
 Journal of Applied Technology and Innovation (e -ISSN: 2600-7304) vol. 6, no. 1, (2022) 39

A modified artificial bee colony for N-Queens

problem

De Long Sia

School of Computing

Asia Pacific University of Technology

and Innovation (APU)

Kuala Lumpur, Malaysia

TP060810@mail.apu.edu.my

Jin Han Ling

School of Computing

Asia Pacific University of Technology

and Innovation (APU)

Kuala Lumpur, Malaysia

TP059609@mail.apu.edu.my

Kong Zee Xin Emerson

School of Computing

Asia Pacific University of Technology

and Innovation (APU)

Kuala Lumpur, Malaysia

TP061400@mail.apu.edu.my

Zailan Arabee bin Abdul Salam

School of Computing

Asia Pacific University of Technology

and Innovation (APU)

Kuala Lumpur, Malaysia

zailan@apu.edu.my

Sheng Jian Lim

School of Computing

Asia Pacific University of Technology

and Innovation (APU)

Kuala Lumpur, Malaysia

TP056549@mail.apu.edu.my

Abstract— This paper is to solve the N-Queen problems with

the implementation of the Artificial Bee Colony Algorithm. A

modified Artificial Bee Colony algorithm is introduced in this

paper to improve the efficiency and the effectiveness on solving

64-Queens problem. In this paper, a few parameters of the

algorithm are changed and compared to each other during

solving of the N-Queens problem that leads to a better result.

Parameters changed including colony population, trial limit and

shuffle range which directly affect the algorithm; hence a best

parameters combination is found for a 64-Queens problem with

improvement.

Keywords—Artificial Bee Colony, ABC, N-Queens,

Parameter, Complexity, Time taken, Success rate

I. INTRODUCTION

The N-Queen problem is a NP-Complete problem. It is to
place the N number of queens on a chess board that is N x N
size big. When the N number of queens are placed on the N x
N size chess board, they should not be a threat to each other.
Since the queens on the chess board could move either two
horizontal ways, two vertical ways, or two diagonal ways and
hence lead to finding the place for NP-complete problem
sets[1]. The main task is to find a way for the Artificial Bee
Colony (ABC) algorithm to work in a more efficient way in
solving the N-Queen problems when the number of queens
increases on the chessboard.

 This paper will consist of 4 sections. This is the first
section of the paper which includes a literature review of the
topic. Section II is Methods and Material, it is about the ways
to obtain the required materials and algorithm used. Section
III is about the discussion of implementation and explanation
for the results. Section IV is about the conclusion for this paper
and possible future enhancements.

A. Literature Review on Topic

In this paper [2], a comparison is made between using the

ABC algorithm and also the Differential equation to solve the

N-Queen problem. The enhanced convergence speed of basic

is also implemented in the Differential Equation without any

extra supporting functions. Multiple different metrics are

used for comparison such as, Number of function calls, SP-

Success performance conjugation of NFC and SR metrics, the

time taken for the run to be completed on a single N-value

and the SR-success Rate-a metric derivative of NFC. The

results in this paper shows that the modified Differential

Equation has outlined the basic DE. But the ABC algorithm

solves the n-queen problem in a faster and more efficient

way. By using the ABC algorithm, problems that are at the

higher-dimensional level had been solved with a somewhat

lesser number of epochs and also greater success rate.

II. MATERIAL AND METHODS

This section shows the details of how to obtain the

materials and the definition for methods used for solving the

problem.

A. Sources of Material

First of all, the source code is from an open source cloud
storage GitHub[3], the source code is downloaded from there
in java format. Besides that, an IDE NetBeans 8.2 version is
used for easier reading and executing the source code. The
algorithm for solving the N-Queens problem is using ABC as
mentioned.

B. Algorithm Implementation

In the case of this algorithm study, the ABC concept is
used to solve the N-Queens problem. The ABC algorithm is
defined as a meta-heuristic which is also one of the most
recently introduced swarm-based algorithms where it will
simulate the intelligent foraging behaviour of the honey bees
where the honey bees will be based on the resources space
discovered and search for quality food sources.

This algorithm concept is used to solve numerical
problems where the ABC algorithm has successfully applied
into various practical problems to produce an optimal solution
of the particular problem. In this ABC algorithm, every
solution that is in the search space will be having a set of
optimization parameters which is to represent the food source
position. In this case, the number of food sources will be equal
to the number of employed bees[4].

