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Abstract— There have been multiple attempts at playing the 

snake game with AI approaches which include Genetic 

Algorithm and Neural Network. This paper aim to research on 

how tuning several parameters of genetic algorithm and neural 

network will affect a snake agent in its performance. The 

parameters changed in this experiment are the mutation 

percent, percentage of best/worst performing, mutation 

intensity and arena size to test the effects of each parameter on 

the performance of the snake agent. The consistency as well as 

performance of the snake agent are both observed closely in this 

study. We have found out that each parameter has its own 

degree of effect on the performance of the snake agent. 
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I. INTRODUCTION 

The snake game was originally created as a mobile game 
by Nokia back in 1997. It quickly gained popularity as it was 
a simple yet addictive game. This game involves the user 
controlling a single block known as the snake within a fixed-
size arena and only able to move it in four 90-degree 
directions, forward, backward, left and right to search for 
food. Upon the collection of each food, the snake grows an 
extra body segment which will result in gradually increasing 
the difficulty of the game. As the snake collects more food the 
snake dies when the snake collides with the arena wall and its 
own body. The scores of the snake will be higher as it eats 
more food. The main objective for the player playing the game 
is to collect as many food and surviving for as long as possible 
to obtain a high score. 

Snake is a computer action game, and many researchers 
demonstrate it using various classical algorithms. Up to now, 
a number of studies have indicated to use Genetic Algorithms 
(GA) [3], Deep-Q-Network (DQN) [16], Double-DQN, 
Proximal Policy Optimization (PPO) [5], Q learning 
Algorithm, SARSA [2], A* Search, random move, almighty 
move respectively, best first search[11] and Evolutionary 
algorithms (EA) [19] as the algorithms for playing the snake 
game. In previous studies on snake game, the type of input of 
genetic neural networks approach has been found that it can 
affect the snake to perform a strategy better from basic input 
sensors [9]. Another research has clearly explained that a slow 

algorithm can help the snake to achieve the highest score 
possible while a fast algorithm can help to achieve a score 
faster but also get the game ended faster than slow algorithm 
[11]. Surveys such as that conducted by Yamini & Jain [18] 
and Bialas [3] have shown that an accurate result should have 
an adjustment of parameters like higher runs and higher 
generations will affect the scores become higher. 

One of the algorithms involved in the study is called 
Genetic Algorithms which belong to the category of 
optimization algorithms and they are usually used to discover 
the best optimal solution for an issue that decreases or 
increases a function. Genetic algorithms also came from a 
field of study that is known as evolutionary computation in 
which the algorithm was used to copy the reproduction 
process and select the fittest solutions. This function enables 
the algorithm to discover solutions to issues that other 
methods cannot pick up due to a lack of features. The basic 
structures of the algorithm are fitness function for 
optimization, a population for chromosomes, chromosomes to 
be selected, crossover for next generation chromosomes, and 
also mutation of chromosomes in the latest generation. Hence 
it can be said that Genetic Algorithm is suitable to be applied 
in sectors that involve finding the optimal solution for the 
problems [8]. 

On the other hand, another algorithm that is involved in 
this study is known as Artificial Neural Network is an 
emulation of the human brain. It belongs to the Artificial field 
alongside Expert System and Fuzzy Logic. Besides, Artificial 
Neural Network also consists of interconnections of artificial 
neurons that carry signals in the same way of how a human 
brain does. The artificial neuron will be trying to reproduce 
the structure of the natural neuron which  consists of input and 
output and also the function of activation. The simplest form 
of an Artificial Neural Network architecture is known as the 
Perceptron which is made up of one neuron with two inputs 
and one output. The way of training neural networks can be 
undergone through using the back propagation algorithm 
which uses supervised learning and also an architecture 
known as feed-forward as it is one of the most used methods 
for categorization and prediction [12]. Therefore, it can be said 
that an artificial neural network is certainly a great addition to 
the large algorithms group that can be used to solve problems. 
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The use of Neural Network and Genetic Algorithm has been 
used in playing games. Many researchers had done 
experiments that are able to play games successfully using 
some version of neural networks, while some even manage to 
match or even surpass human performance [9][17]. Typically, 
Neural Networks are not utilized as a standalone solution, but 
is bundled together with other algorithms like Evolutionary 
Neural Network [3][4][7][9][13][14][15][19] or deep Q 
network [5][17]. There are several parameters that can be 
tuned in Artificial Neural Networks, which include number of 
hidden layers and number of hidden nodes [3]. In the study of 
Mishra et al, they found that models with Neural Network that 
have only a single hidden node may sometimes give high 
performance, however it was very unpredictable, hence it is 
unreliable 

