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Abstract — The classic game of Connect-4 is fading from the 

face of society, especially with the younger generations due to 

the addictive instance of digital games, available anywhere, 

hence measures to preserve the continuity of this game lies in the 

recreation of the game in the virtual environment. In this paper, 

the formulation of a classic Connect-4 games utilizing the 

implementation of Alpha-Beta Pruning with Minimax 

algorithm is carried out with the objective of modifying its 

parameters to determine its influence on the execution of the 

game. The parameters involved in the modification process 

includes the depth of search and size of board as a small change 

of constant can lead to a drastic difference. Minimax algorithm 

serves the purpose of enabling the computer (AI) to place its 

piece strategically whereas Alpha-Beta Pruning is incorporated 

to reduce the size of its search tree. All results pertaining the 

changes made have been recorded accordingly and the optimal 

constant of parameters are identified, leading to an ideal 

execution of the game. 

Keywords — Artificial Intelligence (AI), Alpha-Beta Pruning, 

Minimax, Connect-4, Optimization 

I. INTRODUCTION 

With the constant evolution of technology, it comes as no 
surprise that what seemed like a brilliant source of 
entertainment back then is slowly fading into the background 
with a shift towards digital games. The emergence of 
computer and mobile games, offering a variety of gaming 
genres have taken over the need for physical board games 
such as Monopoly, UNO, Connect-4, Scrabbles, etc. Though 
some games managed to stay relevant in this day and age, 
namely the ones with multiple players option, others fade to 
grey. Classic physical games such as Connect-4 and Chess 
are slowly losing their place in the society, hence it is 
necessary to computerize the core elements of the games to 
recreate them in a virtual environment. As such, this would 
serve as an effort to preserve the continuity of these games in 
the future and hopefully resuscitate the fun and joy it once 
bought to the society. 

Connect-4 is a classic two-player board game, each 
represented by yellow and red pieces respectively on a board 
matrix of seven rows and six columns. Players are free to 
place their piece alternately at any available positions, 
constricted to the six columns by dropping it into their desired 

compartment. Due to the nature of gravity, the pieces will 
always fill in the baseline of the board, eventually building 
up to all seven rows. The goal is for the players to 
successfully line up four consecutive pieces either vertically, 
horizontally or diagonally, hence the game can lead to either 
a victory upon accomplishing the task or a draw if none 
manages to put forth consecutive pieces. Connect-4 is a 
solved game whereby players with the primary move can 
guarantee a 100% chance of winning rate if played 
accordingly to the winning strategy despite whatever move 
placement the opponent lays out [1]. 

In this paper, we will be exploring how a change in the 
parameters of the algorithm, Alpha-Beta Pruning with 
Minimax can impact the time taken for a decision to be made 
on the placement of pieces, the number of lines analyzed and 
its winning rate. The purpose for the implementation of 
Minimax is because of its ability to proceed with a decision-
making process whereas Alpha-Beta Pruning is incorporated 
to reduce the size of a search tree from unnecessary 
exploration [1]. Both algorithms play an essential role 
respectively to ensure a successful experiment result. 

The following paper is segregated into several sections 
and sub-sections whereby section I provides an introduction 
to the research topic and a general overview of this paper, and 
the aspects of related literature reviews. On the other hand, 
section II focuses on the details of materials and methods 
used for the execution of the experiment carried out and II 
describes the implementation of the algorithms mentioned 
priorly. Section III presents the results obtained and its 
discussion, explaining our findings for each modified 
parameter and lastly, section IV summarizes a conclusion for 
the entire paper. 

A lot of researchers had conducted experiments to analyze 
the performance of the Alpha Beta Pruning algorithm in 
Connect Four Prototype. Several algorithms such as MTD(f) 
and Scout algorithm were involved to make comparison. The 
researchers have also compared the behavior of the algorithm 
in parallel and sequential implementation. 

