.IE‘JTI Journal of Applied Technology and Innovation (e -1SSN: 2600-7304) vol. 6, no. 1, (2022) 51

Snake Game: A genetic neural network
approach

Shen Hau Hor
School of Computing
Asia Pacific University of Technology
& Innovation (APU)
Kuala Lumpur, Malaysia
tp061524@mail.apu.edu.my

Sheng Jeh Tan
School of Computing
Asia Pacific University of Technology
& Innovation (APU)
Kuala Lumpur, Malaysia
tp056267 @mail.apu.edu.my

Abstract— There have been multiple attempts at playing the
snake game with Al approaches which include Genetic
Algorithm and Neural Network. This paper aim to research on
how tuning several parameters of genetic algorithm and neural
network will affect a snake agent in its performance. The
parameters changed in this experiment are the mutation
percent, percentage of best/worst performing, mutation
intensity and arena size to test the effects of each parameter on
the performance of the snake agent. The consistency as well as
performance of the snake agent are both observed closely in this
study. We have found out that each parameter has its own
degree of effect on the performance of the snake agent.

Keywords—snake game, genetic algorithm, neural network,
parameter tuning

. INTRODUCTION

The snake game was originally created as a mobile game
by Nokia back in 1997. It quickly gained popularity as it was
a simple yet addictive game. This game involves the user
controlling a single block known as the snake within a fixed-
size arena and only able to move it in four 90-degree
directions, forward, backward, left and right to search for
food. Upon the collection of each food, the snake grows an
extra body segment which will result in gradually increasing
the difficulty of the game. As the snake collects more food the
snake dies when the snake collides with the arena wall and its
own body. The scores of the snake will be higher as it eats
more food. The main objective for the player playing the game
is to collect as many food and surviving for as long as possible
to obtain a high score.

Snake is a computer action game, and many researchers
demonstrate it using various classical algorithms. Up to now,
a number of studies have indicated to use Genetic Algorithms
(GA) [3], Deep-Q-Network (DQN) [16], Double-DQN,
Proximal Policy Optimization (PPO) [5], Q learning
Algorithm, SARSA [2], A* Search, random move, almighty
move respectively, best first search[11] and Evolutionary
algorithms (EA) [19] as the algorithms for playing the snake
game. In previous studies on snake game, the type of input of
genetic neural networks approach has been found that it can
affect the snake to perform a strategy better from basic input
sensors [9]. Another research has clearly explained that a slow

Mun Kye Yan
School of Computing
Asia Pacific University of Technology
& Innovation (APU)
Kuala Lumpur, Malaysia
tp056066 @mail.apu.edu.my

Yoke Shin Sim
School of Computing
Asia Pacific University of Technology
& Innovation (APU)
Kuala Lumpur, Malaysia
tp059851@mail.apu.edu.my

Zailan Arabee bin Abdul Salam
School of Computing
Asia Pacific University of Technology
and Innovation (APU)
Kuala Lumpur, Malaysia
zailan@apu.edu.my

algorithm can help the snake to achieve the highest score
possible while a fast algorithm can help to achieve a score
faster but also get the game ended faster than slow algorithm
[11]. Surveys such as that conducted by Yamini & Jain [18]
and Bialas [3] have shown that an accurate result should have
an adjustment of parameters like higher runs and higher
generations will affect the scores become higher.

One of the algorithms involved in the study is called
Genetic Algorithms which belong to the category of
optimization algorithms and they are usually used to discover
the best optimal solution for an issue that decreases or
increases a function. Genetic algorithms also came from a
field of study that is known as evolutionary computation in
which the algorithm was used to copy the reproduction
process and select the fittest solutions. This function enables
the algorithm to discover solutions to issues that other
methods cannot pick up due to a lack of features. The basic
structures of the algorithm are fitness function for
optimization, a population for chromosomes, chromosomes to
be selected, crossover for next generation chromosomes, and
also mutation of chromosomes in the latest generation. Hence
it can be said that Genetic Algorithm is suitable to be applied
in sectors that involve finding the optimal solution for the
problems [8].

