Jﬁj-n Journal of Applied Technology and Innovation (e -ISSN: 2600-7304) vol. 5, no. 1, (2021) 7

MNIST handwritten digit recognition with
different CNN architectures

Lead Ming Seng
School of Computing
Asia Pacific University of Technology
& Innovation (APU)
Kuala Lumpur, Malaysia
tp054850@mail.apu.edu.my

Gwo Yih Tan
School of Computing
Asia Pacific University of Technology
& Innovation (APU)
Kuala Lumpur, Malaysia
tp051104@mail.apu.edu.my

Abstract—Handwritten digit recognition has long been a
popular research topic in computer vision and pattern
recognition. Recognizing handwritten digits used to be
challenging but thanks to many machine learning techniques
nowadays, the problem is no longer. In this research, we looked
into the MNIST database using fast.ai and trained the CNN
ResNet-18 model to recognize handwritten digits. We then
modified the architecture with different pre-trained models. For
this work, we implemented five PyTorch’s pre-trained models,
which are GoogLeNet, MobileNet v2, ResNet-50, ResNeXt-50,
Wide ResNet-50. The purpose of this paper is to reveal the most
accurate architecture for handwritten digits recognition. Also,
we provide comparisons of training time, top-1 error, top-5
error and model size on all five models.

Keywords— Convolutional Neural Networks (CNN), CNN
Architectures, Image Classification, Handwritten Digit
Recognition

I. INTRODUCTION

Handwritten recognition is the ability of machines to
recognize input handwritten by human. The variety of
handwriting styles, spacing variations and handwriting
inconsistencies all make it a much more challenging task for
the machine. Nevertheless, machine learning models have
evolved significantly in recent years and are still growing.
Many state-of-the-art models are able to achieve high
performance and a very high accuracy. With this success, this
technology is now used in many ways i.e. reading postal
address, bank check processing, form data entry, etc.

Convolutional Neural Networks (CNNs) are widely and
conveniently used for these image recognition and
classification tasks. CNN is a special type of Neural Network
capable of taking in an input image, assigning importance to
various aspects and being able to distinguish one from
another. Recent research works have seen convolutional
neural networks being applied for facial recognition,
document analyses, speech detection and license plate
recognition [1].

Brennan Bang Chen Chiang
School of Computing
Asia Pacific University of Technology
& Innovation (APU)
Kuala Lumpur, Malaysia
tp050473@mail.apu.edu.my

Zailan Arabee Abdul Salam
School of Computing

Asia Pacific University of Technology
and Innovation (APU)

Kuala Lumpur, Malaysia
zailan@apu.edu.my

Hui Tong Chai
School of Computing
Asia Pacific University of
Technology and Innovation (APU)
Kuala Lumpur, Malaysia

tp054680@mail.apu.edu.my

Different models are built and trained using convolution
operation, but achieving high accuracy depends on many
factors such as dataset used or network architecture. Our
experiment set out to see how different architectures can affect
the accuracy of handwritten digit recognition using the same
dataset which is the MNIST dataset. MNIST is a large
database of handwritten digits that contains 70,000 grayscale
images, each of 28x28 pixels. Altogether there are 10 classes
representing numbers from 0 to 9. The images of digits are
normalized in size and centred which makes it an excellent
dataset for evaluation. The train-test distribution differs for
this project as 42,000 images are used in the training set and
28,000 images in the test set.

We first began by implementing the ResNet-18
architecture and trained the model using the training dataset.
After getting the results, we then modified the architecture
with predefined architectures from PyTorch. The models
implemented are GoogLeNet, MobileNet v2, ResNet-50,
ResNeXt-50 and Wide ResNet-50. All the models are trained
on the MNIST and the CIFAR-10 dataset to see the which is
the most accurate of all.

Il. LITERATURE REVIEW

A. Similar projects

Many researches have been conducted on handwritten
digit classification with different algorithms and classifiers.
For Convolutional Neural Network, many models are also
available to train the algorithm to achieve a better result. Some
of the models include ResNeXt-50, ResNet-50 and
GoogLeNet.

Saining et al [2] presented a simpler neural network
focused on aggregating transformations of the same topology
called ResNeXt based on VGG and ResNet. Cardinality,
which is the size of the set of transformations, is increased and
experimented on vs Depth and Width. ResNeXt-50 and
ResNeXt-10 compared with the ResNet-50 and ResNet-101
models, have successfully reduced error rates by 3.2% and
2.3%. This shows that complex models that are deeper and

mailto:tp054850@mail.apu.edu.my
mailto:tp050473@mail.apu.edu.my
mailto:zailan@apu.edu.my
mailto:tp051104@mail.apu.edu.my
mailto:tp054680@mail.apu.edu.my

JETI Journal of Applied Technology and Innovation (e -ISSN: 2600-7304) vol. 5, no. 1, (2021) 8

wider are not always better as it may take more time but return
similar results. The problem of ResNet is diminishing feature
reuse, which is it does not force to go through the residual
block, and it can avoid learning. So, most of the block is not
contributing or contributing a little to the final goal. Besides
that, when comparing width to depth, the complexity of width
is higher than the depth, so ResNet is made as thin as possible
to increase the depth and have less parameters.

