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Abstract—Determining the orbital paths of space objects is a 
critical task in astronomy. In particular, knowledge of satellite 
trajectories is essential to avoid costly and hazardous collisions 
between satellites in space. However, due to the amount and 
complexity of variables affecting a satellite’s orbit, it is no small 
feat to accurately predict its position. Moreover, it was only 
recently that novel alternatives to physics-based models have 
been proposed, namely machine learning (ML) models that can 
learn from historical data and make improvements to orbit 
prediction accuracy. Motivated by the hope that ML models can 
capture the underlying pattern of satellite orbital trajectories, 
the goal of this paper is to apply a supervised ML model called 
non-linear regression, to predict the position and velocity of a 
single satellite in orbit around the Earth. The study establishes 
a simple non-linear regression baseline for predicting satellite 
motion three days in advance, from which more complex ML 
models can be applied. Obtained forecasts were within 
acceptable error margins and the overall result shows promise 
in applying ML to predict satellite motion. 

Keywords—satellite, resident space object, orbit propagation, 
supervised machine learning, non-linear regression 

                                                           
1 The term “resident space object” is most commonly used for 
referring to artificial objects that are in orbit around the Earth. 

I. INTRODUCTION 

During the past two decades, the number of Resident 
Space Objects (RSOs) 1  has nearly doubled, from around 
11,000 objects in the year 2000 to around 19,500 objects in 
2019. This number is expected to rise even higher as more 
satellites are put into space, thanks to improvements in 
satellite technology and lower costs of production. On the 
other hand, the increase in the number of RSOs also indirectly 
increases the risk of collision between them [1]. The 
awareness and identification of risky situations such as these 
are referred to as Space Situational Awareness (SSA) [2]. 
More specifically, SSA refers to “the ability to view, 
understand and predict the physical location of natural and 
man-made objects in orbit around the Earth, with the objective 
of avoiding collisions” [2, p. 23]. An important issue in SSA 
is the reliable and accurate orbit determination (or orbit 
tracking) of satellites over long periods of time. Failure to 
address this issue has led to incidents such as the collision 
between the active Iridium-33 US communication satellite 
and the inactive Kosmos-2251 Russian communication 
satellite in February 2009 [1]. In fact, this accident increased 
the amount of space debris by 13%, as shown in Fig. 1.  

Please refer to Section VII: Appendix for a complete list of all the 
abbreviations used in this paper. 

 
Fig. 1. Number of resident space objects in Low Earth Orbit [3] 
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More accidents will result in more debris being produced, 

and through a chain reaction of collisions (if left unchecked), 
may lead to a dire situation in which it becomes difficult or 
downright impossible to put a satellite into orbit due to the 
large accumulation of space debris surrounding the Earth. 
This scenario is known as the Kessler Syndrome [4]. Thus, 
considering the gravity of the situation at hand, it is imperative 
to prevent such catastrophic collisions from ever happening 
again. 

The demand for accurate orbit prediction methods is on the 
rise, as more objects are put into space. Section I introduced 
the reasons on why this is a concerning state of affairs. Section 
II explains why current prediction models are lacking in the 
timeliness, accuracy, and practicality of predicting orbital 
paths, and why alternative methods such as machine learning 
(ML) techniques should be considered. Additionally, the 
research question that will be addressed in this paper is 
discussed. Section III introduces the related works in the 
literature involving both ML and non-ML techniques while 
assessing their strengths and limitations as well. Section IV 
presents the data sets, methodology, metrics and the data 
preparation and exploration phases. Section V presents the 
obtained results and a short discussion on them. Section VI 
concludes the paper with a summary and directions for further 
research. 

II. BACKGROUND 

A. The Need for Alternative Prediction Methods 

The main cause of the Iridium-Kosmos incident 2  was 
attributed to the limited capability of orbit determination 
techniques at that time, together with the inherent uncertainty 
of data used in these techniques [1]. Likewise, most of today’s 
orbit prediction methods are physics-based, which still 
possess the flaws of methods from 2009, albeit at a less severe 
degree. These methods require good information on the initial 
conditions of the satellite at the start of calculating its 
trajectory, as well as the space environment around it [5]. 
Environmental conditions such as solar radiation pressure, 
which is the force of extremely fast subatomic particles from 
the Sun hitting a satellite’s surface, is unnoticeable over short 
time intervals but adds up to a noticeable effect on the 
satellite’s orbit over long periods of time. This variable is 
difficult to estimate due to the Sun’s constantly evolving 
surface and due to a lack of information about the satellite’s 
size, mass and geometrical proportions, captured within a 
parameter called the area-to-mass ratio [6]. 

Similar difficulties are faced when considering the effect 
of Earth’s atmospheric drag, which is the resistance of air 
against a satellite’s movement when it moves around the Earth 
at a low enough orbit. Calculating this parameter requires 
knowledge of the air density at a given position of the satellite, 
how fast the satellite is moving and how much of its surface 
area is exposed to the air moving against it. Moreover, 
information about the change in altitude and state of the 
satellite when it is being maneuvered by operators from other 
countries may not always be readily available for use when 
orbit predictions are needed [5]. 