Heuristic algorithm with influence mapping was 
implemented to study how to play Connect Four Game with 
artificial intelligence [2]. The Connect Four application was 
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run on Windows platform and the language used was C++. 
The improvements made to the game where the timer can be 
applied optionally depends on the player. Secondly, the new 
version of Connect Four in this paper allows the user to select 
either one or two players. A timer was applied to increase the 
difficulty of the game. The algorithm was able to fulfil the 
system requirements, but it did not return an optimal move as 
a greedy algorithm. 

Sarsa and Q-Learning trained the AI agents on how to 
play Connect Four Game with optimal strategy [3]. Docker 
was utilized to run the application by putting agents of the 
same or different algorithm to play the game simultaneously, 
which contributed to the speedup of the investigation process. 
TensorFlow was utilized to develop the learning models for 
Connect Four Game. The researchers aimed to develop the 
influence of exploration rate and rewards models on the 
performance of both algorithms. Similar winning rates 
between the agents of the same algorithms and against the 
opposing algorithm were found, proving that the two 
algorithms do not have a crucial difference. 

An investigation on several implementations of Alpha-
Beta pruning algorithm was conducted to find out which 
algorithm was suitable for parallelism [4]. The authors stated 
that Alpha-Beta pruning was beneficial in enhancing the 
performance of Minimax algorithm within the sequential 
form. The authors applied beam search optimization to carry 
out the parallel alpha-beta pruning in both of the mesh 
architecture called Compute Unified Device Architecture 
(CUDA) and a shared memory model called Open Multi-
Processing (OpenMP). The speedup for the algorithm using 
CUDA was 2 times faster than using OpenMP. In conclusion, 
the combination of beam search optimization in mesh 
architecture is the most optimal for Alpha-Beta pruning 
algorithm. 

An experiment was carried out to compare the Alpha-Beta 
pruning and Memory-enhanced Test Driver (f) (MTD(f)) to 
find out which algorithm contributes to the highest optimality 
and the speed [5]. The experiments were executed by running 
the application on computers with 12 sets of conditions with 
changes in the search depth and which computer is the first 
player. As a result, MTD(f) evaluated the moves at a faster 
pace than Alpha-Beta pruning, the computational time was 
reduced due to the lesser amount of leaf nodes to be evaluated. 
The win percentage of MTF(f) was 45.83%, the time taken 
for its execution was 35.19% faster than Alpha-Beta pruning 
in the search depth 8. The evaluated leaf nodes for MTD(f) 
were 56.27% fewer than Alpha-Beta pruning. The increment 
in search depth did not cause the execution time of the MTD(f) 
to be slowed down. The limitation of the research was no 
human player’s involvement in the experiment, only 
computer versus computer whereby the same depth was 
applied to both computers.  

The efficiency of the mini-max algorithm and its after 
combining with Alpha-Beta pruning was investigated [6]. 
The number of nodes that were evaluated in a search tree 
decreased radically. Alpha Beta pruning falls under the 
adversarial search in which the agents are placed in a 
competitive environment. The concept of minimizer and 
maximiser was implemented in both algorithms, alpha and 
beta were extra parameters that helped the Mini-Max 
Algorithm to prune away the unnecessary nodes to be 
evaluated. There was a decrement in time taken for producing 

an optimal move with the implementation of Alpha-Beta 
pruning in the same depth. Alpha-Beta pruning was helpful 
for achieving the optimal objective of the game, which was 
producing the most optimal move in a short period of time. 

The authors stated that the gaming application in the past 
was not as efficient as nowadays due to lack of computer 
memory space poor tree algorithm [7]. Parallelism had been 
introduced to speed up the evaluation process. Young 
Brothers Win Concept was one of the parallelism concepts 
that was applied to evaluate the sibling nodes parallelly. The 
researchers used tic tac toe as an example to study the 
difference in the computational speed and efficiency among 
Sequential and Parallel Alpha-Beta Pruning techniques. The 
conclusion made by the researchers was Alpha Beta Pruning 
which runs parallelly using OpenMP is cost and time 
efficient. It consumed lesser computational time to generate 
the next optimal move. 

