.IE‘JTI Journal of Applied Technology and Innovation (e -1ISSN: 2600-7304) vol. 6, no. 1, (2022) 43

Connect-4 using Alpha-Beta pruning with
minimax algorithm

Brenda Lim Geok San
School of Computing
Asia Pacific University of Technology
& Innovation (APU)
Kuala Lumpur, Malaysia
TP055961@mail.apu.edu.my

Zailan Arabee bin Abdul Salam
School of Computing
Asia Pacific University of Technology
& Innovation (APU)
Kuala Lumpur, Malaysia
zailan@apu.edu.my

Abstract — The classic game of Connect-4 is fading from the
face of society, especially with the younger generations due to
the addictive instance of digital games, available anywhere,
hence measures to preserve the continuity of this game lies in the
recreation of the game in the virtual environment. In this paper,
the formulation of a classic Connect-4 games utilizing the
implementation of Alpha-Beta Pruning with Minimax
algorithm is carried out with the objective of modifying its
parameters to determine its influence on the execution of the
game. The parameters involved in the modification process
includes the depth of search and size of board as a small change
of constant can lead to a drastic difference. Minimax algorithm
serves the purpose of enabling the computer (Al) to place its
piece strategically whereas Alpha-Beta Pruning is incorporated
to reduce the size of its search tree. All results pertaining the
changes made have been recorded accordingly and the optimal
constant of parameters are identified, leading to an ideal
execution of the game.

Keywords — Artificial Intelligence (Al), Alpha-Beta Pruning,
Minimax, Connect-4, Optimization

l. INTRODUCTION

With the constant evolution of technology, it comes as no
surprise that what seemed like a brilliant source of
entertainment back then is slowly fading into the background
with a shift towards digital games. The emergence of
computer and mobile games, offering a variety of gaming
genres have taken over the need for physical board games
such as Monopoly, UNO, Connect-4, Scrabbles, etc. Though
some games managed to stay relevant in this day and age,
namely the ones with multiple players option, others fade to
grey. Classic physical games such as Connect-4 and Chess
are slowly losing their place in the society, hence it is
necessary to computerize the core elements of the games to
recreate them in a virtual environment. As such, this would
serve as an effort to preserve the continuity of these games in
the future and hopefully resuscitate the fun and joy it once
bought to the society.

Connect-4 is a classic two-player board game, each
represented by yellow and red pieces respectively on a board
matrix of seven rows and six columns. Players are free to
place their piece alternately at any available positions,
constricted to the six columns by dropping it into their desired

Yap Jia Xin
School of Computing
Asia Pacific University of Technology
& Innovation (APU)
Kuala Lumpur, Malaysia
TP055804@mail.apu.edu.my

Chanpreet Kaur Dhanoa
School of Computing
Asia Pacific University of Technology
& Innovation (APU)
Kuala Lumpur, Malaysia
TP055952@mail.apu.edu.my

compartment. Due to the nature of gravity, the pieces will
always fill in the baseline of the board, eventually building
up to all seven rows. The goal is for the players to
successfully line up four consecutive pieces either vertically,
horizontally or diagonally, hence the game can lead to either
a victory upon accomplishing the task or a draw if none
manages to put forth consecutive pieces. Connect-4 is a
solved game whereby players with the primary move can
guarantee a 100% chance of winning rate if played
accordingly to the winning strategy despite whatever move
placement the opponent lays out [1].

In this paper, we will be exploring how a change in the
parameters of the algorithm, Alpha-Beta Pruning with
Minimax can impact the time taken for a decision to be made
on the placement of pieces, the number of lines analyzed and
its winning rate. The purpose for the implementation of
Minimax is because of its ability to proceed with a decision-
making process whereas Alpha-Beta Pruning is incorporated
to reduce the size of a search tree from unnecessary
exploration [1]. Both algorithms play an essential role
respectively to ensure a successful experiment result.

The following paper is segregated into several sections
and sub-sections whereby section | provides an introduction
to the research topic and a general overview of this paper, and
the aspects of related literature reviews. On the other hand,
section Il focuses on the details of materials and methods
used for the execution of the experiment carried out and Il
describes the implementation of the algorithms mentioned
priorly. Section Il presents the results obtained and its
discussion, explaining our findings for each modified
parameter and lastly, section 1V summarizes a conclusion for
the entire paper.