Zagoruyko and Komodakis [3] proposed the idea of
decrease depth and increase width of residual network The
parameters are tested to know how deep and how wide in
ResNet to be able to optimize it. The Wide ResNet-40-4 that
has fewer parameters is able to have a lower error rate
compared to the 1001-layer Pre-Activation ResNet. The Wide
ResNet-16-8 and Wide ResNet-28-10 achieve lower error
rates and they are shallower and wider than Wide ResNet-40-
4. The training time of shallower is shorter because the GPUs
perform parallel computations. With dropout, the model is
also able to have consistent gain and reduce overfitting.

Basri et al [4] observed and compared the performance
contributed by different networks, the four models being
discussed in the paper are AlexNet, MobileNet, GoogLeNet
and CapsuleNet. While considering the result from normal
data in the same condition, the error rate of relevant models
are GoogLeNet (Inception V3) 7%, AlexNet 8%, CapsuleNet
8.7% and MobileNet 20.3%. After adding the augmentation
dataset in the training process, the error rate had been reduced
to AlexNet 0.99%, GoogLeNet 1.49%, CapsuleNet 7.76% and
MobileNet 16.42%. For the computation time, AlexNet was
fastest 1.14s, CapsuleNet 3.86s, MobileNet 12.52s and
GoogLeNet 22.53s. This implies that the structure of models
result in different performance and computation time, it also
emphasizes the importance of augmented datasets.

B. Methodology / Approach

e Dataset

The dataset used in this paper is the MNIST database of
handwritten digits. The dataset contains total 70,000
grayscales, each 28x28 pixels of size. Altogether there are 10
different classes, depicting the number 0 to 9. Normally the
dataset is split into 60,000 and 10,000 for training set and test
set respectively. The training dataset is to teach the model how
every digit looks like by including the labels. Then the test
dataset is used to test the model by feeding it only the images
to let it predict data it has never seen before.

¢ CNN

Convolutional neural networks combine artificial neural
networks with the recent methods of deep learning. They have
been used for years in image recognition tasks, like
handwritten digit recognition, which is addressed in this
paper. CNNs are thought to be the first deep learning approach
with robustness that is successful in using multilayer
hierarchical structure networks. CNNs can reduce the number
of trainable network parameters to improve the back-
propagation algorithm deficiency of forward propagation
networks.

They are particularly suitable for image processing and
understanding due to the close link and spatial formation
between the levels and can extract the rich correlative
characteristics from the images [1].

e Fast.Ai

Fast.Ai, a deep learning library provides high-level
components that can deliver state-of-the-art results quickly in
standard deep learning domains and provides low-level
components to be mixed and matched for building new
approaches. Fast.Ai leverages the dynamism of Python
language and the flexibility of PyTorch library. It offers a new
type of dispatch system for Python with a semantic type
hierarchy for tensors, a GPU-optimized computer vision
library, a new data block API, etc. [5]. Overall, Fast.Ai is
easily approachable and rapidly productive.

C. Conclusion / Recommendation

In a nutshell, CNN is widely used for image classification
problems. With the ever-growing advancements of
technology and complexity of datasets, more new and
efficient CNN architectures are developed. Spoiled by the
abundance of choice of CNN architectures, we need to pick
the right architecture for the right problem. Therefore,
comparisons of different architectures on datasets are done to
evaluate which one suits best.

I1l. ALGORITHM IMPLEMENTATION

A. Data

The database utilized in the project is MNIST database, it
has separated to training dataset, testing dataset and saved in
train.csv, test.csv respectively. Both datasets contain plenty of
grayscale images from number zero to nine. The images in the
training dataset are labelled according to their classes, while
images in testing dataset are not labelled.

B. Preparation

2 the following three lines are
srelosd_ext autereload
tautoreload 2

matplotlib inline

suggested by the fast.ai course

hide warnings
import warnings
warnings. simplefilter(ignore’)

the fast.a1 library, used to easily build neural networks and train them
from fastal import »
from fastai.vision impart +

Fig. 1. Importing libraries

transforms-make some manipulation
tfms = get_transforms(do_flip=False)

data = ImageDataBunch.fram_folder(
path = TRAIN,

Fig. 2. Data transformation

Before starting the session, there is some preparation
required to be done to make the process go smoothly. First of
all, the programmer set up the environment by importing
required libraries for further usage of functions. Due to fast.ai
only accept images input, the data is stored in variables and
reshape to the desired dimensions of images (28 x 28). Before
load into the data bunch, the data has been transformed and
normalized with the aid of mnist_stats function. In the
transformation, the flip action has been restricted to prevent
confusion.