Hernandez et al. suggested that it is necessary to 
implement a neural network to assign the weight to the factors 
of the heuristic search [8]. The heuristic search can then be 
trained through unsupervised learning, it will be able to 
analyse the elements in the database to reinforce the weights. 
Therefore, the algorithm can execute movements based on 
the analysis. 

II. MATERIALS AND METHODS 

A.  Hardware 

When the experiment is conducted for observation, it was 
conducted on a HP laptop whereby the technical specification 
of the laptop will be listed in Table I. 

TABLE I.  SPECIFICATION OF HP LAPTOP 

Specification Description 

Model Name HP Laptop 14s-cf1xxx 

Processor Intel® Core™ i5-8265U CPU @ 

1.60GHz 

Topology 1 Processor, 4 Cores, 8 Thread 

Storage 512GB Solid State Drive Capacity 

(SSD) 

Memory 8.00 GB -1MHz 

Operating System Microsoft Windows 10 Home Single 

Language 

B. Programming Language 

The language that the been used to code the Connect-4 
game is in Java. This is due to the fact that the Java language 
is object-oriented which would thus allow modularity where 
the code can be reusable and does not need to be repeated. Java 
is a robust language since it uses strong memory management 
and allows exceptions to be handled so that the program does 
not crash in the mid-game when any error occurs. Java is also 
a simple language as it is free from pointers and this would 
make the execution time shorter. It is a portable language and 
it can run on various operating systems and processors unlike 
other languages such as C and C++. Hence the Connect 4 
game can be played on any system that has the proper IDE 
installed. 

C. Software 

In order to run the program, the IDE that has been used is 
NetBeans 8.2 which uses the JDK version of 1.8.0_301. This 
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can be obtained from the Oracle website and properly 
configured to the system such as setting the Java Home path. 
NetBeans 8.2 has been chosen as it supports various operating 
systems and even runs on macOS. The IDE allows any 
application to be developed in a set of modular software which 
is often known as modules. This is a user-friendly IDE as it is 
not complicated to understand how to write code on it and it 
has user interface management such as menu and toolbars 
which would navigate and help the user throughout the whole 
development process. Individuals who would like to run the 
Connect-4 game could just download the source code and 
click on “Import Project” to import the whole code into the 
IDE, click on the main Java Class and finally click on Run to 
run the game. 

D. Algorithm 

The algorithm that has been implemented into the 
Connect-4 game is classical Alpha-Beta pruning with Mini-
Max algorithm. Mini-Max is known as a backtracking 
algorithm where it will predict the next move and get the 
optimal move [6]. In a multiplayer game such as Connect-4, 
there are two players where each will be known as the 
maximizer and the opponent will be known as the minimizer. 
The maximiser will try to get a higher score as they could and 
the minimizer will do the exact opposite and obtain the lowest 
mark possible. As the depth increasing there will be more 
branches to be explored to get the optimal move which results 
to longer time taken. Hence Alpha-Beta pruning has been 
implemented into the Mini-Max Algorithm to optimize the 
algorithm. Alpha Beta pruning is the powerful version of 
Mini-Max algorithm where two more extra parameters will be 
added to the code which is known as Alpha and Beta [7]. The 
implementation of Alpha Beta will help to significantly drop 
the searching time to get an optimal as not all branches will be 
explored. Pruning of subbranches of a particular node will be 
done when a better path has been explored [7]. Which mean 
that the path that has been pruned would not be explored as 
there is no need for it since it would not change the top node 
result. 