The algorithm uses a set of computational agents as the
algorithm materials which are called “honeybees” to find the

mailto:TP060810@mail.apu.edu.my
mailto:TP059609@mail.apu.edu.my
mailto:TP061400@mail.apu.edu.my
mailto:zailan@apu.edu.my
mailto:TP056549@mail.apu.edu.my

 Journal of Applied Technology and Innovation (e -ISSN: 2600-7304) vol. 6, no. 1, (2022) 40

optimal solution. In this ABC algorithm, the honey bees will
be categorized into three types: employed bees, onlooker bees,
and scout bees. Each type of the bees will be having different
tasks and objectives in order to combine every result to obtain
the final optimal solution. The process of bee advertising,
swarm seeking, and eventually selecting the best known food
source will be the process that is used to search for the optimal
solution. The optimization part of the algorithm will improve
the current bee by choosing a random neighbour bee. The
changes are a randomly generated number of times to try and
improve the current solution[5].

For describing the task for every type of bees, the
employed bees will have the objective to investigate the food
sources that are found, known as the fitness values and sharing
the information with the onlooker bees. The onlooker bees
will be making a decision to choose a food source based on
the value of the food source. This means that the food source
that is having a higher quality will be having a larger
probability of being selected by the onlooker bees. The scout
bees will be finding new random food positions. If they found
a quality food source, it is called the “fitness value” and also
it is associated with its position.

 For describing the usage of the parameters, N size is the
parameter of determining the complexity of the N-Queens
problem as it increases the board size and number of queens.
It is to be compared and relating to the parameters of the ABC
algorithm. The recommended N size is 4, 8, 12, 16 and 40.
Colony population is the total population of every type of bee
in this current colony and it has a direct relation with the
number of food sources since it is defined as the half of the
colony population. A population of 20 is set to default where
it may be well suited for low complexity problems but not for
high complexity. Trial limit is the available time for worker
bees and onlooker bees to improve their carrying solution for
the problem. The limit is predefined and is set to 50 on default
for the use of escape from the local optima solution where the
scout bees will reinitialise the solution when the trial limit is
reached for that particular solution. There is also a predefined
shuffle time range before starting to find the solution to the
problem. It is used for limiting the shuffle time for scout bees
when a bee could not improve their carrying solution within a
trial limit given. This is achieved by getting a random number
in the shuffle range, then the scout bee will randomly swap the
numbers of positions with another on the board, so the process
may repeat on the same position. A recommended range for
shuffle is given from 8 to 20 in the source code but since the
experiment will be using a larger N for problems out of the
range of recommendation.

III. RESULT AND DISCUSSION

This section shows the hardware used on the
implementation and modification on parameters of the
algorithm made along with the explanation for the results.

A. Discussion on Implementation

The implementation is done on a device with Windows 10
operating system using Intel(R) Core(TM) i7-9750H CPU @
2.60GHz 2.59 GHz as central processing unit, 16GB ram
installed and GeForce Nvidia RTX2060 as the graphic
processing unit. One single execution will expect for a 50 time
success finding a 0 conflict solution within 1000 epoch each
time. If the maximum epoch reaches but the solution still

consists of more than 0 conflict then that attempt will be
considered as a failure.

The main focus of N size chosen for the problem is 64 as
it is having an intermediate complexity and improvement can
be easily noticed after modification of parameters. To avoid
other elements from affecting the result, each shuffle range is
tested individually by taking the average result from 10 times
execution while colony population and trial limit are tested
together, then a best configuration will be given for the 64-
Queens problem. Therefore, all recommended N size is
involved in comparison while 64 and 128 will both act as
intermediate complexity and high complexity respectively
while colony population and trial limit testing only carry out
for 64 N size.

 For colony population and trial limit parameters. The
swarm size that was being tested includes 10, 50, 100, 200,
300, 500, and 1000 while the limit comprises 10, 50, 100, 250,
and 500. The ratio between the colony population and number
of food sources is remained the same due to many of the other
studies configured it as number of food sources is the half of
the colony population

For shuffle range parameters, an expectation is made that
the best shuffle range will be around the N size for N-Queens
problem while minimum should be at least 1 time shuffle,
therefore range width is chosen to be 10 for every range class
from 1 to 80. The reason to have 80 is to prove that shuffle
time exceeding N size is no longer beneficial for the
algorithm.

