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Abstract—Determining the orbital paths of space objects is a
critical task in astronomy. In particular, knowledge of satellite
trajectories is essential to avoid costly and hazardous collisions
between satellites in space. However, due to the amount and
complexity of variables affecting a satellite’s orbit, it is no small
feat to accurately predict its position. Moreover, it was only
recently that novel alternatives to physics-based models have
been proposed, namely machine learning (ML) models that can
learn from historical data and make improvements to orbit
prediction accuracy. Motivated by the hope that ML models can
capture the underlying pattern of satellite orbital trajectories,
the goal of this paper is to apply a supervised ML model called
non-linear regression, to predict the position and velocity of a
single satellite in orbit around the Earth. The study establishes
a simple non-linear regression baseline for predicting satellite
motion three days in advance, from which more complex ML
models can be applied. Obtained forecasts were within
acceptable error margins and the overall result shows promise
in applying ML to predict satellite motion.
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[. INTRODUCTION

During the past two decades, the number of Resident
Space Objects (RSOs)! has nearly doubled, from around
11,000 objects in the year 2000 to around 19,500 objects in
2019. This number is expected to rise even higher as more
satellites are put into space, thanks to improvements in
satellite technology and lower costs of production. On the
other hand, the increase in the number of RSOs also indirectly
increases the risk of collision between them [1]. The
awareness and identification of risky situations such as these
are referred to as Space Situational Awareness (SSA) [2].
More specifically, SSA refers to “the ability to view,
understand and predict the physical location of natural and
man-made objects in orbit around the Earth, with the objective
of avoiding collisions” [2, p. 23]. An important issue in SSA
is the reliable and accurate orbit determination (or orbit
tracking) of satellites over long periods of time. Failure to
address this issue has led to incidents such as the collision
between the active Iridium-33 US communication satellite
and the inactive Kosmos-2251 Russian communication
satellite in February 2009 [1]. In fact, this accident increased
the amount of space debris by 13%, as shown in Fig. 1.
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Fig. 1. Number of resident space objects in Low Earth Orbit [3]

! The term “resident space object” is most commonly used for
referring to artificial objects that are in orbit around the Earth.
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Please refer to Section VII: Appendix for a complete list of all the
abbreviations used in this paper.
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More accidents will result in more debris being produced,
and through a chain reaction of collisions (if left unchecked),
may lead to a dire situation in which it becomes difficult or
downright impossible to put a satellite into orbit due to the
large accumulation of space debris surrounding the Earth.
This scenario is known as the Kessler Syndrome [4]. Thus,
considering the gravity of the situation at hand, it is imperative
to prevent such catastrophic collisions from ever happening
again.

The demand for accurate orbit prediction methods is on the
rise, as more objects are put into space. Section I introduced
the reasons on why this is a concerning state of affairs. Section
1T explains why current prediction models are lacking in the
timeliness, accuracy, and practicality of predicting orbital
paths, and why alternative methods such as machine learning
(ML) techniques should be considered. Additionally, the
research question that will be addressed in this paper is
discussed. Section III introduces the related works in the
literature involving both ML and non-ML techniques while
assessing their strengths and limitations as well. Section IV
presents the data sets, methodology, metrics and the data
preparation and exploration phases. Section V presents the
obtained results and a short discussion on them. Section VI
concludes the paper with a summary and directions for further
research.

II. BACKGROUND

A. The Need for Alternative Prediction Methods

The main cause of the Iridium-Kosmos incident? was
attributed to the limited capability of orbit determination
techniques at that time, together with the inherent uncertainty
of data used in these techniques [1]. Likewise, most of today’s
orbit prediction methods are physics-based, which still
possess the flaws of methods from 2009, albeit at a less severe
degree. These methods require good information on the initial
conditions of the satellite at the start of calculating its
trajectory, as well as the space environment around it [5].
Environmental conditions such as solar radiation pressure,
which is the force of extremely fast subatomic particles from
the Sun hitting a satellite’s surface, is unnoticeable over short
time intervals but adds up to a noticeable effect on the
satellite’s orbit over long periods of time. This variable is
difficult to estimate due to the Sun’s constantly evolving
surface and due to a lack of information about the satellite’s
size, mass and geometrical proportions, captured within a
parameter called the area-to-mass ratio [6].

Similar difficulties are faced when considering the effect
of Earth’s atmospheric drag, which is the resistance of air
against a satellite’s movement when it moves around the Earth
at a low enough orbit. Calculating this parameter requires
knowledge of the air density at a given position of the satellite,
how fast the satellite is moving and how much of its surface
area is exposed to the air moving against it. Moreover,
information about the change in altitude and state of the
satellite when it is being maneuvered by operators from other
countries may not always be readily available for use when
orbit predictions are needed [5].

The list of variables to be estimated and updated are many
and complicated, while the methods used for estimating and

updating them are few and even more complex. Current orbit
determination methods, especially physics-based ones, fall
into one or more of the following shortcomings:

e They do not consider all of the variables affecting a
satellite’s orbit due to unattainable or inherently
uncertain data. For example, the area-to-mass ratio
and maneuver information.

e They require expensive monitoring tools with limited
resources (such as ground-based observatories) or
time-consuming models requiring impractical
computing costs [5].

e Theymay not be generalizable to other types of orbits.
For example, a model requiring atmospheric drag data
to track Low Earth Orbit (LEO) satellites may not
always be applicable to tracking High Earth Orbit
(HEO) satellites, where the effect of Earth’s
atmosphere is effectively non-existent.