The list of variables to be estimated and updated are many 
and complicated, while the methods used for estimating and 

                                                           
2 Funnily enough, the irony of this incident was that both of them 
were communication satellites. 

updating them are few and even more complex. Current orbit 
determination methods, especially physics-based ones, fall 
into one or more of the following shortcomings: 

 They do not consider all of the variables affecting a 
satellite’s orbit due to unattainable or inherently 
uncertain data. For example, the area-to-mass ratio 
and maneuver information. 

 They require expensive monitoring tools with limited 
resources (such as ground-based observatories) or 
time-consuming models requiring impractical 
computing costs [5]. 

 They may not be generalizable to other types of orbits. 
For example, a model requiring atmospheric drag data 
to track Low Earth Orbit (LEO) satellites may not 
always be applicable to tracking High Earth Orbit 
(HEO) satellites, where the effect of Earth’s 
atmosphere is effectively non-existent. 

 Given the limitations described above, errors in physics-
based models may be too high to be useful for practical 
situations, namely collision avoidance and task scheduling 
(for example, assigning a weather satellite to watch over a 
particular patch of the Earth). As an alternative to these 
methods, a different approach to orbit prediction based on 
machine learning techniques was proposed in the literature. 

B. Machine Learning for Space Situational Awareness 

Machine Learning (ML) has made it possible to automate 
repetitive tasks in the scientific, financial and technical 
industries. Implementing ML and sophisticated artificial 
intelligence (AI) technologies can extract information and 
recognize patterns in data that usually require a considerable 
amount of time for humans to discover [7]. In addition, the 
volume and velocity of data can hinder humans from being 
able to process the data within the time frames necessary for 
practical decision-making. In the context of Space Situational 
Awareness (SSA), mundane jobs such as predicting orbital 
paths, assigning scheduled tasks and evaluating collision risks 
are best suited for machine learning, with operators stepping 
in when human intervention is required [7]. Hence, the ML 
technique provides a new framework for improving the 
capabilities of existing physics-based methods in carrying out 
these jobs. 

In stark contrast to physics-based methods for predicting 
an RSO’s orbit, ML techniques do not require explicit 
modelling to be done for the RSO’s structure (such as its shape 
and area-to-mass ratio) and the local space environment 
around it, nor does it need information about the RSO’s 
maneuvers [5]. Rather, the models are learned from large 
amounts of historical data, which is in some ways similar to 
how humans learn to predict future events through 
experiences from their past [5]. The three most common types 
of machine learning are supervised learning, unsupervised 
learning, and reinforcement learning. Reinforcement learning 
is used for making optimal decisions. Unsupervised learning 
is used for recognizing patterns and structures without having 
to provide labels for the input data. Supervised learning, 
however, learns a function that maps labelled input data to 
labelled output data based on example training data [5]. 
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Due to the accessibility of labelled historical data 

concerning the satellites’ previous positions and velocities, the 
supervised machine learning method is deemed to be most the 
appropriate approach [5]. Among the various supervised ML 
techniques available, the Non-Linear Regression (NLR) 
method will be used for the specific problem of improving 
orbit prediction accuracy for satellites. For a complete 
description of the NLR method, its mathematical formulation 
in one dimension, the reasons for choosing it to address this 
problem, as well as the justifications for setting up the dataset 
structure and error metrics (determined through an initial 
exploratory data analysis stage), please refer to Section IV: 
Methodology. 

The essence of the ML technique for improving the error 
in orbit prediction is shown in Fig. 2 below. At time 𝑡௜ , the 
ground station (indicated by the small orange dish on the 
Earth’s surface) observes the RSO (indicated by the blue-and-
yellow satellite) and estimates its position. This estimated 
state will undoubtedly have measurement errors associated 
with it. Because of these measurement errors and because of 
the assumed physics-based model, the propagated orbit 
prediction will deviate further from the true orbit at a later 
time, as shown in the predicted state at the time 𝑡௝ > 𝑡௜ . 
However, the ML technique modifies the predicted state, so 
that the ML-modified state is learned to be closer to the true 
state of the RSO [5]. 

C. Research Hypothesis, Goal, and Scope 

At the very heart of the ML approach described above is 
the hypothesis that even though the scientist may not have all 

of the knowledge necessary for a physics-based forecast, some 
of this information is indirectly contained within the RSO’s 
historical data [8]. This includes estimated states, 
measurement data and prediction errors for the RSO’s 
particulars and space environment [8]. 

Given the above hypothesis, the goal of this paper is to 
apply a supervised ML technique called Non-Linear 
Regression (NLR) to predict, over a period of three days, the 

position and velocity components of a single satellite using 
simulated data obtained from a physics-based model.  