Studies on the use of Genetic Algorithm to solve problems 
has also been successful on problems like Balancing Biped 
Characters in Games [7], Playing the Snake Game [3][9], 
Solving Cross-matching Puzzle [10], and also Enhancing the 
Computational Performance and Quality of Search Engine 
Results [15]. However, there are also some shortcomings 
when we implement a solution using Genetic Algorithms. 
Although the Genetic Algorithm is able to generate a good set 
of controllers, it is only can be applied to a specific game 
environment. The trained controller does not perform good 
enough for unknown game environments compared to using 
Heuristics controllers [9]. Genetic Algorithms also generally 
take a lengthy time to run and to achieve the convergence of a 
problem [7][13][9]. 

II. MATERIALS AND METHODS 

A) Materials and Methods 

In order to run the snake game bundled with Genetic 
algorithms and Neural networks, we used python 3.7 as a tool 
to run the game. The source code that we used was originally 
developed by Ali Akbar[1] allowed us to modify the 
parameters of the genetic algorithm and neural network. This 
source code allowed us to change the parameters, train the 
snake using Genetic algorithm, save the model as a pickle file 
which is used to sequence and deserialize Python objects such 
as lists and dictionaries into byte streams of 0 and 1, and 
display the results of the trained snake by running the snake 
game. In this case, we realized that the code could not record 
the results of each run. Therefore we made some 
modifications to game.py in the source code and pushed it to 
our fork in GitHub [6]. 

         After modifying the code, we chose to use Google 
Colaboratory to train the snake to ensure that we are in a 
consistent environment when running the code. This platform 
has a fixed model such as Intel(R) Xeon(R) CPU @ 2.00GHz 
and 13G of space to run the code.  

 

Fig. 1. Baseline parameters 

The trained snake will save as a pickle file, and we can 
download the trained model and run it on our local devices. 
The recorded performance, such as number of generations, 
crash causes and scores will be saved as a csv file in the save 
folder and all the record will be used for demonstrating the 
results of this paper. 

There is a file that was created to store the input of the 
snake game which is “input.py”. The purpose of that file is to 
control all the parameters of the snake in the game which are 
the game environment parameters and genetic algorithm 
parameters. There is a baseline set for the parameters so that 
the results can be compared later on. The snake will get trained 
from the first generation until the last generation which is 150. 
Since we also have to test how the change in parameters 
affected the snake performance, we changed each of the  
parameters in “input.py” by overwriting the parameters using 
the “%%writefile” magic function. For instance, in order to 
test how the changes in mutation intensity will affect the snake 
performance, the mutation intensity parameter in “input.py” 
needs to be overwritten.  

 

Fig. 2. Training the agent 

The code block above demonstrates how to train a model 
using the genetic algorithm and saving the pickle file as any 
specified name. The trained model is then downloaded onto 
our local device. The snake was then trained by using each 
variation of the particular parameter once and each trained 
model was saved in a separate pickle file. Once the pickle files 
were obtained, the next method was to run the snake using 
Python with the specific pickle file. Before the snake game 
starts, the program will prompt for the input of the file 
directory where we would like to save the result csv file. Once 
we specified the filename, the snake game would begin. After 
all generations of the game is finished, the results csv file can 
be obtained from the file directory that was inputted before the 
game started. Each variation of the parameter is being tested 
to run for a total of 3 times to get an average result. The 
process is then repeated  with the other pickle files. 