 

 

Fig. 1. Mini Max algorithm 

Fig 1. Shows that when the Mini Max Algorithm has been 
used each level top node will be given a label either it is a 
Maximizer or a Minimizer. It goes sequentially where if the 
top node is a Maximizer the below node will be the opposite 
and act as a Minimizer and it goes on. The Maximiser will try 
to obtain the highest value and Minimizer will obtain the 
lowest value. It will perform a depth-first algorithm and reach 
the final node to get value. When it performs the depth-first 
search the first value that will be captured is 4. Then the next 
value would be 8 and these two values will be compared to 
see which has the higher value which in this case is 8. Thus 8 

will be passed and the max node. This will go on until the 
final node value has been explored and compared. Based on 
the values then a path will be formed wherein Fig 2. is the 
highlighted red path.  

 

Fig. 2. Alpha-Beta Pruning with Mini Max 

The Alpha Beta pruning does exactly the same as Mini-
Max Algorithm where each node will be categorised either as 
a maximizer or minimizer. The only difference is in Alpha-
Beta Pruning, not all nodes will be explored where since there 
is an extra parameter that has been passed which is Alpha and 
Beta. Alpha will store the highest value and beta will be 
storing the minimum value. As shown in Fig 2., there has 
been pruning occurred in a sub-branch. The pruning occurs 
as when 9 has been passed to the Alpha parameter it will be 
compared with the existing Beta parameter value which is 8 
at the top node. Hence, when the Alpha value is higher than 
the Beta value there will be no need to explore the branch 
anymore as that path would not even be needed as it would 
not lead to the optimal move. Which result in no need for 
further checking of the nodes value and the branch will be 
prune. This will save a lot of time as right now the depth is 
not even deep enough so it is easier to visualise but in the 
actual game the search tree will be huge and long as the depth 
gets deeper making it to have more branches that need to be 
explored. When pruning occurs it would not need the system 
to check through the branch anymore. The highlighted red 
path is the optimal move which is the same as Fig 1. that uses 
the Mini Max algorithm where the same result is obtained but 
in a faster time which makes Alpha Beta Pruning much more 
powerful to be used in this game. 

E. Parameter Changes 

As explained above Alpha Beta pruning does significantly 
improve the search time rather than the usage of a simple 
Mini-Max algorithm. In order to test the efficiency, this 
experiment has been conducted where there will be three 
parameter changes to check if it affects the search time to get 
an optimal move, winning possibly and line analyzed. Every 
time when one parameter is changing the other two is kept 
constant in order to make it more systematic and easier for 
analysis purposes. 

1. Depth  

During this experiment, the depth will be changed from 0 
up to 10 and the observation which is line analyzed, time taken 
to make a move and the AI winning probability will be taken 
into account. 

2. Width  

This parameter is the width of the Connect-4 game It is 
one of the important components of the connect 4 as different 
width sizes would make the placing of token either loose or 
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packed. Different width has been used to check on the line 
analyzed and time taken for the AI move.  

3. Height  

When it comes to height, the parameter was changed to 
various heights to check if it would affect the line  analyzed 
and the time taken for the AI move. 

F. Source Code to Change Parameter 

 

Fig. 3. Game parameter change 

Fig 3. shows a snippet of the source code for Connect 4 
game. If any parameter needs to be changed, it can be done by 
clicking on the “Game” java class and make the changes that 
are needed. For example, if the depth needs to be changed, the 
8 should be erased and an integer value should be given. 

 

Fig. 4. Board parameter change 

In case, in Fig 4. the height and width have been made 
changes, then another java class which is the “Board” class 
should have changes made also. The height and width that has 
been changed in the game parameter should be corresponding 
to the one in the Board class. For example, if the height has 
been changed to 10, then the i loop should have changes where 
now it becomes i < 10. The same goes with width whereby 
this time the j loop will have modification. 

III. RESULT AND DISCUSSION 

There are three parameters that will be changed which is 
depth, width and height. All this is divided into its own 
category and the result will be discussed accordingly as 
different parameters bring different results. 