The data was provided by the Russian Astronomical 
Science Centre for the first stage of the International Data 
Analysis Olympiad (IDAO) in January 2020 [9].  

Due to the broad field of study in orbit determination, the 
scope of this research will be limited to only one outcome, that 
of predicting the target variables (positions and velocities) 
specified as per the instructions given to IDAO participants. 
Other measurements such as the area-to-mass ratio, which can 
also be inferred using ML techniques, will not be done. 
Moreover, only one ML technique will be applied in this 
paper, i.e. the NLR model. Finally, only the official datasets 
given to IDAO participants will be used for applying the NLR 
model. No external data shall be used. 

III. RELATED WORK 

This section first presents the common themes found in the 
literature concerning orbit prediction, such as the techniques 
used and the types of orbits that they are applied to. Also 
presented are the data types and sources used for making these 
predictions, as well as the metrics used in evaluating orbit 
propagation models. Finally, a concise synthesis and analysis 
of the presented works were done. 

A. Orbit Propagation Techniques 

Until a few years ago, most orbit determination procedures 
were done using non-ML-based methods. These methods 
include the commonly used models based on the natural laws 
of physics, mathematical expressions such as Polynomial 
Chaos Expansion and Gaussian Processes [10], and analytical 
and semi-analytical solutions for describing orbital motion 
[11]. The physics-based methods were highly dependent on 
initial conditions, which may not always be available or 
reliable (asX demonstrated by the Iridium-Kosmos collision). 
Moreover, the mathematical expressions were inconsistent in 
modelling RSO behavior under higher-order effects (called 
“perturbations” in the scientific literature) such as atmospheric 
drag, solar radiation pressure and the gravitational pull from 
the Sun, Moon and other planets. As improvements to the 
mathematical expressions, analytical and semi-analytical 
solutions were explored to take into consideration the 
quantitatively small but important perturbations required for 
an accurate orbit prediction [1]. 

The supervised machine learning approach, on the other 
hand, does not require explicit models of the RSO and its 
space environment to infer initial conditions and propagate its 
orbit to a predicted position in the future. Rather, it has a basis 
on recognizing the inherent patterns within the observed 
historical data of the RSO and learning the mapping function 
between independent and dependent variables.  

Moreover, there are also other data-driven approaches 
such as artificial neural networks [12], reinforcement learning 
[13], and artificial intelligence, in which the latter not only 

 
Fig. 2. ML approach for improving orbit prediction accuracy [5] 
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predicts orbital paths but also assists in the associated 
decision-making process [1].  

 Finally, the latest state-of-the-art techniques are called 
hybrid propagation methods. This method combines a 
classical propagation method (e.g. a semi-analytical method) 
with either a statistical time series forecasting model or an ML 
technique [14, 1]. A summary of all the orbit propagation 
techniques is given in Fig. 3.  

B.  Types of Satellite Orbit 

 Depending on their purpose and missions in space, 
satellites are put into different altitudes of orbit around the 
Earth. These orbit types are classified according to their 
relative distance from the Earth’s surface: Low Earth Orbit 
(LEO) for altitudes below 2000 km, Medium Earth Orbit 
(MEO) for altitudes below 35786 km, Geosynchronous Orbit 
(GSO) at an approximate altitude of 35786 km, and High 
Earth Orbit (HEO) for altitudes above 35786 km [15]. Other 
types of orbit also exist, such as Sun Synchronous Orbits and 
GPS orbits. A summary of common RSO orbit types is shown 
in Table I on the next page. 

 Due to the commercial, civil, meteorological, military and 
scientific needs of different nations, most satellites are put into 
orbits at or below the geosynchronous altitude, in the LEO and 
MEO regions [14]. Unfortunately, it is also in these regions 
that the accumulation of space debris is the highest, making it 
one of the main dangers for functional satellites [16]. Thus, 
accurate RSO tracking not only includes determining satellite 
orbits but also the orbits of dangerous space debris as well. 

 The differences between orbit types are significant enough 
that there is no single master technique that can account for all 
the particular characteristics of each type of orbit. For 
example, a common physics-based model called SGP4 
(Simplified General Perturbations-4) was made for tracking 
satellites at Low Earth Orbit, in which atmospheric drag is 
important to consider but solar radiation pressure is less 
important [2]. This is because LEO satellites travel fast, 
around 7-8 km/s, so the effect of the Sun’s radiation (which 
occurs only over certain paths during the orbit) is eclipsed by 
the effect of the Earth’s atmosphere (which exists throughout 
the entire orbit). On the contrary, MEO and HEO satellites 
travel much slower and at a much higher altitude than LEO 
satellites, so atmospheric drag becomes less important while 

solar radiation becomes more important. Hence, SGP4 
becomes inaccurate and other models need to be used. 