The results were then exported into Microsoft Excel and 
the line graph was plotted using the Insert Graph function in 
Excel. Once each variation of the parameters has completed 
the run, the results were recorded and analyzed in the Results 
and Discussion section. 

B) Algorithm Implementation  

The Artificial Neural Network is served as the main 
decision-making part of the snake agent and Genetic 
Algorithm is used to optimize the Neural Network of the snake 
game model. The Artificial Neural Network allows the agent 
to determine what steps should be taken at each point of the 
game. Meanwhile, the Genetic Algorithm is responsible for 
applying the idea of natural selection to filter the best set of 
weights for the Neural Network for playing the snake game. 
At the end of the experiment, we aim to find out what are the 
factors that affect the performance of the snake agent. 
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There are several sets of parameters that we have changed 

to study the performance of the snake. Firstly, the mutation 
intensity of the genetic algorithm. The mutation intensity 
defines how much any weights in the neural network can 
change if it undergoes mutation when producing the next 
generation. Given mutation intensity is set to x, the actual 
value change will be a random value between -x and x. 
Secondly, mutation percentage is dictating how many weights 
in the neural network will undergo mutation for the next 
generation. Given mutation percentage p, the number of 
weights that will undergo mutation is between 1 and p, which 
will be determined randomly. As for the arena size, we have 
modified the block length parameter which will define the 
width and height of each block in the game screen. The 
smaller the block length, the bigger the arena. Lastly, 
proportion of best performing parent vs worst performing 
parent for breeding defines the ratio of best performing agent 
to worst performing agent to be used for breeding the next 
generation of agents in the genetic algorithm. We have kept 
the proportion of parent agents to be included in the next 
generation at a constant of 20%. The remaining 80% will be 
the offspring of the said parent agents. 

We have defined a set of constant parameters as our 
baseline agent as shown in Fig 1.We have studied the change 
of 4 sets parameters on the performance of the snake agent. 
The first experiment, we have investigated how the mutation 
intensity of the genetic algorithm with mutation intensity of 
0.01, 0.1 [baseline] and 0.5 respectively. On the second 
experiment, we trained the agent with mutation percentage 
with 3.5%, 7% [baseline] and 14% respectively. For the third 
experiment, we ran the baseline agent by changing the block 
length parameter, which directly corresponds to the arena size. 
The block length that was used was 20 (27*22 [baseline]), 10 
(54*44) and 5 (108*88) respectively. As for the last 
experiment, the proportion of best performing parent vs worst 
performing parent for breeding is set at the ratio of 18%:2% 
[baseline], 10%:10% and 2%:18% and is trained respectively 

III. RESULTS AND DISCUSSION 

A) Mutation Intensity 

This experiment's purpose is to investigate the effect of 
changing mutation intensity on the snake game. For the 
experiment, we had studied 3 variations of mutation intensity 
which are 0.1, 0.5 and 0.01 respectively. Each mutation 
intensity is being trained and run for 3 times in the snake game 
and the results are being recorded. The performance of the 
snake in each generation is being averaged based on the 3 
times runs. The baseline of the mutation intensity is being set 
at 0.1 and we also tweaked the intensity to 0.5 and 0.01 for the 
test. The reason that we decided to select 0.5 and 0.01 
mutation intensity for the test is because we want to observe 
how such differentiation will impact the snake performance in 
the game.  

Based on the results, we can observe that when the snake 
that is trained with baseline mutation intensity of 0.1 has 
achieved a highest score of 60.00 on average. The results show 
that the performance suffered a big drop on generation 43 
before it bounced back and started to fluctuate until the last 
generation. 

For mutation intensity of 0.5, the snake managed to 
achieve a highest score of 81.33 on average. The results graph 
fluctuated between generation 43 and 146 until the 

performance is getting better and hits the peak at generation 
92 with the highest average score. 