Given the limitations described above, errors in physics-
based models may be too high to be useful for practical
situations, namely collision avoidance and task scheduling
(for example, assigning a weather satellite to watch over a
particular patch of the Earth). As an alternative to these
methods, a different approach to orbit prediction based on
machine learning techniques was proposed in the literature.

B. Machine Learning for Space Situational Awareness

Machine Learning (ML) has made it possible to automate
repetitive tasks in the scientific, financial and technical
industries. Implementing ML and sophisticated artificial
intelligence (AI) technologies can extract information and
recognize patterns in data that usually require a considerable
amount of time for humans to discover [7]. In addition, the
volume and velocity of data can hinder humans from being
able to process the data within the time frames necessary for
practical decision-making. In the context of Space Situational
Awareness (SSA), mundane jobs such as predicting orbital
paths, assigning scheduled tasks and evaluating collision risks
are best suited for machine learning, with operators stepping
in when human intervention is required [7]. Hence, the ML
technique provides a new framework for improving the
capabilities of existing physics-based methods in carrying out
these jobs.

In stark contrast to physics-based methods for predicting
an RSO’s orbit, ML techniques do not require explicit
modelling to be done for the RSO’s structure (such as its shape
and area-to-mass ratio) and the local space environment
around it, nor does it need information about the RSO’s
maneuvers [5]. Rather, the models are learned from large
amounts of historical data, which is in some ways similar to
how humans learn to predict future events through
experiences from their past [5]. The three most common types
of machine learning are supervised learning, unsupervised
learning, and reinforcement learning. Reinforcement learning
is used for making optimal decisions. Unsupervised learning
is used for recognizing patterns and structures without having
to provide labels for the input data. Supervised learning,
however, learns a function that maps labelled input data to
labelled output data based on example training data [5].

2 Funnily enough, the irony of this incident was that both of them
were communication satellites.
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Due to the accessibility of labelled historical data
concerning the satellites’ previous positions and velocities, the
supervised machine learning method is deemed to be most the
appropriate approach [5]. Among the various supervised ML
techniques available, the Non-Linear Regression (NLR)
method will be used for the specific problem of improving
orbit prediction accuracy for satellites. For a complete
description of the NLR method, its mathematical formulation
in one dimension, the reasons for choosing it to address this
problem, as well as the justifications for setting up the dataset
structure and error metrics (determined through an initial
exploratory data analysis stage), please refer to Section IV:
Methodology.

The essence of the ML technique for improving the error
in orbit prediction is shown in Fig. 2 below. At time t;, the
ground station (indicated by the small orange dish on the
Earth’s surface) observes the RSO (indicated by the blue-and-
yellow satellite) and estimates its position. This estimated
state will undoubtedly have measurement errors associated
with it. Because of these measurement errors and because of
the assumed physics-based model, the propagated orbit
prediction will deviate further from the true orbit at a later
time, as shown in the predicted state at the time t; > t;.
However, the ML technique modifies the predicted state, so
that the ML-modified state is learned to be closer to the true
state of the RSO [5].

C. Research Hypothesis, Goal, and Scope

At the very heart of the ML approach described above is
the hypothesis that even though the scientist may not have all
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Fig. 2. ML approach for improving orbit prediction accuracy [5]

of the knowledge necessary for a physics-based forecast, some
of this information is indirectly contained within the RSO’s
historical data [8]. This includes estimated states,
measurement data and prediction errors for the RSO’s
particulars and space environment [8].

Given the above hypothesis, the goal of this paper is to
apply a supervised ML technique called Non-Linear
Regression (NLR) to predict, over a period of three days, the

position and velocity components of a single satellite using
simulated data obtained from a physics-based model.

The data was provided by the Russian Astronomical
Science Centre for the first stage of the International Data
Analysis Olympiad (IDAO) in January 2020 [9].

Due to the broad field of study in orbit determination, the
scope of this research will be limited to only one outcome, that
of predicting the target variables (positions and velocities)
specified as per the instructions given to IDAO participants.
Other measurements such as the area-to-mass ratio, which can
also be inferred using ML techniques, will not be done.
Moreover, only one ML technique will be applied in this
paper, i.e. the NLR model. Finally, only the official datasets
given to IDAO participants will be used for applying the NLR
model. No external data shall be used.

III. RELATED WORK

This section first presents the common themes found in the
literature concerning orbit prediction, such as the techniques
used and the types of orbits that they are applied to. Also
presented are the data types and sources used for making these
predictions, as well as the metrics used in evaluating orbit
propagation models. Finally, a concise synthesis and analysis
of the presented works were done.

A. Orbit Propagation Techniques

Until a few years ago, most orbit determination procedures
were done using non-ML-based methods. These methods
include the commonly used models based on the natural laws
of physics, mathematical expressions such as Polynomial
Chaos Expansion and Gaussian Processes [10], and analytical
and semi-analytical solutions for describing orbital motion
[11]. The physics-based methods were highly dependent on
initial conditions, which may not always be available or
reliable (asX demonstrated by the Iridium-Kosmos collision).
Moreover, the mathematical expressions were inconsistent in
modelling RSO behavior under higher-order effects (called
“perturbations” in the scientific literature) such as atmospheric
drag, solar radiation pressure and the gravitational pull from
the Sun, Moon and other planets. As improvements to the
mathematical expressions, analytical and semi-analytical
solutions were explored to take into consideration the
quantitatively small but important perturbations required for
an accurate orbit prediction [1].