A lot of researchers had conducted experiments to analyze
the performance of the Alpha Beta Pruning algorithm in
Connect Four Prototype. Several algorithms such as MTD(f)
and Scout algorithm were involved to make comparison. The
researchers have also compared the behavior of the algorithm
in parallel and sequential implementation.

Heuristic algorithm with influence mapping was
implemented to study how to play Connect Four Game with
artificial intelligence [2]. The Connect Four application was

mailto:TP055961@mail.apu.edu.my
mailto:zailan@apu.edu.my
mailto:TP055804@mail.apu.edu.my
mailto:TP055952@mail.apu.edu.my

JE‘JTI Journal of Applied Technology and Innovation (e -1ISSN: 2600-7304) vol. 6, no. 1, (2022) 44

run on Windows platform and the language used was C++.
The improvements made to the game where the timer can be
applied optionally depends on the player. Secondly, the new
version of Connect Four in this paper allows the user to select
either one or two players. A timer was applied to increase the
difficulty of the game. The algorithm was able to fulfil the
system requirements, but it did not return an optimal move as
a greedy algorithm.

Sarsa and Q-Learning trained the Al agents on how to
play Connect Four Game with optimal strategy [3]. Docker
was utilized to run the application by putting agents of the
same or different algorithm to play the game simultaneously,
which contributed to the speedup of the investigation process.
TensorFlow was utilized to develop the learning models for
Connect Four Game. The researchers aimed to develop the
influence of exploration rate and rewards models on the
performance of both algorithms. Similar winning rates
between the agents of the same algorithms and against the
opposing algorithm were found, proving that the two
algorithms do not have a crucial difference.

An investigation on several implementations of Alpha-
Beta pruning algorithm was conducted to find out which
algorithm was suitable for parallelism [4]. The authors stated
that Alpha-Beta pruning was beneficial in enhancing the
performance of Minimax algorithm within the sequential
form. The authors applied beam search optimization to carry
out the parallel alpha-beta pruning in both of the mesh
architecture called Compute Unified Device Architecture
(CUDA) and a shared memory model called Open Multi-
Processing (OpenMP). The speedup for the algorithm using
CUDA was 2 times faster than using OpenMP. In conclusion,
the combination of beam search optimization in mesh
architecture is the most optimal for Alpha-Beta pruning
algorithm.

An experiment was carried out to compare the Alpha-Beta
pruning and Memory-enhanced Test Driver (f) (MTD(f)) to
find out which algorithm contributes to the highest optimality
and the speed [5]. The experiments were executed by running
the application on computers with 12 sets of conditions with
changes in the search depth and which computer is the first
player. As a result, MTD(f) evaluated the moves at a faster
pace than Alpha-Beta pruning, the computational time was
reduced due to the lesser amount of leaf nodes to be evaluated.
The win percentage of MTF(f) was 45.83%, the time taken
for its execution was 35.19% faster than Alpha-Beta pruning
in the search depth 8. The evaluated leaf nodes for MTD(f)
were 56.27% fewer than Alpha-Beta pruning. The increment
in search depth did not cause the execution time of the MTD(f)
to be slowed down. The limitation of the research was no
human player’s involvement in the experiment, only
computer versus computer whereby the same depth was
applied to both computers.

The efficiency of the mini-max algorithm and its after
combining with Alpha-Beta pruning was investigated [6].
The number of nodes that were evaluated in a search tree
decreased radically. Alpha Beta pruning falls under the
adversarial search in which the agents are placed in a
competitive environment. The concept of minimizer and
maximiser was implemented in both algorithms, alpha and
beta were extra parameters that helped the Mini-Max
Algorithm to prune away the unnecessary nodes to be
evaluated. There was a decrement in time taken for producing

an optimal move with the implementation of Alpha-Beta
pruning in the same depth. Alpha-Beta pruning was helpful
for achieving the optimal objective of the game, which was
producing the most optimal move in a short period of time.

