compiling python.js Sends
3 = 3 input
Sends script—>
for

| pa— " . vy
[debugging o
Accepts input
Enters input
Stop running process - «—Pass output to display
Request for input - Pass error (o display Web-Woker
isplavs finput/error—| compile.js
Displays output/input/error- + Pass deabuggers active line.
Request debugging of script -
Request compiling of script—— |

[}
Deliver Request
script seript

jsDeliver
(pyodide js)

Fig. 4. Python IDE’s compiling and debugging Level 1

The folder area process is decomposed into its
subprocesses in Fig 5. To illustrate how the internal process
operates.

—_— Dacker
Uplon, Creste, o Dt s+ 1 Comor

= Displays current files | | Sends fille to download
FolderArea js

User - - -
" | S
Request to Download file

Downloads file

Fig. 5. Python IDE’s folder area Level 1

The code editor process is divided down into its
subprocesses, as shown in the Fig. 6. To demonstrate how the
internal system operates.

10 Docker

Container

Folder Area

-/
Display file's text ﬁ Sends file's text to auto-save
Request folding code————————»| 21

Displays folded code—————»

editorArea js
—Types bracket/brace————»|

|
User

Edit file's text: T

‘ LA\no closes bracket/brace.
D!

isplays debuggers active line.

2.2

codeMirrorjs

|

Fig. 6. Python IDE’s code editor Level 1

VI. CONCLUSION

Conclusively, in this project, research was conducted to
understand more, find solutions, and discover development
methods to be able to fully develop the Python IDE to achieve
its requirements and objectives. A questionnaire was carried
out to support the designing stage of the Python IDE. To get
feedback from the users about the user interfaces created and
what can be improved, to ensure user-friendly interfaces.
Additionally, to understand what programmers prioritise

JTI Journal of Applied Technology and Innovation (e -1ISSN: 2600-7304) vol. 6, no. 1, (2022) 34

when choosing an IDE. The development stage started
shortly after the designing stage.

The code editor and the compiler were chosen to be open-
sourced and integrated with the Python IDE. The user
interface and the files view are to be developed from scratch,
and the debugger is to be developed from the compiler, to
ensure its suitability with the scope of the Python IDE. By
using the Docker container the Python IDE was able to fully
operate using a reduced amount of memory on the disk
storage.

The Python IDE’s system architecture was provided, as
well as the implementation and the integration of its
component for a more comprehended overview. Three types
of testing were conducted in the testing stage to ensure the
quality of the Python IDE and to validate the system. All the
test scenarios in the unit and integration testing have
successfully passed. The User Acceptance Test was very
helpful, as it has discovered a bug regarding the debugger
component which will be fixed in the next minor release,
version 2.1. Additionally, introduced very amazing features
to have in the Python IDE, all of them were noted and
scheduled to be added to the system in the next versions of
the Python IDE. Eventually, in the documentation stage, all
the above stages were documented in an academic writing
manner.

REFERENCES

[1] A. Walker, “What is an IDE (Integrated Development Environment)?
- G2,” 2018. [Online]. Available: https://www.g2.com/articles/ide.

[2] S. Travarca, “Reasons for an Integrated Development Environment,”
VantageOne Software, 2020. [Online]. Awvailable:
https://vantageonesoftware.com/reasons-integrated-development-
environment/.

[3] Singh, “What is Pycharm Ide? what is PyCharm used for?,”
TechGeekBuzz, 2020. [Online]. Awvailable:
https://www.techgeekbuzz.com/what-is-pycharm/.

[4] <“Visual Studio 2019 system requirements,” Microsoft, 2019. [Online].
Available: https://docs.microsoft.com/en-
us/visualstudio/releases/2019/system-requirements.

[5] “Install PyCharm,” PyCharm, 2021. [Online]. Available:
https://www.jetbrains.com/help/pycharm/installation-guide.html.

[6] M. Ozates, “Things you need to know about docker to get started,”
Medium, 2020. [Online]. Available: https://medium.com/carbon-
consulting/things-you-need-to-know-about-docker-to-get-started-
565979482a86.

[7] “Why Docker?,” Docker, 2021.
https://www.docker.com/why-docker.

[8] F. Stroud, “What are Hyper-V containers?,” Webopedia, 24-May-
2021. [Online]. Available:
https://www.webopedia.com/definitions/hyper-v-containers/.

[9] “Container and virtualization tools,” Linux Containers, 2021. [Online].
Auvailable: https:/linuxcontainers.org/.

[10] “Rkt topic page,” Red hat, 2021.
https://cloud.redhat.com/learn/topics/rkt.