The supervised machine learning approach, on the other
hand, does not require explicit models of the RSO and its
space environment to infer initial conditions and propagate its
orbit to a predicted position in the future. Rather, it has a basis
on recognizing the inherent patterns within the observed
historical data of the RSO and learning the mapping function
between independent and dependent variables.

Moreover, there are also other data-driven approaches
such as artificial neural networks [12], reinforcement learning
[13], and artificial intelligence, in which the latter not only



J ﬁ)-" Journal of Applied Technology and Innovation (e -ISSN: 2600-7304) vo5. 1, no. 1, (2021) 50

Orbit Propagation Approaches
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Fig. 3. A summary of orbit propagation techniques in the literature [1]

predicts orbital paths but also assists in the associated
decision-making process [1].

Finally, the latest state-of-the-art techniques are called
hybrid propagation methods. This method combines a
classical propagation method (e.g. a semi-analytical method)
with either a statistical time series forecasting model or an ML
technique [14, 1]. A summary of all the orbit propagation
techniques is given in Fig. 3.

B. Types of Satellite Orbit

Depending on their purpose and missions in space,
satellites are put into different altitudes of orbit around the
Earth. These orbit types are classified according to their
relative distance from the Earth’s surface: Low Earth Orbit
(LEO) for altitudes below 2000 km, Medium Earth Orbit
(MEO) for altitudes below 35786 km, Geosynchronous Orbit
(GSO) at an approximate altitude of 35786 km, and High
Earth Orbit (HEO) for altitudes above 35786 km [15]. Other
types of orbit also exist, such as Sun Synchronous Orbits and
GPS orbits. A summary of common RSO orbit types is shown
in Table I on the next page.

Due to the commercial, civil, meteorological, military and
scientific needs of different nations, most satellites are put into
orbits at or below the geosynchronous altitude, in the LEO and
MEO regions [14]. Unfortunately, it is also in these regions
that the accumulation of space debris is the highest, making it
one of the main dangers for functional satellites [16]. Thus,
accurate RSO tracking not only includes determining satellite
orbits but also the orbits of dangerous space debris as well.

The differences between orbit types are significant enough
that there is no single master technique that can account for all
the particular characteristics of each type of orbit. For
example, a common physics-based model called SGP4
(Simplified General Perturbations-4) was made for tracking
satellites at Low Earth Orbit, in which atmospheric drag is
important to consider but solar radiation pressure is less
important [2]. This is because LEO satellites travel fast,
around 7-8 km/s, so the effect of the Sun’s radiation (which
occurs only over certain paths during the orbit) is eclipsed by
the effect of the Earth’s atmosphere (which exists throughout
the entire orbit). On the contrary, MEO and HEO satellites
travel much slower and at a much higher altitude than LEO
satellites, so atmospheric drag becomes less important while

solar radiation becomes more important. Hence, SGP4
becomes inaccurate and other models need to be used.

For cases such as the Sun Synchronous Orbit, in which a
satellite is arranged to face the Sun at all times throughout its
orbit, both atmospheric drag and solar radiation pressure
become highly important variables. As they are mainly put
into LEO regions (around 600-800 km altitudes), SSOs are
popular for imaging, spying, meteorological and scientific
uses due to having constant sunlight for its solar panels and
more importantly for having constant illumination on the
Earth’s surface below them. Due to their purpose at low orbits,
predicting SSO paths inherently require both solar radiation
data as well as atmospheric drag data, which means more
complex models need to be used.

Therefore, when applying ML models for predicting RSO
trajectories, it is important to specify the type of orbit an RSO
is in. Based on the orbit type, more or fewer features can be
specified as input data for the ML model. For example, Peng
and Bai [20] used additional drag coefficient data to develop
their Support Vector Regression (SVR) approach to
improving the orbit prediction accuracy of LEO, SSO and
MEQO satellites. The ultimate goal is that powerful data-driven
(or otherwise) techniques will be developed that are
generalizable and can be applied to all types of orbit, given the
appropriate input data.

C. Data Types and Sources

The two main sources of publicly available data are the
TLE (Two-Line Element, so-called because of its original
encoding format in two punch cards) data from Kelso [17] and
ILRS (International Laser Ranging Service) data from NASA
[18]. To put it simply, the ILRS ground-based stations fire
laser pulses at satellites, which gets reflected back to the
station. By measuring the two-way time of flight of the laser
pulse, the distance from the station to the satellite can be
calculated [18].

The TLE data format, on the other hand, uses physics-
based SGP4 computational models to simulate the state
(position and velocity) of space objects. The CelesTrak
website at Kelso [17] provides data for space objects that are
larger than 10 cm in diameter, which is useful for tracking
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Table L.
Name Orbit
LEO Low Earth
MEO Medium Earth
GSO Geosynchronous
GEO Geosynchronous Equatorial
GPS Global Positioning System
SSO Sun Synchronous
HEO High Earth

space debris [10]. In addition, novel concepts for tracking
space debris were also put forward, such as [16]. This concept
uses an LEO satellite equipped with a telescope that visually
observes space debris moving within the GSO region.