A. Depth Change 

Below is the result when different depth has been used. 
Throughout the whole experiment, there are two parameters 
that are kept constant which is the height and width. The 
height that is kept throughout the whole experiment is 8 
meanwhile the width is 9. The width is calculated based on 
equation (1). 

 
                      𝑊𝑖𝑑𝑡ℎ =  𝐻𝑒𝑖𝑔ℎ𝑡 +  1                      (1) 

 

 

 

 

TABLE II.  DEPTH RESULT OF 0 – 5 

DEPTH  MOVE  TIME TAKEN(S)  LINE ANALYSED  

0 

1 0.12 9 

2 0.15 9 

3 0.12 9 

4 0.13 9 

5 0.15 9 

1 

1 0.15 90 

2 0.14 90 

3 0.15 90 

4 0.14 90 

5 0.15 90 

2 

1 0.17 331 

2 0.11 430 

3 0.13 459 

4 0.14 489 

5 0.13 468 

3 

1 0.14 2209 

2 0.13 3322 

3 0.12 1904 

4 0.13 2417 

5 0.14 2594 

4 

1 0.15 10339 

2 0.14 16461 

3 0.16 13803 

4 0.15 14546 

5 0.14 15868 

5 

1 0.14 63276 

2 0.18 48957 

3 0.19 47771 

4 0.19 32432 

5 0.18 65182 
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Table II shows the time taken and the line analysed for the 

first five moves of the depth from 0 to 1. It can be observed 
that the time taken is less than 1s which is extremely quick 
and almost instant. Although the line analysed at depth 5 is 
significantly higher compared to depth 1 but the time taken is 
almost the same. The line analysed when the depth is set at 0 
is equivalent to the width size. Whereby if the width is set as 
8 the line analysed will be 8 also. In this case, the width has 
been set to 9 thus 9 lines has been analysed. When the depth 
is increased to 1 depth level, the line analysed is time ten of 
the set width referring to equation (2). Although depth that is 
lower than 3 takes lesser time to make a move it is not making 
the most optimal move. This is because the winning 
percentage of humans is higher which is 95% which is not the 
aim of the experiment. Depth 4 and 5 makes much more 
optimal move and also gives the move in a short period of 
time. Not only that but it has a higher AI winning percentage 
which is 98%. 

 

      𝐷𝑒𝑝𝑡ℎ 1 𝐿𝑖𝑛𝑒 𝐴𝑛𝑙𝑎𝑦𝑠𝑒𝑑  =  𝑊𝑖𝑑𝑡ℎ 𝐿𝑒𝑛𝑔𝑡ℎ ∗ 10       (2) 
 

TABLE III.  DEPTH RESULT OF 6 – 10 

DEPTH  MOVE  TIME TAKEN(S)  LINE ANALYSED  

6 

1 1.25 307994 

2 2.14 491721 

3 3.95 315744 

4 4.49 443107 

5 3.86 368837 

7 

1 63.09 2927702 

2 125.56 6783007 

3 85.87 2810740 

4 88.15 1379037 

5 86.32 14536958 

8 

1 63.41 16602524 

2 126.43 7374165 

3 105.43 4389983 

4 90.13 13112089 

5 110.43 27432773 

9 

1 83.42 45102424 

2 184.06 32354071 

3 129.12 43289321 

4 188.12 22791022 

5 110,43 43531913 

10 

1 290.54 55764660 

2 309.40 57754960 

3 244.13 71661621 

4 491.21 69162372 

5 197.18 71271139 

 

As the depth starting from 6 it can be observed that the 
system starts taking seconds to get the next move. This is 
because there are more lines being analysed and it is taking a 
longer time to return an optimal move. More nodes have to be 
explored resulting in a longer search time. As can be seen 
when the depth is 10 the machine took up to 491.21s to make 
a move which is almost up to 8 minutes. Although the moves 
made are optimal but in such an online game no one would 
want to wait that long for a machine to make a move and 
would rather just leave the game. 