C. Training

The implemented algorithm and architecture is CNN
Resnet-18. The images data will be input and the model will

JETI Journal of Applied Technology and Innovation (e -ISSN: 2600-7304) vol. 5, no. 1, (2021) 9

output the prediction result. Thus, the predicted result will be
verified by the actual result and it will feedback to the model
for improvement, which is called learning.

learn = enn_learner(dats, base_arch=models.resnet18, metrics=accuracy, model_dir="/tmp/models”, callback_
learn. fit_one_cycle(cyc_len=5)|

Fig. 3. Setting up the configurations of the architecture

The learner function cnn_learner has been set up according
to the environment and the function fit_one_cycle is utilized
as a support. It shows the condition of the training including
loss, accuracy and time consumed.

D. Evaluation

interp = ClassificationInterpretation.from learner(learn)
interp.plot_top_losses(9, figsize=(7, 7))

Fig. 4. Visualizing top losses

The object Classification Interpretation is created for
evaluation and the images of top 9 loss are plotted. Confusion
matrix are one of the suitable ways to present the data because
it is easy to understand. From the figure and confusion matrix,
it is clearly shown that the confusion among the digits is
usually caused due to the similar pattern of the digit.

prediction/actual/loss/probability

2/1 /9.99/0.00

Z

2/5/7.21/0.00

6/0 / 6.53 / 0.00

O

Fig. 5. Top-9 top losses

9/4 / 9.33 / 0.00

2/5 /8.69 /0.00

2
v

2/3/6.70 7/ 0.00 2/1 /6.65 7 0.00

N
P

4/7 / 6.52 / 0.00 3/5 / 6.40 7/ 0.00

<
U

Confusion matrix

o ﬂ] 2 7 : | o 13 o 12 1
14 0o E=ENM 7 (] 2 o o 3 o 1
24 1 2 o 3 11 2
34 1 o 4 (3 37 4
- 41 O 1 o 3 9 21
2
< 54 2 3 o 24 7T
6 111 1 [o 15 o
74 2 = 17 5 22 o o i 1 a5
81 9 o 18 8 4 3 6 1 m 23
od 8 o 8 s 9 o o 17 W
S 4 M = um w —~ @ e

Predicted

Fig. 6. Confusion matrix

E. Prediction

Fig. 7. Evaluating performance

The testing data is fed to evaluate the performance of the
learning model. The model will rate the possibility of each

possible class and the class with highest probability will be
the result of the images. It was found that with ResNet-18,
the accuracy on the MNIST dataset average around 96% with
a training time of 874 seconds. Original code from Kaggle

[6].
IV. RESULT AND DISCUSSION

A. Discussion on implementation

The aim is to propose a more accurate and faster
architecture for solving the MNIST handwritten digit image
classification problem. We trained different architectures on
the same dataset to compare and evaluate the time and
accuracy. Using the Fast.Ai’s default modification and some
of the more popular PyTorch’s default pre-trained models, we
train with a one cycle policy along with 10 epochs for each
architecture. The pre-trained models that we have used are
GoogLeNet, MobileNet v2, ResNet-50, ResNeXt-50, Wide
ResNet-50.

B. Experiments on MNIST Dataset
TABLE I. COMPARISONS OF DIFFERENT ARCHITECTURES ON THE

MNIST DATASET. TOP-1 AND TOP-5 ERROR HAS BEEN OBTAINED BY USING
THE AVERAGE OVER 3 RUNS

Model Top-1 Top-5 Training _Model
error (%) error (%) Time (s) Size (MB)
GoogLeNet 0.5317 0.0397 512 49.7
MobileNet v2 0.5754 0.0079 498 13.6
ResNet-50 0.6190 0.0159 510 97.8
ResNeXt-50 0.5794 0.0119 549 95.8
Wide ResNet- 0.5278 0.0079 540 132.0
50

Table | shows that the performance of the models on the
MNIST dataset appears to saturate. We argue that this is
because of the complexity of the dataset being regarded as one
of the simplest and is mostly used as a baseline for image
recognition. Nevertheless, it is still possible to see which
model is best suited for a smaller and simpler dataset such as
the MNIST dataset.