Their method is superior to ground-based telescopes
because adverse weather conditions do not affect data
collection [16]. While the data from ILRS is precise and more
closely represents the “true state” of RSOs, ground-based
stations are expensive, and data can only be collected when
the RSO passes across its hemisphere of vision. In other
words, the station cannot send laser pulses to a satellite while
it is travelling across the opposite half of the Earth. An
operational satellite may also contain its own GPS tracker
which provides much more accurate data than TLE
catalogues. However, the disadvantage is that this data
belongs to the owner/operator of the satellite only and is not
publicly available for use. As a result, Peng and Bai [10] used
public ILRS data as the true state of the investigated satellites
and the TLE data as the less accurate, estimated state.

D. Metrics and Evaluation

For the purpose of evaluation, papers in the orbit
determination literature used a variety of metrics. Some of the
pioneers in applying ML techniques such as Peng and Bai [10]
exclusively prefer using a single performance metric that they
introduced in their previous work [5], while others like [19]
used the common metrics MSE (Mean Squared Error), MAE
(Mean Absolute Error) and APE (Absolute Percentage Error),
and [17] used the AUC (Area Under the Curve) metric with
ROC (Receiver Operating Characteristic) curves to compare
the performance of several ML techniques. Reference [6] also
used RMSE (Root Mean Squared Error) to measure the
performance of their random forest model in recovering the
area-to-mass ratio of space objects. Most papers that used
physics-based methods also employed RMSE and other
common metrics.

A particularly intuitive and easy to interpret metric would
be the unnamed performance metric introduced by Peng and
Bai in [5]. The authors used the concept of the MAPE metric
(Mean Absolute Percentage Error), common in forecasting
applications, to define this performance metric as follows:

n n 5
Zi;lleresl _ 100%Zi=1|neT_eML| )
i=1|eT| Zi:lleTl

The performance of an ML technique is defined as the
ratio of the sum of absolute residual errors to the sum of
absolute true errors, where # is the number of observations in
the test dataset. For example, if a satellite’s true x-coordinate
is 10000 km and estimated x-coordinate is 10100 km, then the

Py = 100%

Summary of common RSO orbit types

Description

Orbit altitudes below 2000 km

Orbit altitudes below 35786 km

Orbit altitude at 35786 km; orbital period of 24 hours
A GSO placed directly above the Earth’s equator
Orbit altitude at 20200 km; orbital period of 12 hours
An LEO satellite that faces the Sun during its orbit
Orbit altitudes above 35786 km

true error (the independent variable) is e = 100 km. After
applying an ML technique, which predicts the ML-modified
error (the target variable) to be é,;; = 90 km, the performance
metric can be calculated to be 10%. The lower the metric, the
better the learning capability of the ML model. Also, the
authors claimed that this metric directly quantifies the learning
performance of the ML model because the remaining errors
(e.g. the remaining 10 km that the ML model failed to correct
in the above example) “represent the information that cannot
be modelled with the available learning variables” [20, p.14].

Henceforth, the performance metric defined above will be
referred to as the Mean Absolute Percentage Residual Error
(MAPRE).

E. Synthesis and Analysis

Machine learning applications to orbit determination and
propagation® for the purpose of SSA are still in its infancy [7].
Peng and Bai, the two pioneers in this field, have published
several papers investigating the use of SVR, beginning with
their paper in [22]. In subsequent papers such as [5, 8], they
refined their method and applied it to different sets of data and
RSOs. Their final paper on SVR in 2019 is the most up to date
and provides a comprehensive account of their methodology
and application to four LEO, three SSO, and four MEO
satellites, achieving a MAPRE error of less than 50% in most
of the 11x6 position and velocity components. In addition to
SVR, they also explored the Gaussian Process (GP)
improvements to their ML models in order to generate
uncertainty information. This is because the ML approach
only provides a point estimate without information about how
uncertain that measurement is. Finally, they compared the
performance of SVR, ANN (Artificial Neural Networks) and
GP models, concluding that ANN provides the best estimates
but is prone to overfitting, while SVR is the least likely to
overfit but its performance is overshadowed by ANN and GPs
[23].

The beauty of ML techniques is their universal data-driven
approach. Not only can one use them to predict RSO orbits but
also to discover their physical properties, given the
appropriate data. Reference [6] used a regression random
forest model to recover the area-to-mass ratio of 135 space
objects in Sun Synchronous Orbit, achieving a discrete
prediction accuracy of around 85%. Moreover, [7] used
decision trees, random forest, logistic regression, and SVMs
(linear, sigmoid and Gaussian kernels) to classify satellite
stability state (whether a satellite is rotating or not), achieving
a prediction accuracy of 89%. A slightly different application
was in sending spacecraft to asteroids, and Gaussian Process
Regression was used for estimating the parameters involved
[19]. Yet another application involved the detection and

3 Here, orbit determination refers to estimating discrete
observations of a RSO’s state (position and velocity) at certain

points of its orbit, while orbit propagation refers to estimating the
future state of the RSO, given historical data [21].
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prediction of RSO maneuvers, which was done using inverse
reinforcement learning [13]. Another study in maneuver
detection used historical orbit data but without the ML
approach, opting to use mathematical procedures instead [24].
Finally, a study on GPS and BeiDou System (the set of
Chinese GPS satellites) used Convolutional Neural Networks
(CNNs) with image data to reduce orbit prediction error by
45%. Overall, the use and application of ML techniques for
SSA seem to be gaining in traction, especially in the last two
years.