The authors stated that the gaming application in the past
was not as efficient as nowadays due to lack of computer
memory space poor tree algorithm [7]. Parallelism had been
introduced to speed up the evaluation process. Young
Brothers Win Concept was one of the parallelism concepts
that was applied to evaluate the sibling nodes parallelly. The
researchers used tic tac toe as an example to study the
difference in the computational speed and efficiency among
Sequential and Parallel Alpha-Beta Pruning techniques. The
conclusion made by the researchers was Alpha Beta Pruning
which runs parallelly using OpenMP is cost and time
efficient. It consumed lesser computational time to generate
the next optimal move.

Hernandez et al. suggested that it is necessary to
implement a neural network to assign the weight to the factors
of the heuristic search [8]. The heuristic search can then be
trained through unsupervised learning, it will be able to
analyse the elements in the database to reinforce the weights.
Therefore, the algorithm can execute movements based on
the analysis.

Il. MATERIALS AND METHODS

A. Hardware

When the experiment is conducted for observation, it was
conducted on a HP laptop whereby the technical specification
of the laptop will be listed in Table I.

TABLE I. SPECIFICATION OF HP LAPTOP
Specification Description
Model Name HP Laptop 14s-cfl1xxx
Processor Intel® Core™ i5-8265U CPU @
1.60GHz
Topology 1 Processor, 4 Cores, 8 Thread
Storage 512GB Solid State Drive Capacity
(SSb)
Memory 8.00 GB -1MHz
Operating System Microsoft Windows 10 Home Single
Language

B. Programming Language

The language that the been used to code the Connect-4
game is in Java. This is due to the fact that the Java language
is object-oriented which would thus allow modularity where
the code can be reusable and does not need to be repeated. Java
is a robust language since it uses strong memory management
and allows exceptions to be handled so that the program does
not crash in the mid-game when any error occurs. Java is also
a simple language as it is free from pointers and this would
make the execution time shorter. It is a portable language and
it can run on various operating systems and processors unlike
other languages such as C and C++. Hence the Connect 4
game can be played on any system that has the proper IDE
installed.

C. Software

In order to run the program, the IDE that has been used is
NetBeans 8.2 which uses the JDK version of 1.8.0_301. This

Jﬁl-n Journal of Applied Technology and Innovation (e -1ISSN: 2600-7304) vol. 6, no. 1, (2022) 45

can be obtained from the Oracle website and properly
configured to the system such as setting the Java Home path.
NetBeans 8.2 has been chosen as it supports various operating
systems and even runs on macOS. The IDE allows any
application to be developed in a set of modular software which
is often known as modules. This is a user-friendly IDE as it is
not complicated to understand how to write code on it and it
has user interface management such as menu and toolbars
which would navigate and help the user throughout the whole
development process. Individuals who would like to run the
Connect-4 game could just download the source code and
click on “Import Project” to import the whole code into the
IDE, click on the main Java Class and finally click on Run to
run the game.

D. Algorithm

The algorithm that has been implemented into the
Connect-4 game is classical Alpha-Beta pruning with Mini-
Max algorithm. Mini-Max is known as a backtracking
algorithm where it will predict the next move and get the
optimal move [6]. In a multiplayer game such as Connect-4,
there are two players where each will be known as the
maximizer and the opponent will be known as the minimizer.
The maximiser will try to get a higher score as they could and
the minimizer will do the exact opposite and obtain the lowest
mark possible. As the depth increasing there will be more
branches to be explored to get the optimal move which results
to longer time taken. Hence Alpha-Beta pruning has been
implemented into the Mini-Max Algorithm to optimize the
algorithm. Alpha Beta pruning is the powerful version of
Mini-Max algorithm where two more extra parameters will be
added to the code which is known as Alpha and Beta [7]. The
implementation of Alpha Beta will help to significantly drop
the searching time to get an optimal as not all branches will be
explored. Pruning of subbranches of a particular node will be
done when a better path has been explored [7]. Which mean
that the path that has been pruned would not be explored as
there is no need for it since it would not change the top node
result.