MNIST Dataset

0.6200 <~7 ReEsNet-50

0 6000 ResNext-50
. MobileNet v2

£ osa00 P

Wide ResNet-50

Top-1 Errar

GoogleNet

> Py

480 490 500 510 520 530 540 550 560

Training Time (s)

Fig. 8. Bubble Chart of MNIST Dataset comparing the Top-1 error, training
time and the size of the model. The model size is represented by the size of
the bubble.

The model with the lowest Top-1 error is Wide ResNet-50
at 0.5278% and a Top-5 error of 0.0079%. We also note that
MobileNet v2 has achieved the 3rd best Top-1 error of
0.5754% and the best Top-5 error alongside Wide ResNet-50
at 0.0079% despite being 10x smaller than the model size of

JETI Journal of Applied Technology and Innovation (e -ISSN: 2600-7304) vol. 5, no. 1, (2021) 10

Wide ResNet-50 at 13.6MB. It is also noted that MobileNet
v2 has the fastest training time among the models at 498
seconds.

C. Experiment on Cifar 10 Dataset

Due to the saturated results from the MNIST dataset
experiment, we conducted more experiments on more
complex datasets using the same configurations from the
previous experiment, notably the CIFAR-10 dataset.

TABLE II. COMPARISONS OF DIFFERENT ARCHITECTURES ON THE
CIFAR 10 DATASET. TOP-1 AND TOP-5 ERROR HAS BEEN OBTAINED BY
USING THE AVERAGE OVER 5 RUNS

Top-1error | Top-5error Trainin
Model Do) P06 Time(s)
GoogLeNet 15.4500 0.7800 843
MobileNet v2 15.2780 0.5380 826
ResNet-50 19.0580 0.9440 850
ResNeXt-50 14.0460 0.5300 901
Wide ResNet-50 20.3620 1.0720 952

From Table I1, we found that the model that performed the
best is ResNeXt-50 with a Top-1 error of 14.0460% and a
Top-5 error of 0.5300%. The model that performed
exceptionally well was MobileNet v2 with a Top-1 error of
15.2780% and a Top-5 error of 0.5380% while being 7 times
smaller in size as well as being 75 seconds faster in training
time compared to ResNeXt-50, slightly outperforming
GoogLeNet. It is also noted that MobileNet v2 has one of the
fastest training times among the models.

Cifar-10 Dataset

22 -

ResNet-50
) *‘

Wide ResNet-50

MobileNetv,
16 il

“ GoogleNet

800 220 840 860 880 900 920 540 960 980

ResNext-50

Top-1 Error (%)

TrainingTime (s}

Fig. 9. Bubble Chart of Cifar Dataset comparing the Top-1 error, training
time and the size of the model. The model size is represented by the size of
the bubble.

V. CONCLUSION

The task of image recognition is still growing and developing
as researchers alike develop progressively sophisticated
neural networks. After conducting research, it became clear
that the performance of models would differ from the task
being performed on. Accuracy and error rate, while being
important factors in determining the suitability of models on a
task, are not the only factors that we look at. Training time
plays an important role as a factor alongside accuracy and
error rate as the complexity and size of a dataset grows, the
more crucial training time becomes. The decision on picking
the right model on solving the task at hand is best determined

by these 3 factors, and we have thus concluded that based on
our research, MobileNet v2 is the best among these 5 models
for the MNIST dataset problem

REFERENCES

[1] X.Han.andY.Li., “The Application of Convolution Neural Networks
in Handwritten Numeral Recognition,” International Journal of
Database Theory and Application, VVol.8, No.3 (2015), pp.367-376.

[2] S. Xie, R. Girshick, P. Dollar, Z. Tu, and K. He., “The Aggregated
residual transformations for deep neural networks,” ~ CVPR, 2016.

[3] S. Zagoruyko and N. Komodakis., “Wide residual networks. Arxiv,”
SERGEY ZAGORUYKO AND NIKOS KOMODAKIS: WIDE
RESIDUAL NETWORKS 1, 2016.

[4] Basri, R. & Akter, M. (2020). Bangla Handwritten Digit Recognition
Using Deep Convolutional Neural Network | Proceedings of the
International Conference on Computing Advancements. [Online].
2020. Doi.org. Available at
https://doi.org/10.1145/3377049.3377077

[5] fast.ai. 2020. Welcome To Fastai | Fastai. [online] Available at:
<https://docs.fast.ai/> [Accessed 31 August 2020].

[6] kaggle.com. (n.d.). Beginners guide to MNIST with fast.ai. [online]
Available at:

https://iwww.kaggle.com/christianwallenwein/beginners-guide-to-
mnist-with-fast-ai

https://doi.org/10.1145/3377049.3377077
https://www.kaggle.com/christianwallenwein/beginners-guide-to-mnist-with-fast-ai
https://www.kaggle.com/christianwallenwein/beginners-guide-to-mnist-with-fast-ai