 

Fig. 3. Mutation intensity 0.1 

  

Fig. 4. Mutation intensity 0.5 

 

Fig. 5. Mutation intensity 0.01 

Furthermore, after the mutation intensity has been tweaked 
to 0.01, the performance of the snake is getting worse as the 
snake managed to achieve the highest score of 4.50 on 
average. The performance suffered a great drop starting from 
generation 19 until reaching generation 67. Although the 
snake was getting better scores on average starting in 
generation 67 , it is very low when compared to other mutation 
intensity. Overall, the performance of the snake at this 
mutation intensity was the worst when compared to the other 
intensity. 

After comparing the results, we can find out that the 
snake's performance is the most consistent when it is being 
trained at 0.01 mutation intensity. One of the reasons is 
because lower mutation intensity would not affect each 
generation of snake too much as all of them are almost similar. 
Although sometimes the performance might fluctuate, the 
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results are proved to be the most consistent among all the 
mutation intensity. 

However, having consistent results does not guarantee that 
the snake is getting good scores. We can observe that higher 
mutation intensity snakes are getting much higher scores when 
compared to lower mutation intensity snakes. This is because 
at a higher rate of mutation intensity, some of the snakes tend 
to mutate much greater than others. Thus, this will cause 
inconsistency in results but at the same time higher scores 
might be achieved. 

To summarize, the mutation intensity to be chosen should 
be in medium level as too low mutation intensity will cause 
the snake not to be performing at its best while high mutation 
intensity will cause the results of the snake to be inconsistent. 

B) Mutation Percentage 

We had studied 3 different mutation percentage, which is 
3.5%, 7% and 14% respectively to study how it affects the 
model’s average performance. Each variant is trained, and the 
trained model is used to play the snake game for 3 times. The 
performance of each generation is then averaged out across 
the 3 separate runs. The baseline of 7% mutation has been set. 
The reason for choosing 3.5% and 14% a 2-fold increase and 
decrease will show how the performance is affected with 
different mutation percentages, but not on an extreme scale. 

  As we can see, the agent with a mutation percentage of 
3.5% only has a maximum score of 22 on average. Except for 
the first few generations, the line graph increases and 
decreases consistently around the value between 5 and 15. It 
does have performance spikes and dips especially around 
generations 65 to 100. However, the difference between the 
fluctuations is around 15 to 20. 

 

Fig. 6. Mutation percent 3.5 

As for mutation percentage 7%, the performance of the 
agent goes on an upward trend until generation 70. Then it 
drops slightly for a few generations and at generation 83, it 
takes a deep dive from average performance of 33 to 10.33. A 
similar trend can also be seen in generation 110 where it took 
a dip to 9.67 and quickly rises again to average performance 
of 56.67 at generation 116. Overall, the maximum average 
performance that is achieved by this model is 57.67, and the 
performance seem to fluctuate between the values of 10 to 50 
after generation 70. 

For a mutation percentage of 14%, the performance also 
has an upward trend. However, the trend is not as prominent 
as it is in 7% mutation as the performance fluctuates a lot 
between the value of 10 and 50 for generations before 

generation 61. The fluctuations of performance is even more 
noticeable around generation 123 where the agent can score a 
maximum average score of 61 and the next generations it 
plummets to average score of 2. 

 

Fig. 7. Mutation percent 7 

 

Fig. 8. Mutation percent 14 

Overall, we can see the performance of the snake agent is 
more consistent across generations with a lower percentage of 
mutation. This is explained because the number of weights 
that are changed is lower. This caused the agent of the next 
generation not being too different from the previous 
generation, thus it will perform similarly with the previous 
generations. However, there surely will be some form of 
fluctuations in performance in the agent as each game at each 
generation is generated randomly. 

It is also noticed that with a low mutation percentage, the 
model is not able to perform as well as those with higher 
mutation rate. This phenomenon occurs because with a lower 
number of genes being mutated each generation, there are 
lesser chances for the weights in the neural network to be 
mutated. This means that those weights that correspond to the 
performance of the snake will have a lower chance of getting 
changed or improved through the process of mutation. 
However, with a high mutation percentage, there are too many 
genes that undergo mutation. This caused some generations to 
gain a very good performance, but the next generation the 
performance plummet. This is because too many genes 
undergo mutation, making the parent and child differ too 
much in traits. These big fluctuations in performance cause the 
genetic algorithm to not be able to tune a good set of weights 
even after many generations of training.  