IV. METHODOLOGY

A. The Datasets and Approach Taken

The two datasets (in CSV format) used in this study were
provided to participants of the 2020 International Data
Analytics Olympiad by the Russian Astronomical Centre [9].
The first dataset is the Train dataset, which contains 649913
observations and 15 variables. The second is the Test dataset,
which contains 284072 observations and 9 variables. The
Train dataset consists of true and simulated coordinates
(measured in km) and velocities (measured in km/s) of 600
satellites in the month of January 2014, while the Test dataset
consists of only simulated coordinates and velocities of 300
satellites in February 2014. The variable names and
descriptions for both datasets are summarized in Table II.

Table II.  Variable names and descriptions
Name Type Description
id, sat_id integer unique row and satellite identifier
epoch datetime = timestamp at the time of measurement
X,V z float measurements of true position coordinates
Vx, Vy, Vz = float measurements of true velocities
x_sim, float measurements of simulated position
y_sim, coordinates (present in both Train and Test
z sim datasets)
Vx_sim, float measurements of simulated velocities
Vy sim, (present in both Train and Test datasets)
Vz_sim

The epoch variable, as used in the astronomical literature,
refers to the moment in time that the elements of a space
object, such as its coordinate and velocities, are specified. This
should not be confused with the number of epochs of training
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Fig. 4. Plots of true and simulated x-coordinates for Satellite 1
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done for an ML model. The set of simulated coordinates and
velocities were obtained using the less accurate SGP4 physics-
based simulation model while the set of #7ue coordinates and
velocities were obtained using a more accurate (but
unspecified) simulation model. To illustrate this information
using an example satellite, the x- and x,-coordinates of
Satellite 1 from both Train and Test datasets are plotted in Fig
4.

The green plot displays the real x-coordinates of Satellite
1 in January 2014, obtained from the Train dataset. The blue
and orange plots are the simulated xsm-coordinates in January
2014 (obtained from the Train dataset) and February 2014
(obtained from the Test dataset), respectively.

Several findings can be deduced by inspection from Figure
2 and from plots of other kinematic states as well (the set {x,
¥,z, Vx, Vy, V2} can be collectively called the kinematic states).
Firstly, satellite kinematics display a “seasonal” pattern,
which makes sense from a physical point of view, because a
full orbit around the Earth occurs over a fixed period of time.
Secondly, there are no cyclical patterns displayed by the data.
To distinguish between cyclical and seasonal patterns, an
extract from the book Forecasting: Principles and Practice
says “If the fluctuations are not of a fixed frequency then they
are cyclic; if the frequency is unchanging and associated with
some aspect of the calendar, then the pattern is seasonal” [30,
p- 31]. Since the fluctuations occur over a fixed orbital period,
the pattern should be seasonal.

Finally, the simulated coordinates xsm were seen to be
initially accurate in predicting true/real coordinates but
becomes increasingly inaccurate at future epochs. These
findings suggest applying classical forecasting techniques,
namely Seasonal Holt-Winters and Seasonal ARIMA
methods. However, the focus of this study is on developing a
regression-based machine learning model, so applying
classical forecasting methods can be done as an extension to
this paper.

Based on the plots and the above information, three
approaches can be taken:

e Ignore the simulated states (coordinates and velocities)
and directly predict real states for February using
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training data of real states and epochs in January. This
is equivalent to simply forecasting/extrapolating the
green curve into the future:

Predictor variables {epoch, x} = ML Model — Output {X}

e  Use both real and simulated states in January as training
variables to fit the ML model, which can then predict
the real states for February:

Predictor variables {epoch, x, xsim} = Model = Output {X}

e Prepare the data so that the true errors (e.g. e, =
Xgim — x) and the simulated states in January become
predictor variables for the ML model, which can then
produce the ML-modified errors for February (e.g. é,).
This is similar to the approach used in [20]:

Predictors {epoch, ey, xsm} = Model = Output {é,} = {X}

In this paper, only Approach 1 will be used for fitting a
Non-Linear Regression model, leaving the others for further
research. In addition to classical forecasting methods, the
application of modern neural network models, such as RNNs
and LSTMs, will also be left for further study.

B. Evaluation Metrics

The three metrics that were chosen to evaluate the ML
models are RMSE (Root Mean Square Error), SMAPE
(Symmetric Mean Absolute Percentage Error) and MAPRE
(Mean Absolute Percentage Residual Error). The RMSE is a
commonly used metric in regression models, defined by the
equation below:

n
1
RMSE = ;Z(a@ - x;)?, )
i=1

where X; is the predicted value, x; is the actual value, and n is
the number of observations in the dataset.

The SMAPE metric is less well-known, but it is
specialized for use in forecasting applications. It is defined by
the equation below:

n
100% < |%; — x;
SMAPE = — 2 lA i~ il : 3)
n & [%:] + |x;]

where the terms in the equation are the same as those in
RMSE. Sometimes, the model’s performance Score (out of
100%) can also be defined as:

Score = 100% — SMAPE. )

The MAPRE metric is a metric introduced by Peng and
Bai [5], in which they used the concept of MAPE (Mean
Absolute Percentage Error) to define the MAPRE as follows:

*le,—é
MAPRE = 100% W Q)
i:llexl
where e, is the true error in the x-coordinate and é, is the
ML-predicted error. The authors claimed that the learning
performance of the ML model is directly quantified by this
metric [20].