 For cases such as the Sun Synchronous Orbit, in which a 
satellite is arranged to face the Sun at all times throughout its 
orbit, both atmospheric drag and solar radiation pressure 
become highly important variables. As they are mainly put 
into LEO regions (around 600-800 km altitudes), SSOs are 
popular for imaging, spying, meteorological and scientific 
uses due to having constant sunlight for its solar panels and 
more importantly for having constant illumination on the 
Earth’s surface below them. Due to their purpose at low orbits, 
predicting SSO paths inherently require both solar radiation 
data as well as atmospheric drag data, which means more 
complex models need to be used. 

 Therefore, when applying ML models for predicting RSO 
trajectories, it is important to specify the type of orbit an RSO 
is in. Based on the orbit type, more or fewer features can be 
specified as input data for the ML model. For example, Peng 
and Bai [20] used additional drag coefficient data to develop 
their Support Vector Regression (SVR) approach to 
improving the orbit prediction accuracy of LEO, SSO and 
MEO satellites. The ultimate goal is that powerful data-driven 
(or otherwise) techniques will be developed that are 
generalizable and can be applied to all types of orbit, given the 
appropriate input data. 

C. Data Types and Sources 

The two main sources of publicly available data are the 
TLE (Two-Line Element, so-called because of its original 
encoding format in two punch cards) data from Kelso [17] and 
ILRS (International Laser Ranging Service) data from NASA 
[18]. To put it simply, the ILRS ground-based stations fire 
laser pulses at satellites, which gets reflected back to the 
station. By measuring the two-way time of flight of the laser 
pulse, the distance from the station to the satellite can be 
calculated [18].  

The TLE data format, on the other hand, uses physics-
based SGP4 computational models to simulate the state 
(position and velocity) of space objects. The CelesTrak 
website at Kelso [17] provides data for space objects that are 
larger than 10 cm in diameter, which is useful for tracking 

 
Fig. 3. A summary of orbit propagation techniques in the literature [1] 
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space debris [10]. In addition, novel concepts for tracking 
space debris were also put forward, such as [16]. This concept 
uses an LEO satellite equipped with a telescope that visually 
observes space debris moving within the GSO region.  

Their method is superior to ground-based telescopes 
because adverse weather conditions do not affect data 
collection [16]. While the data from ILRS is precise and more 
closely represents the “true state” of RSOs, ground-based 
stations are expensive, and data can only be collected when 
the RSO passes across its hemisphere of vision. In other 
words, the station cannot send laser pulses to a satellite while 
it is travelling across the opposite half of the Earth. An 
operational satellite may also contain its own GPS tracker 
which provides much more accurate data than TLE 
catalogues. However, the disadvantage is that this data 
belongs to the owner/operator of the satellite only and is not 
publicly available for use. As a result, Peng and Bai [10] used 
public ILRS data as the true state of the investigated satellites 
and the TLE data as the less accurate, estimated state. 

D. Metrics and Evaluation 

For the purpose of evaluation, papers in the orbit 
determination literature used a variety of metrics. Some of the 
pioneers in applying ML techniques such as Peng and Bai [10] 
exclusively prefer using a single performance metric that they 
introduced in their previous work [5], while others like [19] 
used the common metrics MSE (Mean Squared Error), MAE 
(Mean Absolute Error) and APE (Absolute Percentage Error), 
and [17] used the AUC (Area Under the Curve) metric with 
ROC (Receiver Operating Characteristic) curves to compare 
the performance of several ML techniques. Reference [6] also 
used RMSE (Root Mean Squared Error) to measure the 
performance of their random forest model in recovering the 
area-to-mass ratio of space objects. Most papers that used 
physics-based methods also employed RMSE and other 
common metrics.  

A particularly intuitive and easy to interpret metric would 
be the unnamed performance metric introduced by Peng and 
Bai in [5]. The authors used the concept of the MAPE metric 
(Mean Absolute Percentage Error), common in forecasting 
applications, to define this performance metric as follows: 

𝑃ெ௅ = 100%
∑ |𝑒௥௘௦|௡

௜ୀଵ

∑ |𝑒்|௡
௜ୀଵ

= 100%
∑ |𝑒் − 𝑒̂ெ௅|௡

௜ୀଵ

∑ |𝑒்|௡
௜ୀଵ

 (1) 

The performance of an ML technique is defined as the 
ratio of the sum of absolute residual errors to the sum of 
absolute true errors, where n is the number of observations in 
the test dataset. For example, if a satellite’s true x-coordinate 
is 10000 km and estimated x-coordinate is 10100 km, then the 

                                                           
3 Here, orbit determination refers to estimating discrete 
observations of a RSO’s state (position and velocity) at certain 

true error (the independent variable) is 𝑒் = 100 𝑘𝑚. After 
applying an ML technique, which predicts the ML-modified 
error (the target variable) to be 𝑒̂ெ௅ = 90 km, the performance 
metric can be calculated to be 10%. The lower the metric, the 
better the learning capability of the ML model. Also, the 
authors claimed that this metric directly quantifies the learning 
performance of the ML model because the remaining errors 
(e.g. the remaining 10 km that the ML model failed to correct 
in the above example) “represent the information that cannot 
be modelled with the available learning variables” [20, p.14]. 