B. Result

TABLE I. TIME TAKEN FOR SHUFFLE RANGE

Shuffle

Range\N
4 8 12 16 40 64 128

1-10 0sec 0sec 0sec 0sec 11.9sec 94.5sec 312.1sec

11-20 0sec 0sec 0sec 0sec 10.1sec 79.7sec 305.7sec

21-30 0sec 0sec 0sec 0sec 9.4sec 69.3sec 292.8sec

31-40 0sec 0sec 0sec 0sec 8.9sec 67sec 291.5sec

41-50 0sec 0sec 0sec 0sec 8.6sec 62.6sec 290.9sec

51-60 0sec 0sec 0sec 0sec 8.7sec 60sec 295.8sec

61-70 0sec 0sec 0sec 0sec 9.1sec 57.2sec 298.1sec

71-80 0sec 0sec 0sec 0sec 9sec 63.6sec 304.2sec

 Table I shows that shuffle range will not be very
significant affecting the quality of the result when the N size
is small since the board is too small and does not require a
large amount of shuffle. If the complexity reaches a point that
shuffle is matter, then the higher the shuffle range is, the lower
the time taken for the algorithm to solve the problem but that
is not the case for too high complexity problem such as 128 N
size for this case. However, it also can conclude that if the
shuffle range is too large than the N size, the time taken will
be higher from 64 N size.

TABLE II. SUCCESS RATE FOR SHUFFLE RANGE

Shuffle

Range\N
4 8 12 16 40 64 128

1-10 100% 100% 100% 100% 99.03% 43.56% 0%

11-20 100% 100% 100% 100% 99.22% 51.20% 0%

21-30 100% 100% 100% 100% 99.61% 56.81% 0%

31-40 100% 100% 100% 100% 99.61% 61.25% 0%

41-50 100% 100% 100% 100% 99.61% 64.69% 0%

 Journal of Applied Technology and Innovation (e -ISSN: 2600-7304) vol. 6, no. 1, (2022) 41

51-60 100% 100% 100% 100% 99.80% 64.92% 0%

61-70 100% 100% 100% 100% 99.22% 67.41% 0%

71-80 100% 100% 100% 100% 99.61% 62.66% 0%

 Table II shows that problems with low complexity where
N size is small do not affect by the shuffle range significantly.
However, problems with too high complexity, modification
on shuffle range also could not make the algorithm successful
to find a solution for the problem such as 128 as the N size.
For a problem which is solvable with current parameters, the
higher the shuffle range is, the higher the success rate for the
ABC algorithm to solve the problem. However, it also can
conclude that if the shuffle range is too large than the N size,
the success rate will be lower.

TABLE III. RESULT FOR COLONY POPULATION AND TRIAL LIMIT

Swarm Size Limit
Average

runtime (sec)

Number of

failures

10

10 103.8 100

50 144.8 81.1

100 131.8 76.6

250 131.5 77.6

500 130.6 76.3

50

10 556.5 100

50 209.2 5.5

100 206.5 3.5

250 194.6 1.8

500 192.7 2.5

100

10 1006.2 100

50 326.3 0.9

100 310.3 0.2

250 310.4 0.1

500 326.8 0.1

200

10 1985.3 100

50 584.8 0

100 541.2 0

250 552.3 0

500 535 0

300

10 926.5 100

50 246.2 0

100 239.5 0

250 234 0

500 246.3 0

500

10 1508.9 100

50 381.7 0

100 430.5 0

250 366.2 0

500 366.4 0

1000

10 3060.1 100

50 685.7 0

100 656.8 0

250 654.5 0

500 656.9 0

 From Table III, it can be concluded that an increase in
colony population can increase performance and decrease as
the number of failures decreases. When the colony population
increases to 200, the number of failures is zero, except for an
extreme limit, which is 10. This shows that all foraging for
one process of different food sources is successful.

 Out of the range of N-queen solutions in epoch.
However, in the process of increasing the colony population,
in addition to the colony population, the time taken has also
increased significantly by 300, where the time taken is similar
to the average. The time taken of the colony population is 10
and 50, but it has a better correlation with them and the result
failed. Therefore, a colony population of 300 was determined

to be the best to set the colony population in this question.
Once the required colony population is reached, that is, 200.
In this case, the increase in colony population will not make
any improvement. Therefore, the optimal setting must be
known to avoid setting a huge value for the cluster size. This
does not help to improve, but only reduces performance.