MAX (wmax)2 C wax)
\< \w/ - S °
\

- & \Jv p/\dvu

Fig. 1. Mini Max algorithm

Fig 1. Shows that when the Mini Max Algorithm has been
used each level top node will be given a label either it is a
Maximizer or a Minimizer. It goes sequentially where if the
top node is a Maximizer the below node will be the opposite
and act as a Minimizer and it goes on. The Maximiser will try
to obtain the highest value and Minimizer will obtain the
lowest value. It will perform a depth-first algorithm and reach
the final node to get value. When it performs the depth-first
search the first value that will be captured is 4. Then the next
value would be 8 and these two values will be compared to
see which has the higher value which in this case is 8. Thus 8

will be passed and the max node. This will go on until the
final node value has been explored and compared. Based on
the values then a path will be formed wherein Fig 2. is the
highlighted red path.

X

7 oma \ 8

(MIN %y g OMIN .'\'2
e " max -'\]5 MAX N ‘ A 2 A Y
i e T et e

COOOOOVO

Fig. 2. Alpha-Beta Pruning with Mini Max

The Alpha Beta pruning does exactly the same as Mini-
Max Algorithm where each node will be categorised either as
a maximizer or minimizer. The only difference is in Alpha-
Beta Pruning, not all nodes will be explored where since there
is an extra parameter that has been passed which is Alpha and
Beta. Alpha will store the highest value and beta will be
storing the minimum value. As shown in Fig 2., there has
been pruning occurred in a sub-branch. The pruning occurs
as when 9 has been passed to the Alpha parameter it will be
compared with the existing Beta parameter value which is 8
at the top node. Hence, when the Alpha value is higher than
the Beta value there will be no need to explore the branch
anymore as that path would not even be needed as it would
not lead to the optimal move. Which result in no need for
further checking of the nodes value and the branch will be
prune. This will save a lot of time as right now the depth is
not even deep enough so it is easier to visualise but in the
actual game the search tree will be huge and long as the depth
gets deeper making it to have more branches that need to be
explored. When pruning occurs it would not need the system
to check through the branch anymore. The highlighted red
path is the optimal move which is the same as Fig 1. that uses
the Mini Max algorithm where the same result is obtained but
in a faster time which makes Alpha Beta Pruning much more
powerful to be used in this game.

E. Parameter Changes

As explained above Alpha Beta pruning does significantly
improve the search time rather than the usage of a simple
Mini-Max algorithm. In order to test the efficiency, this
experiment has been conducted where there will be three
parameter changes to check if it affects the search time to get
an optimal move, winning possibly and line analyzed. Every
time when one parameter is changing the other two is kept
constant in order to make it more systematic and easier for
analysis purposes.

1. Depth

During this experiment, the depth will be changed from 0
up to 10 and the observation which is line analyzed, time taken
to make a move and the Al winning probability will be taken
into account.

2. Width

This parameter is the width of the Connect-4 game It is
one of the important components of the connect 4 as different
width sizes would make the placing of token either loose or

JE‘JTI Journal of Applied Technology and Innovation (e -1ISSN: 2600-7304) vol. 6, no. 1, (2022)

46

packed. Different width has been used to check on the line
analyzed and time taken for the Al move.

3. Height

When it comes to height, the parameter was changed to
various heights to check if it would affect the line analyzed
and the time taken for the Al move.

F. Source Code to Change Parameter

public static final int HE

public static final int 7|
public static final int DEPTH IIMIT = 8;

Fig. 3. Game parameter change

Fig 3. shows a snippet of the source code for Connect 4
game. If any parameter needs to be changed, it can be done by
clicking on the “Game” java class and make the changes that
are needed. For example, if the depth needs to be changed, the
8 should be erased and an integer value should be given.

awEmptyBoard ()
; i i+4)

Fig. 4. Board parameter change

In case, in Fig 4. the height and width have been made
changes, then another java class which is the “Board” class
should have changes made also. The height and width that has
been changed in the game parameter should be corresponding
to the one in the Board class. For example, if the height has
been changed to 10, then the i loop should have changes where
now it becomes i < 10. The same goes with width whereby
this time the j loop will have modification.

I1l. RESULT AND DISCUSSION

There are three parameters that will be changed which is
depth, width and height. All this is divided into its own
category and the result will be discussed accordingly as
different parameters bring different results.

A. Depth Change

Below is the result when different depth has been used.
Throughout the whole experiment, there are two parameters
that are kept constant which is the height and width. The
height that is kept throughout the whole experiment is 8
meanwhile the width is 9. The width is calculated based on
equation (1).