TABLE IV.  SUMMARY OF DEPTH 0 – 10 

Depth  Time Average (s)  Average Line Analysed  

0 0.134 9 

1 0.146 

 

90 

 

2 0.136 
 

435 
 

3 0.132 

 

2489 

 

4 0.148 
 

14203 
 

5 0.176 

 

51524 

 

6 3.138 

 

385141 

 

7 89.798 

 

5587506 

 

8 99.166 

 

13782307 

 

9 139.03 

 

37413750 

 

10 306.492 65122950 

 

 

Fig. 5. Graph of average time against depth 



Journal of Applied Technology and Innovation (e -ISSN: 2600-7304)   vol. 6, no. 1, (2022)                                   48 

 

 

Fig. 6. Graph average line analysed against depth 

Different depths have been used to check on the time 
analysed and also line analysed. This is the summary and line 
chart that has been produced based on the depth with the time 
taken average and average line analysed. It will give a better 
visualisation of how the depth impact the average line 
analysed and average time taken to make an optimal move. As 
clearly shown that the when the depth increases the average 
time taken and average lines analysed increase. Alpha Beta 
Pruning with Mini Max algorithm is suitable to be 
implemented for games that need a depth search ranging from 
4 to 6. If a game requires a much deeper search, then another 
algorithm shall be applied rather than Alpha-Beta Pruning 
with Mini Max algorithm. 

B. Width Change 

 Below is the result when different width has been used. 
Throughout the whole experiment, there are two parameters 
that are kept constant which is the depth and height. The depth 
that is kept throughout the whole experiment is 4 meanwhile 
the height is 8. Higher width value resulted in more columns 
in the board, with the increment of the action space to be 
evaluated, the computational time for the algorithm to 
construct a move increased. Below is the equation for 
calculating action space. 

 
Action Space = Column Width - Number of Full Columns at   
              Current State                    (3) 

TABLE V.  WIDTH RESULT OF 8 – 16 

WIDTH  MOVE  TIME TAKEN(S)  LINE ANALYSED  

8 

1 0.35 7878 

2 0.49 8211 

3 0.32 5689 

4 0.28 8869 

5 0.16 9435 

10 

1 0.48 17670 

2 0.63 27286 

3 0.55 28480 

4 2.75 21847 

5 2.69 20532 

12 

1 0.53 35178 

2 0 48 36862 

3 0.86 22077 

4 1.32 2096 

5 5.82 47063 

14 

1 0.64 44718 

2 0.98 58130 

3 1.23 55576 

4 1.36 51923 

5 1.76 45156 

16 

1 0.45 44883 

2 0.21 55311 

3 3.73 82733 

4 2.5 48456 

5 1.8 63695 

 

TABLE VI.  SUMMARY OF WIDTH 8 – 16 

Width   Time Time Average (s)  Average Line Analysed  

8 0.32 8016 

10 1.42 23163 

12 1.802 32430 

14 1.194 51101 

16 1.738 59016 

 

With more width added to the board, the computer had to 
analyse more possible actions, therefore the average of time 
taken for it to make a new move is increased. The smallest 
width value of 8 was used as the application crashed 
whenever the width was smaller than 8. A depth value of 4 
was selected as it is the most optimal. 

C. Height Change 

Table VII shows a summary result of when different board 
heights have been used. Throughout the whole experiment 
there are two parameters kept constant; the width and search 
depth. The width was kept at 8 whereas the search depth was 
a constant of 4. 
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TABLE VII.  SUMMARY OF HEIGHT 1-10 

Height Range  Time Taken Line Analysed  Crashed  

1-2 - - Yes 

3-6 - - Yes 

7 Very efficient  Half  Half  

8-10 Very efficient Yes No 

 

Table VII showcases how the height of the board impacts 
the running of the Connect-4 game. Within the height range 
of 1 to 2, the program does not run at all whereby when players 
click on any empty spaces, nothing occurs. Even though the 
program crashes with a height range of 3 to 6, players are able 
to click on the board and receive a response from the program, 
placing its pieces randomly up to a point of no response given 
after several clicks. As for the height of 7, the game runs 
efficiently and effectively during the first half of the game 
before crashing. Upon filling up more spaces on the board, the 
program would not respond to any player interaction, thus 
manual cancellation of the game has to be initiated. Lastly, for 
the height range of 8 to 10, the program runs efficiently and 
effectively throughout the entire gaming experience. 