To conclude, the mutation percentage of each generation 
should be chosen at a moderate percentage as too low 
mutation percentage takes many generations to converge and 
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too high mutation percentage will cause the performance to 
fluctuate a lot between generations. 

C) Arena Size 

The parameter that is being altered here is the block length 
which is corresponded with the arena size in the “input.py” 
file which is responsible for the size per pixel in the agent’s 
arena. The aim here is to observe the effects on the scores if 
the snake agent is trained under a specified environment and 
then put in a different environment. The size of the arena will 
increase as the value of block length decreases. The agent is 
initially trained using arena size 27*22 as the baseline and 
stored under the “baseline.pickle” file.  

The block length parameter is tuned to values of 5, 10 and 
20 accordingly in the “input.py” file. Each of these values then 
undergo three runs each, scores recorded and the average 
across the three runs is calculated. The baseline of 20 is 
selected and the justification for 5 and 10 block length is 
arbitrary as we want to reflect the effects of manipulating the 
parameter on the agent with modesty. 

 

 

Fig. 9. Block length 5 

 

Fig. 10. Block length 10 

 

Fig. 11. Block length 20 (baseline) 

TABLE I.  RESULT OF 20 BLOCK LENGTH RUN 

Game End Method 
20 block run  

Run 1 Run 2  Run 3 Average 

Killed 23 12 22 19 

Body 88 128 107 107.6667 

Wall 39 10 21 23.33333 

 

TABLE II.  RESULT OF 10 BLOCK LENGTH RUN 

Game End Method 
10 block run 

Run 1 Run 2  Run 3 Average 

Killed 112 104 98 104.6667 

Body 35 41 51 42.33333 

Wall 3 5 1 3 

 

TABLE III.  RESULT OF 5 BLOCK LENGTH RUN 

Game End Method 
5 block run  

Run 1 Run 2  Run 3 Average 

Killed 144 143 144 143.6667 

Body 5 6 5 5.333333 

Wall 1 1 1 1 

 
  The agent tested with baseline parameters inclusive of 

block length 20 achieved a maximum average score of 57.67 
and on average a score of 31.11. It can be observed that the 
agent has a steady increase in score until it reaches a short 
plateau and starts to have fluctuating scores from generation 
37 onwards. These fluctuations continue to have its peaks and 
troughs on the line graph but have an overall increasing 
average score. The sharpest dip in average score was observed 
around generation 80 to 82 where the score dropped from 42 
to 10.67. 

The agent with its block length parameter changed to 10 
has a peak average score of 100.33 and on average a score of 
28.82. The agent has a plateau of single digit scores at the 
beginning but has a steep climb in scores around generation 
33. There are drastic fluctuations in scores from generation 59 
onwards to 150. These fluctuations are very noticeable as 
represented on the line graph with dipping as low as 4.66 from 
100.33 at generation 103. 

As for the agent with block length set at 5, it had the 
highest achieved peak average score amongst all the other 
agents of 122.67 and despite having inconsistent scores with 
spikes around generations 52, 84, 100 and 131. There are also 
significant drops in scores which are very noticeable around 
generation 131 and 132 where the average score dropped from 
122.67 to 6. It can be observed that there are overall low scores 
but there is still an overall increasing trend in average score. 

It can be seen that the snake agent is more consistent when 
put in the environment and parameters it was trained in but It 
lagged far behind in maximum average scores when compared 
to its tests using 5 and 10 block length. As the arena gets 
bigger when the block length value gets smaller, the snake 
agent had more room to navigate as well as maneuver, 
reducing the instances where the snake collides with its own 
body or arena walls.  
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This can be seen in the data where it is shown that the 

number of times the snake agent collides with its own body 
significantly decreases as the block length value decreases. 