Width = Height + 1)

TABLE II. DEPTH RESULTOF0-5
DEPTH MoOVE TIME TAKEN(S) LINE ANALYSED
1 0.12 9
2 0.15 9
3 0.12 9
0
4 0.13 9
5 0.15 9
1 0.15 90
2 0.14 90
3 0.15 90
1
4 0.14 90
5 0.15 90
1 0.17 331
2 0.11 430
3 0.13 459
2
4 0.14 489
5 0.13 468
1 0.14 2209
2 0.13 3322
3 0.12 1904
3
4 0.13 2417
5 0.14 2594
1 0.15 10339
2 0.14 16461
3 0.16 13803
4
4 0.15 14546
5 0.14 15868
1 0.14 63276
2 0.18 48957
3 0.19 47771
5
4 0.19 32432
5 0.18 65182

JE‘JTI Journal of Applied Technology and Innovation (e -1ISSN: 2600-7304) vol. 6, no. 1, (2022) 47

Table 11 shows the time taken and the line analysed for the
first five moves of the depth from 0 to 1. It can be observed
that the time taken is less than 1s which is extremely quick
and almost instant. Although the line analysed at depth 5 is
significantly higher compared to depth 1 but the time taken is
almost the same. The line analysed when the depth is set at 0
is equivalent to the width size. Whereby if the width is set as
8 the line analysed will be 8 also. In this case, the width has
been set to 9 thus 9 lines has been analysed. When the depth
is increased to 1 depth level, the line analysed is time ten of
the set width referring to equation (2). Although depth that is
lower than 3 takes lesser time to make a move it is not making
the most optimal move. This is because the winning
percentage of humans is higher which is 95% which is not the
aim of the experiment. Depth 4 and 5 makes much more
optimal move and also gives the move in a short period of
time. Not only that but it has a higher Al winning percentage
which is 98%.

Depth 1 Line Anlaysed = Width Length * 10 (2)

5 110,43 43531913

1 290.54 55764660

2 309.40 57754960

3 24413 71661621
10

4 491.21 69162372

5 197.18 71271139

As the depth starting from 6 it can be observed that the
system starts taking seconds to get the next move. This is
because there are more lines being analysed and it is taking a
longer time to return an optimal move. More nodes have to be
explored resulting in a longer search time. As can be seen
when the depth is 10 the machine took up to 491.21s to make
a move which is almost up to 8 minutes. Although the moves
made are optimal but in such an online game no one would
want to wait that long for a machine to make a move and

TABLElll. DEPTHRESULT OF 6—10 would rather just leave the game.
TABLE IV. SUMMARY OF DEPTH 0 —10
DEPTH Move TIME TAKEN(S) LINE ANALYSED
Depth Time Average (s) Average Line Analysed
1 1.25 307994
0 0.134 9
491721
2 2.14 1 0.146 90
6 3 395 315744 > 0136 735
4 4.49 443107 3 0.132 2489
5 3.86 368837 4 0.148 14203
1 63.09 2027702 5 0.176 51524
6 3.138 385141
2 125.56 6783007
7 89.798 5587506
3 85.87 2810740
7 8 99.166 13782307
4 88.15 1379037
9 139.03 37413750
5 86.32 14536958 10 306.492 65122950
1 63.41 16602524
2 126.43 7374165 Line Graph of Average Time Taken(s) against Depth
350
3 105.43 4389983 300
8 g 250
4 90.13 13112089 = 200
% 150
5 110.43 27432773 2 100
1 83.42 45102424 >0
’ V] 1 2 3 4 5 6 7 8 9 10
2 184.06 32354071 DEPTH
9
3 129.12 43289321 Fig. 5. Graph of average time against depth
4 188.12 22791022

JE‘JTI Journal of Applied Technology and Innovation (e -1ISSN: 2600-7304) vol. 6, no. 1, (2022) 48