On the other hand, another algorithm that is involved in
this study is known as Artificial Neural Network is an
emulation of the human brain. It belongs to the Artificial field
alongside Expert System and Fuzzy Logic. Besides, Artificial
Neural Network also consists of interconnections of artificial
neurons that carry signals in the same way of how a human
brain does. The artificial neuron will be trying to reproduce
the structure of the natural neuron which consists of input and
output and also the function of activation. The simplest form
of an Artificial Neural Network architecture is known as the
Perceptron which is made up of one neuron with two inputs
and one output. The way of training neural networks can be
undergone through using the back propagation algorithm
which uses supervised learning and also an architecture
known as feed-forward as it is one of the most used methods
for categorization and prediction [12]. Therefore, it can be said
that an artificial neural network is certainly a great addition to
the large algorithms group that can be used to solve problems.

mailto:tp061524@mail.apu.edu.my
mailto:tp056267@mail.apu.edu.my
mailto:tp056066@mail.apu.edu.my
mailto:zailan@apu.edu.my

JE‘JTI Journal of Applied Technology and Innovation (e -1SSN: 2600-7304) vol. 6, no. 1, (2022) 52

The use of Neural Network and Genetic Algorithm has been
used in playing games. Many researchers had done
experiments that are able to play games successfully using
some version of neural networks, while some even manage to
match or even surpass human performance [9][17]. Typically,
Neural Networks are not utilized as a standalone solution, but
is bundled together with other algorithms like Evolutionary
Neural Network [3][4]1[7]1[9][13][14][15][19] or deep Q
network [5][17]. There are several parameters that can be
tuned in Artificial Neural Networks, which include number of
hidden layers and number of hidden nodes [3]. In the study of
Mishra et al, they found that models with Neural Network that
have only a single hidden node may sometimes give high
performance, however it was very unpredictable, hence it is
unreliable

Studies on the use of Genetic Algorithm to solve problems
has also been successful on problems like Balancing Biped
Characters in Games [7], Playing the Snake Game [3][9],
Solving Cross-matching Puzzle [10], and also Enhancing the
Computational Performance and Quality of Search Engine
Results [15]. However, there are also some shortcomings
when we implement a solution using Genetic Algorithms.
Although the Genetic Algorithm is able to generate a good set
of controllers, it is only can be applied to a specific game
environment. The trained controller does not perform good
enough for unknown game environments compared to using
Heuristics controllers [9]. Genetic Algorithms also generally
take a lengthy time to run and to achieve the convergence of a
problem [7][13][9].

1. MATERIALS AND METHODS

A) Materials and Methods

In order to run the snake game bundled with Genetic
algorithms and Neural networks, we used python 3.7 as a tool
to run the game. The source code that we used was originally
developed by Ali Akbar[1l] allowed us to modify the
parameters of the genetic algorithm and neural network. This
source code allowed us to change the parameters, train the
snake using Genetic algorithm, save the model as a pickle file
which is used to sequence and deserialize Python objects such
as lists and dictionaries into byte streams of 0 and 1, and
display the results of the trained snake by running the snake
game. In this case, we realized that the code could not record
the results of each run. Therefore we made some
modifications to game.py in the source code and pushed it to
our fork in GitHub [6].

After modifying the code, we chose to use Google
Colaboratory to train the snake to ensure that we are in a
consistent environment when running the code. This platform
has a fixed model such as Intel(R) Xeon(R) CPU @ 2.00GHz
and 13G of space to run the code.

° Jkwritefile input.py
game environment parameters
width = 540
height = 440
block_length = 20
brainLayer = [24, 16, 3] # neural network layers that act as brain of snake

genetic algorithm parameter

population_size = 40

no_of_generations = 150

per_of_best_old_pop = 18.0 # percent of best performing parents to be included
per_of_worst_old_pop = 2 # percent of worst performing parents to be included
mutation_percent = 7.0

mutation_intensity = ©.1

> oOverwriting input.py

Fig. 1. Baseline parameters

The trained snake will save as a pickle file, and we can
download the trained model and run it on our local devices.
The recorded performance, such as number of generations,
crash causes and scores will be saved as a csv file in the save
folder and all the record will be used for demonstrating the
results of this paper.