[11] N. Trachsler, “WebTigerJython - A Browser-based Programming IDE
for Education,” thesis, ETH Zurich, Zurich, 2018.

[12] J. Staub, “xLogo online - a web-based programming IDE for Logo.
Master Thesis,” thesis, ETH Zurich, Zurich, 2016.

[13] N. Mitchell, M. Kiefer, P. Iborra, L. Lau, Z. Duggal, H. Siebenhandl,
M. Pickering, and A. Zimmerman, “Building an Integrated

Development Environment (IDE) on top of a Build System,” IFL, vol.
2, no. 4, pp. 1-5, Sep. 2020.

[Online]. Available:

[Online]. Available:

[14] “The High Performance Code Editor for the web,” Ace. [Online].
Auvailable: https://ace.c9.io/.

[15] “Codemirror,” CodeMirror, 2021.
https://codemirror.net/.

[16] A. Henley, J. Ball, B. Klein, A. Rutter, and D. Lee, “An Inquisitive
Code Editor for Addressing Novice Programmers' Misconceptions of
Program Behavior,” thesis, Cornell University, New York, 2021.

[17] Y. Khalid, “Running Python in the Browser,” Yasoob, 2019. [Online].
Available: https://yasoob.me/2019/05/22/running-python-in-the-
browser/.

[18] P. Quentel, Brython, 2021. [Online]. Available: https://brython.info/.

[19] PyPy.js, 2021. [Online]. Available: https:/pypyjs.ora/.

[20] Skulpt, 2021. [Online]. Available: https://skulpt.org/.

[21] “Python in the browser,” Transcrypt, 2018. [Online]. Available:
https://www.transcrypt.org/.

[22] Pyodide, 2019. [Online]. Available: https://pyodide.org/.

[23] T. Kohn and B. Manaris, “Tell me what's wrong,” Proceedings of the
51st ACM Technical Symposium on Computer Science Education,
2020.

[24] P. Naert, S. V. Azhari, and M. Dagenais, “Interactive and targeted
runtime verification using a debugger-based architecture,” Journal of
Systems Architecture, vol. 115, 2021.

[25] T. Siaulys, “Modelling the System For Interactive Tasks Development:
Engagement Taxonomy For Introductory Programming Tools,” thesis,
Vilnius University, Vilnius, 2020.

[26] Codesters, 2020. [Online]. Available: https://www.codesters.com/.

[27] J. Schneider, “Design and Implementation of a Graphics Window and
Debugger for WebTigerJython,” thesis, ETH Zurich, Zurich, 2020.

[28] WebTigerJython, 2018. [Online]. Available:
https://webtigerjython.ethz.ch/.

[29] S. Sutton and K. Swickard, “Text mining 101,” The Serials Librarian,
vol. 78, no. 1-4, pp. 3-8, 2020.

[30] K. Kusumaningtyas, E. D. Nugroho, and A. Priadana, “Online
integrated development environment (IDE) in supporting computer
programming learning process during COVID-19 pandemic: A
comparative analysis,” IJID (International Journal on Informatics for
Development), vol. 9, no. 2, pp. 6671, 2020.

[Online]. Available:

https://www.g2.com/articles/ide
https://vantageonesoftware.com/reasons-integrated-development-environment/
https://vantageonesoftware.com/reasons-integrated-development-environment/
https://www.techgeekbuzz.com/what-is-pycharm/
https://docs.microsoft.com/en-us/visualstudio/releases/2019/system-requirements
https://docs.microsoft.com/en-us/visualstudio/releases/2019/system-requirements
https://www.jetbrains.com/help/pycharm/installation-guide.html
https://medium.com/carbon-consulting/things-you-need-to-know-about-docker-to-get-started-565979482a86
https://medium.com/carbon-consulting/things-you-need-to-know-about-docker-to-get-started-565979482a86
https://medium.com/carbon-consulting/things-you-need-to-know-about-docker-to-get-started-565979482a86
https://www.docker.com/why-docker
https://www.webopedia.com/definitions/hyper-v-containers/
https://linuxcontainers.org/
https://cloud.redhat.com/learn/topics/rkt
https://ace.c9.io/
https://codemirror.net/
https://yasoob.me/2019/05/22/running-python-in-the-browser/
https://yasoob.me/2019/05/22/running-python-in-the-browser/
https://brython.info/
https://pypyjs.org/
https://skulpt.org/
https://www.transcrypt.org/
https://pyodide.org/
https://www.codesters.com/
https://webtigerjython.ethz.ch/