C. Non-Linear Regression

When faced with a periodic pattern in the data, an intuitive
mathematical function for fitting it would be the Fourier

series. It is known from mathematics that any periodic pattern
that is continuous (need not be differentiable) can be
approximated by a Fourier series.

However, based on the periodic pattern observed from Fig
2. in the previous section, a simple sinusoidal curve would be
good enough to model the data. Also, due to the slight
inclination seen from the figure, a combination of the sine
function together with an added linear trend was considered
for the regression model. Modelling the x -coordinate then
turns out as follows:

x(t) =Asin(2?nt+¢)+mt+c, (6)

where A is the amplitude, T is the period, ¢ is the phase shift,
m and c are the slope and intercept of the linear trend, ¢ is the
independent time variable and x(t) is the time-dependent x-
coordinate. For this model, the built-in n1s or non-linear least
squares function in R will be used to fit the above equation.

D. Data Preparation

Out of the 300 satellites in the Train dataset, Satellite 372
was chosen for implementing the NLR model outlined in the
previous section. This satellite was chosen on the basis of
having the largest number of observations, so as to provide the
most training data for the ML model.

Satellite 372 has 6320 observations and 15 variables, with
no evidence of missing values. However, an anomaly was
discovered in which it seems as though the simulation data
was updated within one millisecond. This is because while
Xsim changes by a lot (from -1766 to 804), x changes very
little (from 8581.835 to 8581.831) within that millisecond, as
shown in Fig. 5 below. The engineered feature delta_t is the
time difference between two successive epochs. Exploring
this feature led to detecting the anomaly in the first place.

The solution to this anomaly was to keep the updated
observation (the row highlighted in red) and to delete the old
observation (the row above the highlighted red).

Other than this anomaly, kinematic data was seen to be
sampled at equally spaced intervals of 7.06 minutes. In
addition to delta_t, other features such as the absolute time
starting from 01 January 00:00, and error variables were also
created for both exploration and analysis purposes.

Finally, the Satellite 372 dataset was split into training,

epoch sat_id x delta_t X_sim
2014-01-19 17:39:14.809 372 9931.653 4.238690e+02 -4192.864
2014-01-19 17:46:18.680 372 8581.835 4.238690e+02 -1765.593
|2014-01-19 17:46:18.680 372 8581.831 9.999275e-04  804.142|
2014-01-19 17:53:22.549 372 6811.510 4.238690e+02 3319.096
2014-01-19 18:00:26.418 372 4678.618 4.238690e+02 5619.019

Fig. 5. Detected anomaly highlighted in red

validation and testing components. The training component
was taken from Day 1 to Day 25 (25 days), validation
component was taken from Day 26 to Day 28 (3 days), and the
testing component was taken from Day 29 to Day 31 (3 days).
Reference [31] states that a period of 2-3 days is typically
considered before initiating maneuvers to avoid collision
between space objects, while [12] and [20] extended this
period to a maximum duration of 7 and 14 days, respectively.
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In this study, the validation and test components were taken to
be 3 days, as illustrated in Fig. 6.
E. Data Exploration

Firstly, all 6319 observations (excluding the anomaly) for
the x-coordinate were plotted over 31 days to see how it
varies, in Fig. 7.
Validation Test
| 3 Days | 3 Days |

Train: 25 Days

Fig. 6. Splitting dataset into components

Fig. 7 indicates a somewhat periodic pattern, but it is
difficult to see the detailed features of the graph, so only the
first 204 observations will be plotted in subsequent
visualizations.

True Coordinates x
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5000 ’ ’
‘; i viill‘;ii‘].“\ ‘
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Fig. 7. Plot of true x-coordinates over 31 days

There are 6319 observations over 31 days, so one day is
approximately 204 observations, assuming equal time interval
between observations. Moreover, to see the comparison
between the true and simulated coordinates, both of them were
plotted on the same figure, in Fig. 8.

At first glance, it looks as if the simulated values are very

January Day 1 x—coordinates
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Q
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epoch

Jan 01 00:00 Jan 01 06:00

Fig. 8. Plots of true and simulated x-coordinates on 01 January

good at approximating the true coordinate. To see if this

accuracy persists, the same plot on Day 22 was done, in Fig.
9.

A clear lag (or phase shift) between the true and simulated

January Day 22 x—coordinates
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Fig. 9. Plots of true and simulated x-coordinates on 22 January

coordinates can be observed. Moreover, the overall point-

January x-coordinates
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Fig. 10. Plots of true and simulated x-coordinates over 31 days
point plot for the entire 31 days was plotted, in Fig. 10.

Again, it is somewhat difficult to make out the details, but
the fitting capacity of the simulated values on the true
coordinates becomes poorer as time passes. This brings the
discussion to visualizing the errors themselves, for instance,
the error in x given by the variable e, = x — xg;p,, in Fig. 11.