There is a file that was created to store the input of the
snake game which is “input.py”. The purpose of that file is to
control all the parameters of the snake in the game which are
the game environment parameters and genetic algorithm
parameters. There is a baseline set for the parameters so that
the results can be compared later on. The snake will get trained
from the first generation until the last generation which is 150.
Since we also have to test how the change in parameters
affected the snake performance, we changed each of the
parameters in “input.py” by overwriting the parameters using
the “%%writefile” magic function. For instance, in order to
test how the changes in mutation intensity will affect the snake
performance, the mutation intensity parameter in “input.py”
needs to be overwritten.

© !python3 Genetic_algo.py -o saved/mPercentid.pickle

[» pygame 2.6.1 (SDL 2.8.14, Python 3.7.11)
Hello from the pygame community. https://was.pygame.org/contribute.html
i 1

spsEsEE RS EE [100.00%]
ith index as score : [38, 1, 1, , 8, 8, 8, 8, ©, 6, 8, 0, @, 8, @] snakes killed 17
2, steps : 360 crashed repetition
. s 1, steps : 3 crashed wall

snake : 3 , score : @, steps : 2 crashed wall

snake : 4, score : @ , steps : 2 crashed wall

snake : 5, score : @, steps : 2 crashed wall

2,

sEEBERSRSSR SRS SRS SR SRS AERRE [100.00%]
snakes distribution with index as score : [38, 1, 0, 8, 1, 8, 8, 0, 8, 6, 8, 8, @, 8, 8] snakes killed 13
snake : 1 . score : 4 . steos : 1 crashed bodv

Fig. 2. Training the agent

The code block above demonstrates how to train a model
using the genetic algorithm and saving the pickle file as any
specified name. The trained model is then downloaded onto
our local device. The snake was then trained by using each
variation of the particular parameter once and each trained
model was saved in a separate pickle file. Once the pickle files
were obtained, the next method was to run the snake using
Python with the specific pickle file. Before the snake game
starts, the program will prompt for the input of the file
directory where we would like to save the result csv file. Once
we specified the filename, the snake game would begin. After
all generations of the game is finished, the results csv file can
be obtained from the file directory that was inputted before the
game started. Each variation of the parameter is being tested
to run for a total of 3 times to get an average result. The
process is then repeated with the other pickle files.

The results were then exported into Microsoft Excel and
the line graph was plotted using the Insert Graph function in
Excel. Once each variation of the parameters has completed
the run, the results were recorded and analyzed in the Results
and Discussion section.

B) Algorithm Implementation

The Artificial Neural Network is served as the main
decision-making part of the snake agent and Genetic
Algorithm is used to optimize the Neural Network of the snake
game model. The Artificial Neural Network allows the agent
to determine what steps should be taken at each point of the
game. Meanwhile, the Genetic Algorithm is responsible for
applying the idea of natural selection to filter the best set of
weights for the Neural Network for playing the snake game.
At the end of the experiment, we aim to find out what are the
factors that affect the performance of the snake agent.

JTI Journal of Applied Technology and Innovation (e -1SSN: 2600-7304) vol. 6, no. 1, (2022) 53

There are several sets of parameters that we have changed
to study the performance of the snake. Firstly, the mutation
intensity of the genetic algorithm. The mutation intensity
defines how much any weights in the neural network can
change if it undergoes mutation when producing the next
generation. Given mutation intensity is set to X, the actual
value change will be a random value between -x and X.
Secondly, mutation percentage is dictating how many weights
in the neural network will undergo mutation for the next
generation. Given mutation percentage p, the number of
weights that will undergo mutation is between 1 and p, which
will be determined randomly. As for the arena size, we have
modified the block length parameter which will define the
width and height of each block in the game screen. The
smaller the block length, the bigger the arena. Lastly,
proportion of best performing parent vs worst performing
parent for breeding defines the ratio of best performing agent
to worst performing agent to be used for breeding the next
generation of agents in the genetic algorithm. We have kept
the proportion of parent agents to be included in the next
generation at a constant of 20%. The remaining 80% will be
the offspring of the said parent agents.