         It is also observed that the snake agent put in lower 
block length has far lower scores and this is exceptionally 
noticeable in block length 5 where the snake agent has a 
consistent average score of lower than 2 between generations 
1 to 81 where it’s a completely different story when compared 
to the results of snake agent in block length 20 where the 
scores are consistently above within 25 and 57.67 from 
generation 53 to 150. There are some peculiar behaviors that 
are observed mainly in snake agents of block length 5 and 10 
where the snake agent will just get stuck in an endless loop 
which forces us to kill it manually or it wouldn’t progress to 
the next generation. This can be reflected in the number of 
“killed” count in results of block length 5 and 10. It is also 
visible that as the arena size increases, the average number of 
agents dying to wall collisions decrease. 

In conclusion, we should train the agent in the 
environment and with the parameters that we intend to execute 
it in to obtain the best, consistent and performing results as can 
be observed in the baseline experiment of arena size 27*22 
results which the agent was originally trained in.  

D) Percent of Best/Worst Performing 

In this experiment, we will identify and discuss the effect 
of 3 different percentage ratio of best to worst performing 
parents for breeding which are 18:2, 2:18 and 10:10. The 
percentages of best and worst performance were selected from 
the current generation and used to breed the next generation. 
These images show the average score for each variable over 
the 3 runs. 

Fig 12. is about the average score of percent of best/ worst 
performing of 18:2. It has been set as the baseline for 
observing how the change of percent will affect the score. It 
has shown the score is increasing in a progressive manner, 
with a maximum of 60 points. The biggest reason for this 
performance is that its present best performance is set as 18%. 
This means that the 20% of the current generation which used 
to breed the next generation has a high probability of being the 
top performing agents. This also indicates that the good set of 
weights will have a higher probability to get inherited to the 
next generation. 

 

Fig. 12. Percent of Best/Worst Performing 18:2 

Fig 13. is about changing the percent of best/worst 
performing to 2:18. We can see that the score of this graph has 
the lowest score among three graphs and its score rises 
gradually to about 2 and gets a 0 score after the 10th 

generation. The main reason for this performance is it has used 
18% of worst score performance with 2% of best score 
performance to breed the next generation, the new generation 
will definitely have a high probability to get a badly 
performing parent, thus inheriting the bad trait and reducing 
the performance of the next generation.  

 

Fig. 13. Percent of Best/Worst Performing 2:18 

Fig 14. has shown the performance of percent of 
best/worst performing of 10:10. As stated in the results, it got 
low scores in the first 50 generations, after which the scores 
increased but were very unstable. Also, the highest score of 
this graph, which has scored 55, is located at the 90th 
generation, even if this generation has scored the highest 
score, it will fluctuate and only get score of 2.  

This is because half of the set of generations used to feed 
the next generation are chosen from the best and worst 
performance. Therefore, there is an equal probability of 
getting a good generation set that can lead it to food, or a bad 
generation set that will cause it to be killed by the wall or 
repetition. That is why the performance of the snake is not 
consistent throughout the 150 generations. 

 

Fig. 14. Percent of Best/Worst Performing 10:10 

After comparing the overall result, we can notice that the 
higher the percentage of best performing, the higher score we 
can get. The score of percent of best/worst performing of 18:2 
has performed the best result of the score among the three 
variables as its score is increasing without instability. 
However, the performance of best/worst performing of 10:10 
also has an increasing score, but it's score is unstable and can’t 
get a higher score than the score of percent of best/worst 
performing of 18:2. 

In a nutshell, referring to these three graphs, we can see 
that higher best/worst performing parent ratio can lead to a 
consistent and good performing agent. Thus, we should 
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choose the highest percentage of best performing parents to 
ensure the trained model is competent.  

IV. CONCLUSION 

In conclusion, the performance of the snake agent under 
different circumstances of parameter changes is closely 
studied and analyzed. Each parameter have a certain degree of 
effect on the performance of the snake agent. It is observed 
that the agent performs well when parameters like block 
length, mutation percentage and mutation intensity are set at 
moderate values. As for the percentage of best/worst 
performing parameter, choosing the highest best/worst 
performing ratio of 18:2 will give us the best performing 
scores of snake agents. In future research, we could increase 
the number of generations for snake agent to observe if the 
snake agent performs worse or better if given more time and 
generations. 
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