Henceforth, the performance metric defined above will be 
referred to as the Mean Absolute Percentage Residual Error 
(MAPRE). 

E. Synthesis and Analysis 

Machine learning applications to orbit determination and 
propagation3 for the purpose of SSA are still in its infancy [7]. 
Peng and Bai, the two pioneers in this field, have published 
several papers investigating the use of SVR, beginning with 
their paper in [22]. In subsequent papers such as [5, 8], they 
refined their method and applied it to different sets of data and 
RSOs. Their final paper on SVR in 2019 is the most up to date 
and provides a comprehensive account of their methodology 
and application to four LEO, three SSO, and four MEO 
satellites, achieving a MAPRE error of less than 50% in most 
of the 11×6 position and velocity components. In addition to 
SVR, they also explored the Gaussian Process (GP) 
improvements to their ML models in order to generate 
uncertainty information. This is because the ML approach 
only provides a point estimate without information about how 
uncertain that measurement is. Finally, they compared the 
performance of SVR, ANN (Artificial Neural Networks) and 
GP models, concluding that ANN provides the best estimates 
but is prone to overfitting, while SVR is the least likely to 
overfit but its performance is overshadowed by ANN and GPs 
[23]. 

The beauty of ML techniques is their universal data-driven 
approach. Not only can one use them to predict RSO orbits but 
also to discover their physical properties, given the 
appropriate data. Reference [6] used a regression random 
forest model to recover the area-to-mass ratio of 135 space 
objects in Sun Synchronous Orbit, achieving a discrete 
prediction accuracy of around 85%. Moreover, [7] used 
decision trees, random forest, logistic regression, and SVMs 
(linear, sigmoid and Gaussian kernels) to classify satellite 
stability state (whether a satellite is rotating or not), achieving 
a prediction accuracy of 89%. A slightly different application 
was in sending spacecraft to asteroids, and Gaussian Process 
Regression was used for estimating the parameters involved 
[19]. Yet another application involved the detection and 

points of its orbit, while orbit propagation refers to estimating the 
future state of the RSO, given historical data [21]. 

Table I. Summary of common RSO orbit types 

Name Orbit Description 
LEO Low Earth Orbit altitudes below 2000 km 
MEO Medium Earth  Orbit altitudes below 35786 km 
GSO Geosynchronous Orbit altitude at 35786 km; orbital period of 24 hours 
GEO Geosynchronous Equatorial A GSO placed directly above the Earth’s equator 
GPS Global Positioning System Orbit altitude at 20200 km; orbital period of 12 hours 

SSO Sun Synchronous  An LEO satellite that faces the Sun during its orbit 
HEO High Earth Orbit altitudes above 35786 km 
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prediction of RSO maneuvers, which was done using inverse 
reinforcement learning [13]. Another study in maneuver 
detection used historical orbit data but without the ML 
approach, opting to use mathematical procedures instead [24]. 
Finally, a study on GPS and BeiDou System (the set of 
Chinese GPS satellites) used Convolutional Neural Networks 
(CNNs) with image data to reduce orbit prediction error by 
45%. Overall, the use and application of ML techniques for 
SSA seem to be gaining in traction, especially in the last two 
years. 

IV. METHODOLOGY 

A. The Datasets and Approach Taken 

The two datasets (in CSV format) used in this study were 
provided to participants of the 2020 International Data 
Analytics Olympiad by the Russian Astronomical Centre [9]. 
The first dataset is the Train dataset, which contains 649913 
observations and 15 variables. The second is the Test dataset, 
which contains 284072 observations and 9 variables. The 
Train dataset consists of true and simulated coordinates 
(measured in km) and velocities (measured in km/s) of 600 
satellites in the month of January 2014, while the Test dataset 
consists of only simulated coordinates and velocities of 300 
satellites in February 2014. The variable names and 
descriptions for both datasets are summarized in Table II. 

The epoch variable, as used in the astronomical literature, 
refers to the moment in time that the elements of a space 
object, such as its coordinate and velocities, are specified. This 
should not be confused with the number of epochs of training 

done for an ML model. The set of simulated coordinates and 
velocities were obtained using the less accurate SGP4 physics-
based simulation model while the set of true coordinates and 
velocities were obtained using a more accurate (but 
unspecified) simulation model. To illustrate this information 
using an example satellite, the x- and xsim-coordinates of 
Satellite 1 from both Train and Test datasets are plotted in Fig 
4. 

The green plot displays the real x-coordinates of Satellite 
1 in January 2014, obtained from the Train dataset. The blue 
and orange plots are the simulated xsim-coordinates in January 
2014 (obtained from the Train dataset) and February 2014 
(obtained from the Test dataset), respectively. 