We have defined a set of constant parameters as our
baseline agent as shown in Fig 1.We have studied the change
of 4 sets parameters on the performance of the snake agent.
The first experiment, we have investigated how the mutation
intensity of the genetic algorithm with mutation intensity of
0.01, 0.1 [baseline] and 0.5 respectively. On the second
experiment, we trained the agent with mutation percentage
with 3.5%, 7% [baseline] and 14% respectively. For the third
experiment, we ran the baseline agent by changing the block
length parameter, which directly corresponds to the arena size.
The block length that was used was 20 (27*22 [baseline]), 10
(54*44) and 5 (108*88) respectively. As for the last
experiment, the proportion of best performing parent vs worst
performing parent for breeding is set at the ratio of 18%:2%
[baseline], 10%:10% and 2%:18% and is trained respectively

Il. RESULTS AND DISCUSSION

A) Mutation Intensity

This experiment's purpose is to investigate the effect of
changing mutation intensity on the snake game. For the
experiment, we had studied 3 variations of mutation intensity
which are 0.1, 0.5 and 0.01 respectively. Each mutation
intensity is being trained and run for 3 times in the snake game
and the results are being recorded. The performance of the
snake in each generation is being averaged based on the 3
times runs. The baseline of the mutation intensity is being set
at 0.1 and we also tweaked the intensity to 0.5 and 0.01 for the
test. The reason that we decided to select 0.5 and 0.01
mutation intensity for the test is because we want to observe
how such differentiation will impact the snake performance in
the game.

Based on the results, we can observe that when the snake
that is trained with baseline mutation intensity of 0.1 has
achieved a highest score of 60.00 on average. The results show
that the performance suffered a big drop on generation 43
before it bounced back and started to fluctuate until the last
generation.

For mutation intensity of 0.5, the snake managed to
achieve a highest score of 81.33 on average. The results graph
fluctuated between generation 43 and 146 until the

performance is getting better and hits the peak at generation
92 with the highest average score.

Average Results of Mutation Intensity = 0.1

— Mmoo oo
Mo F oW

31

LR ERRBE5384:

121
127
133
139
145

Fig. 3. Mutation intensity 0.1

Average Results of Mutation Intensity = 0.5

—

o

m g Mmoo owm oo =+ woo - L
H.Elf\lmmn.—g:.-g%‘\géc.gggﬁ

122

5]
— -

134
140
14

Fig. 4. Mutation intensity 0.5

Average Results of Mutation Intensity =0.01

N
. non

wa

=]

=

N bnopa bnow bnog

— -

31

m n e e T R N B T T B L - T
S an T 2RCCREEE S %':'l

121
127
133

Fig. 5. Mutation intensity 0.01

Furthermore, after the mutation intensity has been tweaked
to 0.01, the performance of the snake is getting worse as the
snake managed to achieve the highest score of 4.50 on
average. The performance suffered a great drop starting from
generation 19 until reaching generation 67. Although the
snake was getting better scores on average starting in
generation 67 , it is very low when compared to other mutation
intensity. Overall, the performance of the snake at this
mutation intensity was the worst when compared to the other
intensity.

After comparing the results, we can find out that the
snake's performance is the most consistent when it is being
trained at 0.01 mutation intensity. One of the reasons is
because lower mutation intensity would not affect each
generation of snake too much as all of them are almost similar.
Although sometimes the performance might fluctuate, the

JTI Journal of Applied Technology and Innovation (e -1SSN: 2600-7304) vol. 6, no. 1, (2022) 54

results are proved to be the most consistent among all the
mutation intensity.

However, having consistent results does not guarantee that
the snake is getting good scores. We can observe that higher
mutation intensity snakes are getting much higher scores when
compared to lower mutation intensity snakes. This is because
at a higher rate of mutation intensity, some of the snakes tend
to mutate much greater than others. Thus, this will cause
inconsistency in results but at the same time higher scores
might be achieved.

To summarize, the mutation intensity to be chosen should
be in medium level as too low mutation intensity will cause
the snake not to be performing at its best while high mutation
intensity will cause the results of the snake to be inconsistent.

B) Mutation Percentage

We had studied 3 different mutation percentage, which is
3.5%, 7% and 14% respectively to study how it affects the
model’s average performance. Each variant is trained, and the
trained model is used to play the snake game for 3 times. The
performance of each generation is then averaged out across
the 3 separate runs. The baseline of 7% mutation has been set.
The reason for choosing 3.5% and 14% a 2-fold increase and
decrease will show how the performance is affected with
different mutation percentages, but not on an extreme scale.