Line Graph of Average Lines Analysed against Depth 5 269 20532
Jonoono 1 053 35178
o 60000000
uéSDUDGUOD 2 O 48 36862
EM)UDOUOU
330000000 3 086 22077
EZDUDGUOD 12
2 10000000 4 1.32 2096
’ 0 1 2 3 4 5 6 7 8 9 10 5 582 47063
DEPTH
Fig. 6. Graph average line analysed against depth 1 0.64 44718
Different depths have been used to check on the time 2 0.98 58130
analysed and also line analysed. This is the summary and line
chart that has been produced based on the depth with the time 14 3 123 55576
taken average and average line analysed. It will give a better
visualisation of how the depth impact the average line 4 1.36 51923
analysed and average time taken to make an optimal move. As
clearly shown that the when the depth increases the average 5 1.76 45156
time taken and average lines analysed increase. Alpha Beta
Pruning with Mini Max algorithm is suitable to be L 0.45 44883
implemented for games that need a depth search ranging from
410 6. If a game requires a much deeper search, then another 2 0.21 55311
algorithm shall be applied rather than Alpha-Beta Pruning
with Mini Max algorithm. 16 3 373 82733
B. Width Change 4 25 48456
Below is the result when different width has been used.
Throughout the whole experiment, there are two parameters 5 18 63695
that are kept constant which is the depth and height. The depth
that is kept throughout the whole experiment is 4 meanwhile
the height is 8. Higher width value resulted in more columns
in the board, with the increment of the action space to be TABLEVI. SUMMARY OF WIDTH 8 - 16
evaluated, the computational time for the algorithm to Width Time Time Average (s) | Average Line Analysed
construct a move increased. Below is the equation for
calculating action space. 8 0.32 8016
)) 10 1.42 23163
Action Space = Column Width - Number of Full Columns at
Current State (3) 12 1.802 32430
TABLE V. WIDTH RESULT OF 8 — 16 14 1194 51101
WIDTH Move TIME TAKEN(S) LINE ANALYSED 16 1.738 59016
1 0.35 7878
> 049 8211 With more width added to the board, the computer had to
analyse more possible actions, therefore the average of time
3 032 5689 taken for it to make a new move is increased. The smallest
8 width value of 8 was used as the application crashed
Z 028 8869 whenever the width was smaller than 8. A depth value of 4
was selected as it is the most optimal.
5 0.16 9435 C. Height Change
1 08 17670 Table VII shows a summary result of when different board
heights have been used. Throughout the whole experiment
> 063 27286 there are two parameters kept constant; the width and search
depth. The width was kept at 8 whereas the search depth was
10 3 055 28480 a constant of 4.
4 2.75 21847

JE‘JTI Journal of Applied Technology and Innovation (e -1ISSN: 2600-7304) vol. 6, no. 1, (2022) 49

TABLE VII. SUMMARY OF HEIGHT 1-10
Height Range| Time Taken Line Analysed Crashed
1-2 - - Yes
3-6 - - Yes
7 Very efficient Half Half
8-10 Very efficient Yes No

Table VII showcases how the height of the board impacts
the running of the Connect-4 game. Within the height range
of 1 to 2, the program does not run at all whereby when players
click on any empty spaces, nothing occurs. Even though the
program crashes with a height range of 3 to 6, players are able
to click on the board and receive a response from the program,
placing its pieces randomly up to a point of no response given
after several clicks. As for the height of 7, the game runs
efficiently and effectively during the first half of the game
before crashing. Upon filling up more spaces on the board, the
program would not respond to any player interaction, thus
manual cancellation of the game has to be initiated. Lastly, for
the height range of 8 to 10, the program runs efficiently and
effectively throughout the entire gaming experience.

TABLE VIIl. HEIGHT RESULT OF 810
HEIGHT Move TIME TAKEN(S) LINE ANALYSED
1 0.37 9190
2 0.53 16148
8 3 0.43 11017
4 0.25 6173
5 041 10339
1 0.37 9190
2 0.42 10773
9 3 0.44 12241
4 0.37 9812
5 0.54 17462
1 0.37 9190
2 0.36 8213
10 3 0.43 11581
4 0.32 7748
5 0.45 11984

Table VIII shows the time taken and lines analyzed within
the first 5 moves for the board height ranging from 8 to 10. As
shown, the observed parameters for each height constant
remain almost similar whereby there is no distinct or drastic

difference measured. This is because, during the first few
moves of the game, all pieces will be filling in the board
baseline. With the implementation of Alpha-Beta Pruning
which reduces the size of a search tree from unnecessary
exploration, the number of lines analyzed and the time taken
remains almost similar considering with an increase of height,
it would lead to more unnecessary expansion of search branch
unless the next move requires the extra height row. The height
of the board is only taken into consideration for the number of
lines analyzed when the pieces start filling in the upper
quadrant of the board. In conclusion, if the algorithm used
does not utilize Alpha-Beta Pruning, the height of board could
possibly make a huge impact on the obtained result.