Several findings can be deduced by inspection from Figure 
2 and from plots of other kinematic states as well (the set {x, 
y, z, Vx, Vy, Vz} can be collectively called the kinematic states). 
Firstly, satellite kinematics display a “seasonal” pattern, 
which makes sense from a physical point of view, because a 
full orbit around the Earth occurs over a fixed period of time. 
Secondly, there are no cyclical patterns displayed by the data. 
To distinguish between cyclical and seasonal patterns, an 
extract from the book Forecasting: Principles and Practice 
says “If the fluctuations are not of a fixed frequency then they 
are cyclic; if the frequency is unchanging and associated with 
some aspect of the calendar, then the pattern is seasonal” [30, 
p. 31]. Since the fluctuations occur over a fixed orbital period, 
the pattern should be seasonal.  

Finally, the simulated coordinates xsim were seen to be 
initially accurate in predicting true/real coordinates but 
becomes increasingly inaccurate at future epochs. These 
findings suggest applying classical forecasting techniques, 
namely Seasonal Holt-Winters and Seasonal ARIMA 
methods. However, the focus of this study is on developing a 
regression-based machine learning model, so applying 
classical forecasting methods can be done as an extension to 
this paper. 

Based on the plots and the above information, three 
approaches can be taken: 

 Ignore the simulated states (coordinates and velocities) 
and directly predict real states for February using 

Table II. Variable names and descriptions 

Name Type Description 
id, sat_id integer unique row and satellite identifier 
epoch  datetime timestamp at the time of measurement 
x, y, z float measurements of true position coordinates 

Vx, Vy, Vz float measurements of true velocities  
x_sim, 
y_sim, 
z_sim 

float measurements of simulated position 
coordinates (present in both Train and Test 
datasets) 

Vx_sim, 
Vy_sim, 
Vz_sim 

float measurements of simulated velocities 
(present in both Train and Test datasets) 

 

 
Fig. 4. Plots of true and simulated x-coordinates for Satellite 1 
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training data of real states and epochs in January. This 
is equivalent to simply forecasting/extrapolating the 
green curve into the future: 

Predictor variables {epoch, x} → ML Model → Output {𝑥ො} 

 Use both real and simulated states in January as training 
variables to fit the ML model, which can then predict 
the real states for February: 

Predictor variables {epoch, x, xsim} → Model → Output {𝑥ො} 

 Prepare the data so that the true errors (e.g. 𝑒௫ =
𝑥௦௜௠ − 𝑥) and the simulated states in January become 
predictor variables for the ML model, which can then 
produce the ML-modified errors for February (e.g. 𝑒̂௫). 
This is similar to the approach used in [20]: 

Predictors {epoch, 𝑒௫, xsim} → Model → Output {𝑒̂௫} → {𝑥ො} 

In this paper, only Approach 1 will be used for fitting a 
Non-Linear Regression model, leaving the others for further 
research. In addition to classical forecasting methods, the 
application of modern neural network models, such as RNNs 
and LSTMs, will also be left for further study. 

B. Evaluation Metrics 

The three metrics that were chosen to evaluate the ML 
models are RMSE (Root Mean Square Error), SMAPE 
(Symmetric Mean Absolute Percentage Error) and MAPRE 
(Mean Absolute Percentage Residual Error). The RMSE is a 
commonly used metric in regression models, defined by the 
equation below: 

𝑅𝑀𝑆𝐸 = ඩ
1

𝑛
෍(𝑥ො௜ − 𝑥௜)

ଶ

௡

௜ୀଵ

, (2) 

where 𝑥ො௜ is the predicted value, 𝑥௜  is the actual value, and 𝑛 is 
the number of observations in the dataset. 

The SMAPE metric is less well-known, but it is 
specialized for use in forecasting applications. It is defined by 
the equation below: 

𝑆𝑀𝐴𝑃𝐸 =
100%

𝑛
෍

|𝑥ො௜ − 𝑥௜|

|𝑥ො௜| + |𝑥௜|

௡

௜ୀଵ

, (3) 

where the terms in the equation are the same as those in 
RMSE. Sometimes, the model’s performance Score (out of 
100%) can also be defined as: 

𝑆𝑐𝑜𝑟𝑒 = 100% − 𝑆𝑀𝐴𝑃𝐸. (4) 

The MAPRE metric is a metric introduced by Peng and 
Bai [5], in which they used the concept of MAPE (Mean 
Absolute Percentage Error) to define the MAPRE as follows: 

𝑀𝐴𝑃𝑅𝐸 = 100%
∑ |𝑒௫ − 𝑒̂௫|௡

௜ୀଵ

∑ |𝑒௫|௡
௜ୀଵ

, (5) 

where 𝑒௫  is the true error in the 𝑥-coordinate and 𝑒̂௫  is the 
ML-predicted error. The authors claimed that the learning 
performance of the ML model is directly quantified by this 
metric [20]. 

C. Non-Linear Regression 

When faced with a periodic pattern in the data, an intuitive 
mathematical function for fitting it would be the Fourier 

series. It is known from mathematics that any periodic pattern 
that is continuous (need not be differentiable) can be 
approximated by a Fourier series.  