As we can see, the agent with a mutation percentage of
3.5% only has a maximum score of 22 on average. Except for
the first few generations, the line graph increases and
decreases consistently around the value between 5 and 15. It
does have performance spikes and dips especially around
generations 65 to 100. However, the difference between the
fluctuations is around 15 to 20.

Average Performance of Mutation Percent= 3.5

Average

T HERARNREFRI R ERRE B R g8 AREHERERY

Generation
Fig. 6. Mutation percent 3.5

As for mutation percentage 7%, the performance of the
agent goes on an upward trend until generation 70. Then it
drops slightly for a few generations and at generation 83, it
takes a deep dive from average performance of 33 to 10.33. A
similar trend can also be seen in generation 110 where it took
a dip to 9.67 and quickly rises again to average performance
of 56.67 at generation 116. Overall, the maximum average
performance that is achieved by this model is 57.67, and the
performance seem to fluctuate between the values of 10 to 50
after generation 70.

For a mutation percentage of 14%, the performance also
has an upward trend. However, the trend is not as prominent
as it is in 7% mutation as the performance fluctuates a lot
between the value of 10 and 50 for generations before

generation 61. The fluctuations of performance is even more
noticeable around generation 123 where the agent can score a
maximum average score of 61 and the next generations it
plummets to average score of 2.

Average Performance of Mutation Percent=7

oo wgme o L] P = - N R - W] -
A== == i s R R

Generation

Fig. 7. Mutation percent 7

Average Performance of Mutation Percent= 14

SRR EEEEEEEEEEE RS R R LR

mE2a
IR L JEL L QL Y

Generation
Fig. 8. Mutation percent 14

Overall, we can see the performance of the snake agent is
more consistent across generations with a lower percentage of
mutation. This is explained because the number of weights
that are changed is lower. This caused the agent of the next
generation not being too different from the previous
generation, thus it will perform similarly with the previous
generations. However, there surely will be some form of
fluctuations in performance in the agent as each game at each
generation is generated randomly.

It is also noticed that with a low mutation percentage, the
model is not able to perform as well as those with higher
mutation rate. This phenomenon occurs because with a lower
number of genes being mutated each generation, there are
lesser chances for the weights in the neural network to be
mutated. This means that those weights that correspond to the
performance of the snake will have a lower chance of getting
changed or improved through the process of mutation.
However, with a high mutation percentage, there are too many
genes that undergo mutation. This caused some generations to
gain a very good performance, but the next generation the
performance plummet. This is because too many genes
undergo mutation, making the parent and child differ too
much in traits. These big fluctuations in performance cause the
genetic algorithm to not be able to tune a good set of weights
even after many generations of training.

To conclude, the mutation percentage of each generation
should be chosen at a moderate percentage as too low
mutation percentage takes many generations to converge and

JTI Journal of Applied Technology and Innovation (e -1SSN: 2600-7304) vol. 6, no. 1, (2022) 55

too high mutation percentage will cause the performance to
fluctuate a lot between generations.

C) Arena Size

The parameter that is being altered here is the block length
which is corresponded with the arena size in the “input.py”
file which is responsible for the size per pixel in the agent’s
arena. The aim here is to observe the effects on the scores if
the snake agent is trained under a specified environment and
then put in a different environment. The size of the arena will
increase as the value of block length decreases. The agent is
initially trained using arena size 27*22 as the baseline and
stored under the “baseline.pickle” file.

The block length parameter is tuned to values of 5, 10 and
20 accordingly in the “input.py” file. Each of these values then
undergo three runs each, scores recorded and the average
across the three runs is calculated. The baseline of 20 is
selected and the justification for 5 and 10 block length is
arbitrary as we want to reflect the effects of manipulating the
parameter on the agent with modesty.