 The results show that a set of optimal parameters can
be determined to solve the highest N-Queens problem
efficiency and performance, which is when the colony
population is set to 300 and the limit is set to 250. The trial
limit has a significant impact on the size of all clusters when
the value exceeds a certain value. This study is not without its
limitations. Although the optimal group size and limiting
parameters are determined to be the problem after 64, there
are other parameters that can be studied to further reconstruct
the performance of ABC on this problem.

 In the end, by concluding the finding from every
parameter, the most suitable parameter configurations for 64-
Queens problem are given as shown on table IV while others
remained the same as default from the source. Colony
population is set to 300 while the limit is 250 because it is
showing the best performance among others. Shuffle range is
chosen to be 61-69 as it is around the N size of the problem.

TABLE IV. PARAMETER CHANGES

Parameters Default ABC Modified ABC

Colony Population 20 300

Trial Limit 50 250

Shuffle Range 8-20 61-69

 Both of default ABC and modified ABC will be tested as
the same way of parameter testing. The result is shown as table
V at below.

TABLE V. COMPARISON OF ABC

Result
Default

ABC
Modified

ABC
Improvement

Time

Taken
86.8sec 304.7sec -251.04%

Success

Rate
47.32% 100% 111.33%

 From Table V, it can be concluded that the success rate of
finding the global optima solution is increased, while the time
taken is also increased. This is because the greedy selection
from the parameter testing where only the best performance of
parameter chosen. Therefore, further research can be carried
out in the future to get a deep understanding between the
parameter and the performance to balance the time taken and
success rate. However, the success rate is benefit significantly
from the greedy selection where it reaches the maximum
success rate which mean the algorithm will always success to
find a global optima solution.

IV. CONCLUSION

In a nutshell, this paper proposed a modified ABC
algorithm for the 64-Queens problem. The modification of
parameters to the ABC algorithm is impactful for the solution
to get out of local optima and increase the chance of getting
global optima. The modified ABC enhanced the success rate
to be better than the default ABC but required a higher time
taken, which was tested in a specified way. Although it

 Journal of Applied Technology and Innovation (e -ISSN: 2600-7304) vol. 6, no. 1, (2022) 42

required a higher time taken, the result showed that the
improvement of success rate is significant and without failure.
Therefore, further improvement can be made to reduce the
time taken with the same level of success rate.

REFERENCES

[1] CodesDope. “N-Queens Problem.” Backtracking.
https://www.codesdope.com/course/algorithms-backtracking/
[accessed Aug. 20, 2021].

[2] P. N. Sharief & B. S. Saini. “Metaheuristic Techniques On N-Queen
Problem: DE Vs ABC”. International Journal of Applied Engineering
Research, X(55), pp. 4240-4244, 2015. ResearchGate.
https://www.researchgate.net/publication/283092799_Metaheuristic_t
echniques_on_N-Queen_problem_DE_VS_ABC. [accessed Aug. 23,
2021]

[3] jimsquirt. “Java code implementing the Artificial Bee Colony (ABC)
algorithm in solving the N-Queens problem.” GitHub.
https://github.com/jimsquirt/JAVA-ABC [accessed Aug. 30, 2021].

[4] P. Melin et al. “Foundations of Fuzzy Logic and Soft Computing.”
LNAI 4529 ed. Mexico: 12th International Fuzzy Systems Association
World Congress, IFSA 2007, Cancun, Mexico, June 18-21, 2007,
Proceedings. Google Book.
https://books.google.com.my/books?hl=en&lr=&id=daypg0c1t00C&
oi=fnd&pg=PR4&dq=Foundations+of+Fuzzy+Logic+and+Soft+Com
puting&ots=-
DW3XHKb9G&sig=OzNUKfS3iqXq9ZQYZSS2AW1Uass#v=onepa
ge&q=Foundations%20of%20Fuzzy%20Logic%20and%20Soft%20C
omputing&f=false [accessed Aug. 26, 2021].

[5] X.S. Yang. "Nature-Inspired Computation and Swarm Intelligence:
Algorithms, Theory and Applications". Cambridge: Academic Press.
ScienceDirect.
https://www.sciencedirect.com/book/9780128197141/nature-inspired-
computation-and-swarm-intelligence [accessed Aug. 22, 2021].