However, based on the periodic pattern observed from Fig 
2. in the previous section, a simple sinusoidal curve would be 
good enough to model the data. Also, due to the slight 
inclination seen from the figure, a combination of the sine 
function together with an added linear trend was considered 
for the regression model. Modelling the 𝑥 -coordinate then 
turns out as follows: 

𝑥(𝑡) = 𝐴 sin ൬
2𝜋

𝑇
𝑡 + 𝜙൰ + 𝑚𝑡 + 𝑐, (6) 

where 𝐴 is the amplitude, 𝑇 is the period, 𝜙 is the phase shift, 
𝑚 and 𝑐 are the slope and intercept of the linear trend, 𝑡 is the 
independent time variable and 𝑥(𝑡) is the time-dependent 𝑥-
coordinate. For this model, the built-in nls or non-linear least 
squares function in R will be used to fit the above equation. 

D. Data Preparation 

Out of the 300 satellites in the Train dataset, Satellite 372 
was chosen for implementing the NLR model outlined in the 
previous section. This satellite was chosen on the basis of 
having the largest number of observations, so as to provide the 
most training data for the ML model.  

Satellite 372 has 6320 observations and 15 variables, with 
no evidence of missing values. However, an anomaly was 
discovered in which it seems as though the simulation data 
was updated within one millisecond. This is because while 
𝑥௦௜௠  changes by a lot (from -1766 to 804), 𝑥 changes very 
little (from 8581.835 to 8581.831) within that millisecond, as 
shown in Fig. 5 below. The engineered feature 𝑑𝑒𝑙𝑡𝑎_𝑡 is the 
time difference between two successive epochs. Exploring 
this feature led to detecting the anomaly in the first place.  

The solution to this anomaly was to keep the updated 
observation (the row highlighted in red) and to delete the old 
observation (the row above the highlighted red).  

Other than this anomaly, kinematic data was seen to be 
sampled at equally spaced intervals of 7.06 minutes. In 
addition to 𝑑𝑒𝑙𝑡𝑎_𝑡, other features such as the absolute time 
starting from 01 January 00:00, and error variables were also 
created for both exploration and analysis purposes.  

Finally, the Satellite 372 dataset was split into training, 

validation and testing components. The training component 
was taken from Day 1 to Day 25 (25 days), validation 
component was taken from Day 26 to Day 28 (3 days), and the 
testing component was taken from Day 29 to Day 31 (3 days). 
Reference [31] states that a period of 2-3 days is typically 
considered before initiating maneuvers to avoid collision 
between space objects, while [12] and [20] extended this 
period to a maximum duration of 7 and 14 days, respectively. 

 
Fig. 5. Detected anomaly highlighted in red 
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In this study, the validation and test components were taken to 
be 3 days, as illustrated in Fig. 6. 

E. Data Exploration 

Firstly, all 6319 observations (excluding the anomaly) for 
the 𝑥 -coordinate were plotted over 31 days to see how it 
varies, in Fig. 7. 

Fig. 7 indicates a somewhat periodic pattern, but it is 
difficult to see the detailed features of the graph, so only the 
first 204 observations will be plotted in subsequent 
visualizations.  

There are 6319 observations over 31 days, so one day is 
approximately 204 observations, assuming equal time interval 
between observations. Moreover, to see the comparison 
between the true and simulated coordinates, both of them were 
plotted on the same figure, in Fig. 8. 

 

At first glance, it looks as if the simulated values are very 

good at approximating the true coordinate. To see if this 

accuracy persists, the same plot on Day 22 was done, in Fig. 
9.  

A clear lag (or phase shift) between the true and simulated 

coordinates can be observed. Moreover, the overall point-

point plot for the entire 31 days was plotted, in Fig. 10. 

Again, it is somewhat difficult to make out the details, but 
the fitting capacity of the simulated values on the true 
coordinates becomes poorer as time passes. This brings the 
discussion to visualizing the errors themselves, for instance, 
the error in 𝑥 given by the variable 𝑒௫ = 𝑥 − 𝑥௦௜௠ , in Fig. 11. 

                                                 Validation    Test 

 
Fig. 6. Splitting dataset into components  

 
Fig. 8. Plots of true and simulated 𝑥-coordinates on 01 January 

 
Fig. 9. Plots of true and simulated 𝑥-coordinates on 22 January 

 
Fig. 10.   Plots of true and simulated 𝑥-coordinates over 31 days 

 
Fig. 11.   The error in 𝑥, plotted over 31 days 

Fig. 7. Plot of true 𝑥-coordinates over 31 days 
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The 𝑒௫  variable looks like a spade-shaped object – in 

which the error starts out small and increases (this was 
expected) but peaks around Day 21-23 and then decreases to 
a small value at Day 30 (this was unexpected). After this, the 
error increases over Day 31. Visualizing the other errors also 
indicates the same spade-shaped pattern, albeit with the peaks 
occurring on different days. 