Average Performance of Block Length =5

o

Generation

Fig. 9. Block length 5

Average Performance of Block Length = 10

— R R R R mEnogg
S N = == = = IR s s s R

Generation

Fig. 10. Block length 10

Average Performance of Block Length = 20 (baseline)

Generation

Fig. 11. Block length 20 (baseline)

TABLE I. RESULT OF 20 BLOCK LENGTH RUN
Game End Method 20 block run
Run 1 Run 2 Run 3 Average
Killed 23 12 22 19
Body 88 128 107 107.6667
Wall 39 10 21 23.33333
TABLE Il RESULT OF 10 BLOCK LENGTH RUN
Game End Method 10 block run
Run 1 Run 2 Run 3 Average
Killed 112 104 98 104.6667
Body 35 41 51 42.33333
Wall 3 5 1 3
TABLE III. RESULT OF 5 BLOCK LENGTH RUN
Game End Method 5 block run
Run 1 Run 2 Run 3 Average
Killed 144 143 144 143.6667
Body 5 6 5 5.333333
Wall 1 1 1 1

The agent tested with baseline parameters inclusive of
block length 20 achieved a maximum average score of 57.67
and on average a score of 31.11. It can be observed that the
agent has a steady increase in score until it reaches a short
plateau and starts to have fluctuating scores from generation
37 onwards. These fluctuations continue to have its peaks and
troughs on the line graph but have an overall increasing
average score. The sharpest dip in average score was observed
around generation 80 to 82 where the score dropped from 42
to 10.67.

The agent with its block length parameter changed to 10
has a peak average score of 100.33 and on average a score of
28.82. The agent has a plateau of single digit scores at the
beginning but has a steep climb in scores around generation
33. There are drastic fluctuations in scores from generation 59
onwards to 150. These fluctuations are very noticeable as
represented on the line graph with dipping as low as 4.66 from
100.33 at generation 103.

As for the agent with block length set at 5, it had the
highest achieved peak average score amongst all the other
agents of 122.67 and despite having inconsistent scores with
spikes around generations 52, 84, 100 and 131. There are also
significant drops in scores which are very noticeable around
generation 131 and 132 where the average score dropped from
122.67 to 6. It can be observed that there are overall low scores
but there is still an overall increasing trend in average score.

It can be seen that the snake agent is more consistent when
put in the environment and parameters it was trained in but It
lagged far behind in maximum average scores when compared
to its tests using 5 and 10 block length. As the arena gets
bigger when the block length value gets smaller, the snake
agent had more room to navigate as well as maneuver,
reducing the instances where the snake collides with its own
body or arena walls.

JTI Journal of Applied Technology and Innovation (e -1SSN: 2600-7304) vol. 6, no. 1, (2022) 56

This can be seen in the data where it is shown that the
number of times the snake agent collides with its own body
significantly decreases as the block length value decreases.

It is also observed that the snake agent put in lower
block length has far lower scores and this is exceptionally
noticeable in block length 5 where the snake agent has a
consistent average score of lower than 2 between generations
1 to 81 where it’s a completely different story when compared
to the results of snake agent in block length 20 where the
scores are consistently above within 25 and 57.67 from
generation 53 to 150. There are some peculiar behaviors that
are observed mainly in snake agents of block length 5 and 10
where the snake agent will just get stuck in an endless loop
which forces us to kill it manually or it wouldn’t progress to
the next generation. This can be reflected in the number of
“killed” count in results of block length 5 and 10. It is also
visible that as the arena size increases, the average number of
agents dying to wall collisions decrease.

In conclusion, we should train the agent in the
environment and with the parameters that we intend to execute
it in to obtain the best, consistent and performing results as can
be observed in the baseline experiment of arena size 27*22
results which the agent was originally trained in.

D) Percent of Best/Worst Performing

In this experiment, we will identify and discuss the effect
of 3 different percentage ratio of best to worst performing
parents for breeding which are 18:2, 2:18 and 10:10. The
percentages of best and worst performance were selected from
the current generation and used to breed the next generation.
These images show the average score for each variable over
the 3 runs.

Fig 12. is about the average score of percent of best/ worst
performing of 18:2. It has been set as the baseline for
observing how the change of percent will affect the score. It
has shown the score is increasing in a progressive manner,
with a maximum of 60 points. The biggest reason for this
performance is that its present best performance is set as 18%.
This means that the 20% of the current generation which used
to breed the next generation has a high probability of being the
top performing agents. This also indicates that the good set of
weights will have a higher probability to get inherited to the
next generation.