TABLE IX. SUMMARY OF HEIGHT 8 - 10
Height Time Taken Average (s) | Average Line Analysed
8 0.398 10573
9 0.428 11896
10 0.386 9743

Table 1X summarizes the average time taken and
lines analysed throughout the first five play movements. It
can be derived that the height of the board does not influence
the outcome of the game, considering hypothetically, as the
height increases, the average time taken, and lines analysed
should increase as well. This is possible because in the game
of Connect-4, each piece placed will fill the baseline of the
board due to the nature of gravity, hence the height of the
board does not necessarily impact the result of the game
rather it allows for the prolonging of each gaming session.
With a shorter height, it would result in a shorter game if both
players were to fill the entire board, nonetheless, the winning
percentage for each player remains the same.

IV. CONCLUSION

In conclusion, this paper contributes to seeking the optimal
parameters for an efficient running of the Connect-4 game
using Alpha-Beta Pruning with Minimax to achieve the
highest winning rate. Modifications were made to the depth of
search and size of the board to study how these changes can
lead to an impact on the algorithm’s overall performance in
different criteria. Each parameter was changed respectively
while keeping constant of other parameters to keep track of
the progression of result, however, there could be a possibility
that if all parameters were changed concurrently, better
optimization can be achieved.

Based on our findings, the algorithm, Alpha-Beta Pruning
with Minimax is best implemented with a constant search
depth of either 4 or 5 as it results in an optimal time taken for
decision-making and is proven to have a great winning
percentage. Despite higher search depth leads to a better
winning course, in terms of the evaluation of other criteria
such as the execution time, it did not achieve efficiency. For
every online game, the fundamental concern is to ensure it is
both functional and quick to respond to any user interaction,
hence other aspects are of secondary priority. The same
logical sense is to be applied in this instance because Connect-
4 is a turned-based game, thus achieving optimal response
time should be the main concern followed by its winning
percentage.

JTI Journal of Applied Technology and Innovation (e -1ISSN: 2600-7304) vol. 6, no. 1, (2022)

REFERENCES

[1] V. K. BC, N. Jashank, and M. S. Nadiger, “Alpha-Beta Pruning—A
streamline approach for perceptive game playing,” International
Research Journal of Modernization in Engineering Technology and
Science, 2(6), pp. 1306-1318, June 2020.

[2] A. M. Sarhan, A. Shaout, and M. Shock, “Real-time Connect 4 game
using artificial intelligence,” Journal of Computer Science, 5(4), pp.
283-289, 2009.

[3] E. Alderton, E. Wopat, and J. Koffman, “Reinforcement learning for
Connect Four,” January 2019.

[4] S. P. Singhal, and M. Sridevi, “Comparative study of performance of
parallel Alpha Beta Pruning for different architectures,” In 2019 IEEE
9th International Conference on Advanced Computing (IACC), pp.
115-119, December 2019.

[5] L. Tommy, M. Hardjianto, and N. Agani, “The analysis of Alpha Beta
Pruning and MTD(f) algorithm to determine the best algorithm to be
implemented at Connect Four prototype,” In IOP Conference Series:
Materials Science and Engineering, vol. 190, 2017.

[6] R.Nasa, R. Didwania, S. Maji, and V. Kumar, “Alpha-Beta Pruning in
Mini-Max algorithm — An optimized approach for a Connect-4 game,”
International Research Journal of Engineering and Technology, 5(4),
pp. 1637-1641, April 2018.

[7]1 S. Mandadi, B. Tejashwini, and S. Vijayakumar, “Implementation of
sequential and parallel Alpha-Beta Pruning algorithm,” International
Journal of Innovations in Engineering Research and Technology, 7(8),
pp. 98-104, August 2020.

[8] J.Hernandez, K. Daza, and H. Florez, “Alpha-Beta vs Scout algorithms
for the Othello game,” In CEUR Workshops Proceedings, vol. 2846,
pp. 65-79, 2019.