Error in x (km)
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Fig. 11. The error in x, plotted over 31 days
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The e, variable looks like a spade-shaped object — in
which the error starts out small and increases (this was
expected) but peaks around Day 21-23 and then decreases to
a small value at Day 30 (this was unexpected). After this, the
error increases over Day 31. Visualizing the other errors also
indicates the same spade-shaped pattern, albeit with the peaks
occurring on different days.

Thus, it can be presumed that the simulated coordinates
lag behind the true coordinates by some phase shift, which
then corrects itself over 30 days. In fact, the plot above
indicates two kinds of errors: the error in predicting the true
coordinate, and the failure to do so at the correct epochs.
Similar visualization can also be done for the remaining five
kinematic states.

Finally, the orbit type of Satellite 372 was determined by
calculating its radius of orbit according to

r=x2+y%+z2 7

The orbit radius ranges from a minimum of 8166 km to a
maximum of 12027 km, with a mean radius of 10248 km
(Earth’s radius is 6371 km). This orbit is on average, greater
than the 2000 km threshold for Low Earth Orbit but less than
the 35786 km lower limit for High Earth Orbit. Hence,
Satellite 372 is an MEO (Medium Earth Orbit) object. A three-
dimensional plot of the satellite orbit (in orange) using the 3-
day validation data is plotted in Fig. 12. The model of Earth
centered at the origin is shown in a blue mesh.

0000
7500

~5000

10000

Fig. 12. 3D plot of satellite validation data over 3 days

F. Implementing the Non-Linear Regression Model

When implementing a non-linear fit, there is no need to
use normalized data. Therefore, the non-normalized prepared
datasets, including the split Validation and Test, were loaded
onto R. The x-coordinate was first fitted, then y and so on,
producing six separate models for each of the kinematic states.

One problem arose while implementing the non-linear
regression on the first coordinate. Fitting on all observations
in the Train dataset resulted in non-sensical values for the
model parameters, which was checked by comparing with a

quick x-coordinate plot shown in Fig. 14. Trying out various
amounts of observations were found to be impractical because
of the granularity, e.g. a comparison between using the last
950 observations or the last 951 observations is not very
practical. Instead, this difficulty was implemented as a
hyperparameter called “split” or sp/, in which the Train dataset
was divided at a certain fraction, and only the last
(100/spl)% of data was used to fit the model. For example,
if the Train dataset has 6000 observations and spl = 10, only
the last 600 observations are used for fitting. If spl = 1, then
all the observations are used. This is illustrated in Fig. 13.

A
spl

Splitting the train dataset:

Discarded

Fig. 13. Introducing the hyperparameter spl

In addition to reducing the amount of data required for
fitting the model and making predictions, the spl
hyperparameter was also chosen such that it produced
statistically significant values for the model parameters.
Moreover, the final selection of spl was made so that it
resulted in the lowest possible SMAPE value while also
respecting the significance of the model parameters.

Fitting the nls function requires the user to provide
starting values. Very rough estimates of the amplitude and
period were obtained by inspecting a plot of the final day (Day
25), while the gradient and intercept can be obtained by
looking at the entire 25 days. Data for Day 25 from the Train
dataset is plotted in Fig. 14.
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Fig. 14. A quick plot of Day 25 x-coordinates

In the above plot, the x-coordinate varies between —7,000
to 12,000, so the amplitude A was estimated as 10,000 km.
Likewise, the time difference between every other peak (or
trough) appears to be separated by 20,000 seconds, so the
period T of the curve was estimated to be 10,000 seconds.
The phase shift ¢ and intercept ¢ was just provided as 1 while
the very gentle upward slope m was given the small positive
starting value 0.01. The starting values need not be accurate
as the model will automatically find the best-fitted parameters.
Also, these parameters are different for each kinematic state,
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so the starting values need to be updated and verified with a
quick plot when fitting a different state.

After this inspection, the non-linear regression model was
implemented. Values of the hyperparameter spl were tried
out from 1 until 15 with a step size of 0.1. Both the model
parameters and spl were fitted on the Train dataset and
optimized on the Validation dataset. In cases where there were
several possible spl values to choose from, the model was
fitted on the combined Train and Validation dataset and
optimized on the Validation dataset. The split producing the
lowest SMAPE metric was chosen based on this validation
procedure. Finally, using the best spl, the optimum model was
fitted on the combined Train and Validation datasets and its
performance was evaluated on the Test dataset.

V. RESULTS AND DISCUSSION

There are 25 days in the Train dataset but only the last
section split by spl was used for training. Duration of this
section is given by the “Required” column in Table III. The 3-
day Validation dataset, from Days 26-28 was used for finding
the optimal spl and the final 3-day Test dataset, from Days
29-31 was used for evaluating the performance of each of the
models on three metrics: RMSE, SMAPE and MAPRE,
outlined in Section IV-B. The results obtained from this
evaluation are summarized in Table III below. A summary of
all the model parameters for each kinematic state is also
summarized in Table IV.