Percent of Best/Worst Performing 18:2

Generation

Fig. 12. Percent of Best/Worst Performing 18:2

Fig 13. is about changing the percent of best/worst
performing to 2:18. We can see that the score of this graph has
the lowest score among three graphs and its score rises
gradually to about 2 and gets a O score after the 10th

generation. The main reason for this performance is it has used
18% of worst score performance with 2% of best score
performance to breed the next generation, the new generation
will definitely have a high probability to get a badly
performing parent, thus inheriting the bad trait and reducing
the performance of the next generation.

Percent of Best/Worst Performing 2:18

[EEp——

(= =T =T~
[T T A« (T T SR R

Average

Generation

Fig. 13. Percent of Best/Worst Performing 2:18

Fig 14. has shown the performance of percent of
best/worst performing of 10:10. As stated in the results, it got
low scores in the first 50 generations, after which the scores
increased but were very unstable. Also, the highest score of
this graph, which has scored 55, is located at the 90th
generation, even if this generation has scored the highest
score, it will fluctuate and only get score of 2.

This is because half of the set of generations used to feed
the next generation are chosen from the best and worst
performance. Therefore, there is an equal probability of
getting a good generation set that can lead it to food, or a bad
generation set that will cause it to be killed by the wall or
repetition. That is why the performance of the snake is not
consistent throughout the 150 generations.

Percent of Best/Worst Performing 10:10

Average

Generation

Fig. 14. Percent of Best/Worst Performing 10:10

After comparing the overall result, we can notice that the
higher the percentage of best performing, the higher score we
can get. The score of percent of best/worst performing of 18:2
has performed the best result of the score among the three
variables as its score is increasing without instability.
However, the performance of best/worst performing of 10:10
also has an increasing score, but it's score is unstable and can’t
get a higher score than the score of percent of best/worst
performing of 18:2.

In a nutshell, referring to these three graphs, we can see
that higher best/worst performing parent ratio can lead to a
consistent and good performing agent. Thus, we should

JTI Journal of Applied Technology and Innovation (e -1SSN: 2600-7304) vol. 6, no. 1, (2022) 57

choose the highest percentage of best performing parents to
ensure the trained model is competent.

V. CONCLUSION

In conclusion, the performance of the snake agent under
different circumstances of parameter changes is closely
studied and analyzed. Each parameter have a certain degree of
effect on the performance of the snake agent. It is observed
that the agent performs well when parameters like block
length, mutation percentage and mutation intensity are set at
moderate values. As for the percentage of best/worst
performing parameter, choosing the highest best/worst
performing ratio of 18:2 will give us the best performing
scores of snake agents. In future research, we could increase
the number of generations for snake agent to observe if the
snake agent performs worse or better if given more time and
generations.

REFERENCES

[1] A. Akbar. “aliakbar09a/Al plays snake: Al trained using Genetic
Algorithm and Deep Learning to play the game of snake.” GitHub.
https://github.com/aliakbar09a/Al_plays snake. [accessed Dec. 06,
2021]

[2] A.J. Almalki & P. Wocjan (2019). “Exploration of Reinforcement
Learning to Play Snake Game”. In International Conference on
Computational Science and Computational Intelligence, 2019 (CSCI)
pp. 377-381. [accessed Dec. 06, 2021]

[3] P. Biatas (2019). “Implementation of artificial intelligence in Snake
game using genetic algorithm and neural networks.” CEUR Workshop
Proceedings, http://ceur-ws.org/\VVol-2468/p9.pdf [accessed Dec. 06,
2021]

[4] T.Boris and S. Goran, 2016, November. “Evolving neural network to
play game 2048”. In 24th Telecommunications Forum (TELFOR),
2016, pp. 1-3. [accessed Dec. 06, 2021]

[5] R.Caiand C. Zhang, 2020. “Train a snake with reinforcement learning

algorithms”. Open Review.
https://openreview.net/forum?id=iu2X0J45cx0 [accessed Dec. 06,
2021]

[6] C.Yan (2021). “mkcarl/Al plays snake: Al trained using Genetic
Algorithm and Deep Learning to play the game of snake,” GitHub.
https://github.com/mkcarl/Al_plays_snake [accessed Dec. 06, 2021].