TABLE VIII.  HEIGHT RESULT OF 8 – 10 

HEIGHT  MOVE  TIME TAKEN(S)  LINE ANALYSED  

8 

1 0.37 9190 

2 0.53 16148 

3 0.43 11017 

4 0.25 6173 

5 0.41 10339 

9 

1 0.37 9190 

2 0.42 10773 

3 0.44 12241 

4 0.37 9812 

5 0.54 17462 

10 

1 0.37 9190 

2 0.36 8213 

3 0.43 11581 

4 0.32 7748 

5 0.45 11984 

 

Table VIII shows the time taken and lines analyzed within 
the first 5 moves for the board height ranging from 8 to 10. As 
shown, the observed parameters for each height constant 
remain almost similar whereby there is no distinct or drastic 

difference measured. This is because, during the first few 
moves of the game, all pieces will be filling in the board 
baseline. With the implementation of Alpha-Beta Pruning 
which reduces the size of a search tree from unnecessary 
exploration, the number of lines analyzed and the time taken 
remains almost similar considering with an increase of height, 
it would lead to more unnecessary expansion of search branch 
unless the next move requires the extra height row. The height 
of the board is only taken into consideration for the number of 
lines analyzed when the pieces start filling in the upper 
quadrant of the board. In conclusion, if the algorithm used 
does not utilize Alpha-Beta Pruning, the height of board could 
possibly make a huge impact on the obtained result. 

TABLE IX.  SUMMARY OF HEIGHT 8 – 10 

Height  Time Taken Average (s)  Average Line Analysed  

8 0.398 10573 

9 0.428 11896 

10 0.386 9743 

 

 Table IX summarizes the average time taken and 
lines analysed throughout the first five play movements. It 
can be derived that the height of the board does not influence 
the outcome of the game, considering hypothetically, as the 
height increases, the average time taken, and lines analysed 
should increase as well. This is possible because in the game 
of Connect-4, each piece placed will fill the baseline of the 
board due to the nature of gravity, hence the height of the 
board does not necessarily impact the result of the game 
rather it allows for the prolonging of each gaming session. 
With a shorter height, it would result in a shorter game if both 
players were to fill the entire board, nonetheless, the winning 
percentage for each player remains the same. 

IV. CONCLUSION 

 In conclusion, this paper contributes to seeking the optimal 
parameters for an efficient running of the Connect-4 game 
using Alpha-Beta Pruning with Minimax to achieve the 
highest winning rate. Modifications were made to the depth of 
search and size of the board to study how these changes can 
lead to an impact on the algorithm’s overall performance in 
different criteria. Each parameter was changed respectively 
while keeping constant of other parameters to keep track of 
the progression of result, however, there could be a possibility 
that if all parameters were changed concurrently, better 
optimization can be achieved. 

 Based on our findings, the algorithm, Alpha-Beta Pruning 
with Minimax is best implemented with a constant search 
depth of either 4 or 5 as it results in an optimal time taken for 
decision-making and is proven to have a great winning 
percentage. Despite higher search depth leads to a better 
winning course, in terms of the evaluation of other criteria 
such as the execution time, it did not achieve efficiency. For 
every online game, the fundamental concern is to ensure it is 
both functional and quick to respond to any user interaction, 
hence other aspects are of secondary priority. The same 
logical sense is to be applied in this instance because Connect-
4 is a turned-based game, thus achieving optimal response 
time should be the main concern followed by its winning 
percentage. 
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