Table III. Summary of evaluation results on Test data

Name spl Required  ERMSE  SMAPE MAPRE

p q (km, km/s) (%) (%)

x | 54  5d45hrs 86321 11.56 10.96

y | 54 5d4shrs | 83099 11.80 11.23

z 75 3dl17hs 28571 9.38 10.34

vV, | 95 2d23hrs 0.847 14.00 18.99

V, 50 5dl4hrs 0.887 18.79 2021

Vv, 54 5d4.5hrs 0.329 18.69 19.93

Table IV. Summary of model parameters

A m c
Name o kmsy T© ?  (km/s, km/s?) (km, kmJs)
x | 9.65x10° 1.01x10* 413 3.70x10™* 1.86 x 103
y 955x10% 1.01x10* 147 —47x10™* 6.15x 102
z 358x10° 1.01x10* 159 3.81x10* —14x10°
v, 601  1.01x10* 143 2.1x1078* —4x1072*
v, 595  1.01x10* 163 —-3x107%* 59x1072*
v, 222 1.01x10* 145 69x107°* —2x1072*

* Not statistically significant, p > 0.05

Firstly, all kinematic states required no more than 5 days
and 14 hours of training data in order to predict 3 days in
advance. It is also much easier to predict positions instead of
velocities, as indicated by the lower SMAPE and MAPRE
values. The z coordinate produced the most accurate
forecasts, while also requiring less than 4 days of training data,
whereas the I}, coordinate produced the least accurate ones. In
addition, all model parameters were obtained with a
significance of p < 0.05 except for the velocity component

slopes and intercepts. This could be attributed to their low
magnitudes of amplitude A compared to the position
components. However, even after converting time from
seconds to hours (to increase the order of magnitude value of
the slope), the m and ¢ parameters could not be estimated
with statistical significance. The standard errors were too high
compared with their estimates.

Secondly, the RMSE metric has units of km (or km/s for
velocities), which are the same units as the kinematic states
themselves. In this sense, the RMSE value can be interpreted
as the average interval around the predicted value within
which the true coordinate can be found. Also, the estimated
value of the period T is the same for all kinematic states. This
was expected from the visualizations done previously, and
over 3 days, the period of the satellite is going to stay
relatively unchanged. The data confirm the period of orbit as
constant.

Thirdly, the optimal split was found by plotting the
SMAPE metric against the spl hyperparameter and choosing
the spl with the lowest validation SMAPE value, which also
produces significant model parameters. This process is shown
in Fig. 15.

Choosing best split hyperparameter for x

e

Dataset
+ Train

-~ Validation

error (SMAPE)

spl

Fig. 15. Train and Validation curves for hyperparameter optimization

In Figure 15, further splits of the dataset resulted in non-
significant values for the model parameters, so in this case, the
best spl was chosen as 5.4 for the x -coordinate. For the
velocity components however, no splits from 1 to 15 (step-
size 0.1) produced significant m and c values, so the criteria
for choosing the best spl was based only on the minima of the
validation curve.

VI. CONCLUSION

To recap, this study looked at data on satellite kinematics
and introduced a simple non-linear regression technique that
can be used as a baseline for predicting the kinematic states of
an MEO satellite. This satellite (Satellite 372 from the IDAO
dataset) was chosen based on having the highest number of
observations, however, not all of the data was required. The
prediction was done 3 days into the future and used no more
than 5 days and 14 hours of historical data. The lowest error
achieved was for the z-coordinate with a SMAPE value of
9.38% and the highest was for the V}, velocity coordinate with
a SMAPE value of 18.79%. The average SMAPE value
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across the six kinematic states is 14.0%, resulting in an
overall model score of 86.0%.

In comparison with Peng and Bai’s work, where they
applied Support Vector Regression to 11 satellites in different
orbits (3 SSOs, 4 LEOs and 4 MEOs) [20], this paper only
applied non-linear regression to one MEO satellite. However,
the SVR technique in [20] required 300 days of training data
to predict 14 days in advance while this paper used less than 5
days 14 hours of data to predict 3 days in advance. Reference
[20] also used additional features in their training (such as drag
information) that were not included in the present study. In
addition, [20] also investigated different training data lengths,
testing data lengths, different random seeds and different
satellite orbits. Similar to this study, their results indicated a
higher performance of the model on position coordinates as
opposed to velocity coordinates. As for accuracies, it would
not be fair to compare the performance between two studies
that used different amounts of training and test data. That
being said, the best performances in [20] range from MAPRE
values between 13% and 25% while the worst ones were
above 100%.

Finally, now that a non-linear regression baseline has been
established, application of more complex ML models can be
investigated. These include RNNs and LSTMs that can
capture the periodic pattern of data and extrapolate into the
future. Classical forecasting techniques such as the ARIMA
and Holt-Winters exponential smoothing techniques may also
be applied. In addition, the performance of prediction models
on different satellite orbits and longer forecast horizons
(between 7 to 14 days) can be investigated.

VII. APPENDIX
Table V. Table of Abbreviations

Abbreviation Complete Form

ML Machine Learning

Al Artificial Intelligence

RSO Resident Space Object

SSA Space Situational Awareness

LEO Low Earth Orbit

MEO Medium Earth Orbit

HEO High Earth Orbit

NLR Non-Linear Regression

IDAO International Data Analysis Olympiad
SSO Sun Synchronous Orbit

GSO Geosynchronous Orbit

GEO Geosynchronous Equatorial Orbit
GPS Global Positioning System

SGP4 Simplified General Perturbations 4
TLE Two-Line Element

ILRS International Laser Ranging Service
RMSE Root Mean Square Error

SMAPE Symmetric Mean Absolute Percentage Error
MAPRE Mean Absolute Percentage Residual Error
RNN Recurrent Neural Network

LSTM Long Short-Term Memory
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