[7] C.S. Carlsen and G. Palamas (2019). “Evolving Balancing Controllers
for Biped Characters in Games,” Advances in Computational
Intelligence (pp. 869-880). doi: 10.1007/978-3-030-20518-8_72.
[accessed Dec. 06, 2021].

[8] J. Carr (2014). “An Introduction to Genetic Algorithms,” [Online].
Available:
https://www.whitman.edu/Documents/Academics/Mathematics/2014/
carrjk.pdf. [accessed Dec. 06, 2021].

[9] B. Halmosi and C. Sik-Lanyi (2019). “Learning to play snake using
genetic neural networks,” Pannonian Conference on Advances in
Information Technology (PCIT 2019), vol. 4, no. 5, pp. 126-132.
[accessed Dec. 06, 2021].

[10] O. Kesemen and E. Ozkul (2016). “Solving cross-matching puzzles
using intelligent genetic algorithms,” Artificial Intelligence Review,
vol. 49, no. 2, pp. 211-225, doi: 10.1007/s10462-016-9522-6.
[accessed Dec. 06, 2021].

[11] S. Kong, & J.A. Mayans (2014). “Automated Snake Game Solvers via
Al Search Algorithms.” COMPSCI 271 INTRO ARTIFCL INTEL.
[accessed Dec. 6, 2021]

[12] H. Kukreja, N. Bharath, C.S., Siddesh and S., Kuldeep (2016). “An

introduction to artificial neural network.” Int J Adv Res Innov Ideas

Educ, 1, pp.27-30. [accessed Dec. 6, 2021]

M. Miller, M. Washburn, and F., Khosmood, 2019, August. “Evolving

unsupervised neural networks for Slither. i0.” In Proceedings of the

14th International Conference on the Foundations of Digital Games

(pp. 1-5). [accessed Dec. 6, 2021]

[14] Y. Mishra, V. Kumawat and K., Selvakumar, 2019, May.
“Performance Analysis of Flappy Bird Playing Agent Using Neural

[13]

[15]

[16]

(17]

(18]

[19]

Network and Genetic Algorithm.” In International Conference on
Information, Communication and Computing Technology (pp. 253-
265). Springer, Singapore. [accessed Dec. 6, 2021]

N. Nezamoddini & A. Gholami (2019). “Integrated Genetic Algorithm
and Artificial Neural Network.” In 2019 IEEE International
Conference on Computational Science and Engineering (CSE) and
IEEE International Conference on Embedded and Ubiquitous
Computing (EUC) (pp. 260-262). IEEE. [accessed Dec. 6, 2021]

Z.Wei., D.Wang, M.Zhang, A.H,Tan, C.Miao, and Y.Zhou, 2018, July.
“Autonomous agents in Snake game via deep reinforcement learning.”
In 2018 IEEE International Conference on Agents (ICA) (pp. 20-25).
IEEE. [accessed Dec. 6 , 2021].

M.Xu, H.Shi, and Y.Wang, 2018, June. “Play games using
reinforcement learning and artificial neural networks with experience
replay.” In 2018 IEEE/ACIS 17th International Conference on
Computer and Information Science (ICIS) (pp. 855-859). IEEE.
[accessed Dec. 6 , 2021].

R.Yamini, and A.Jain, (2020). “GENERAL ARTIFICIAL
INTELLIGENCE MODEL FOR DEVELOPING ADAPTIVE NON
PLAYABLE CHARACTERS IN COMPUTER GAMES.” Journal of
critical reviews, 7(06). [accessed Dec. 6 , 2021].

J.F.Yeh, P.H.Su, S.H.Huang, and T.C.Chiang, Snake game Al:
Movement rating functions and evolutionary algorithm-based
optimization. In 2016 Conference on Technologies and Applications of
Artificial Intelligence (TAAI) (pp. 256-261). IEEE. [accessed Dec. 6 ,
2021].

https://github.com/aliakbar09a/AI_plays_snake
http://ceur-ws.org/Vol-2468/p9.pdf
https://openreview.net/forum?id=iu2XOJ45cxo
https://www.whitman.edu/Documents/Academics/Mathematics/2014/carrjk.pdf
https://www.whitman.edu/Documents/Academics/Mathematics/2014/carrjk.pdf