Thus, it can be presumed that the simulated coordinates 
lag behind the true coordinates by some phase shift, which 
then corrects itself over 30 days. In fact, the plot above 
indicates two kinds of errors: the error in predicting the true 
coordinate, and the failure to do so at the correct epochs. 
Similar visualization can also be done for the remaining five 
kinematic states. 

Finally, the orbit type of Satellite 372 was determined by 
calculating its radius of orbit according to 

𝑟 = ඥ𝑥ଶ + 𝑦ଶ + 𝑧ଶ. (7) 

The orbit radius ranges from a minimum of 8166 km to a 
maximum of 12027 km, with a mean radius of 10248 km 
(Earth’s radius is 6371 km). This orbit is on average, greater 
than the 2000 km threshold for Low Earth Orbit but less than 
the 35786 km lower limit for High Earth Orbit. Hence, 
Satellite 372 is an MEO (Medium Earth Orbit) object. A three-
dimensional plot of the satellite orbit (in orange) using the 3-
day validation data is plotted in Fig. 12. The model of Earth 
centered at the origin is shown in a blue mesh. 

F. Implementing the Non-Linear Regression Model 

When implementing a non-linear fit, there is no need to 
use normalized data. Therefore, the non-normalized prepared 
datasets, including the split Validation and Test, were loaded 
onto R. The 𝑥-coordinate was first fitted, then 𝑦 and so on, 
producing six separate models for each of the kinematic states.  

One problem arose while implementing the non-linear 
regression on the first coordinate. Fitting on all observations 
in the Train dataset resulted in non-sensical values for the 
model parameters, which was checked by comparing with a 

quick 𝑥-coordinate plot shown in Fig. 14. Trying out various 
amounts of observations were found to be impractical because 
of the granularity, e.g. a comparison between using the last 
950 observations or the last 951 observations is not very 
practical. Instead, this difficulty was implemented as a 
hyperparameter called “split” or spl, in which the Train dataset 
was divided at a certain fraction, and only the last 
(100/𝑠𝑝𝑙)% of data was used to fit the model. For example, 
if the Train dataset has 6000 observations and 𝑠𝑝𝑙 = 10, only 
the last 600 observations are used for fitting. If 𝑠𝑝𝑙 = 1, then 
all the observations are used. This is illustrated in Fig. 13.  

In addition to reducing the amount of data required for 
fitting the model and making predictions, the 𝑠𝑝𝑙 
hyperparameter was also chosen such that it produced 
statistically significant values for the model parameters. 
Moreover, the final selection of 𝑠𝑝𝑙  was made so that it 
resulted in the lowest possible SMAPE value while also 
respecting the significance of the model parameters. 

Fitting the nls function requires the user to provide 
starting values. Very rough estimates of the amplitude and 
period were obtained by inspecting a plot of the final day (Day 
25), while the gradient and intercept can be obtained by 
looking at the entire 25 days. Data for Day 25 from the Train 
dataset is plotted in Fig. 14.  

In the above plot, the 𝑥-coordinate varies between −7,000 
to 12,000, so the amplitude 𝐴 was estimated as 10,000 𝑘𝑚. 
Likewise, the time difference between every other peak (or 
trough) appears to be separated by 20,000  seconds, so the 
period 𝑇 of the curve was estimated to be 10,000 seconds. 
The phase shift 𝜙 and intercept 𝑐 was just provided as 1 while 
the very gentle upward slope 𝑚 was given the small positive 
starting value 0.01. The starting values need not be accurate 
as the model will automatically find the best-fitted parameters. 
Also, these parameters are different for each kinematic state, 

 
 

Fig. 12.   3D plot of satellite validation data over 3 days 

Splitting the train dataset:

 

Fig. 13.   Introducing the hyperparameter 𝑠𝑝𝑙 

 
Fig. 14.   A quick plot of Day 25 𝑥-coordinates 
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so the starting values need to be updated and verified with a 
quick plot when fitting a different state. 

After this inspection, the non-linear regression model was 
implemented. Values of the hyperparameter 𝑠𝑝𝑙  were tried 
out from 1 until 15 with a step size of 0.1. Both the model 
parameters and 𝑠𝑝𝑙  were fitted on the Train dataset and 
optimized on the Validation dataset. In cases where there were 
several possible 𝑠𝑝𝑙  values to choose from, the model was 
fitted on the combined Train and Validation dataset and 
optimized on the Validation dataset. The split producing the 
lowest SMAPE metric was chosen based on this validation 
procedure. Finally, using the best 𝑠𝑝𝑙, the optimum model was 
fitted on the combined Train and Validation datasets and its 
performance was evaluated on the Test dataset. 

V. RESULTS AND DISCUSSION 

There are 25 days in the Train dataset but only the last 
section split by 𝑠𝑝𝑙  was used for training. Duration of this 
section is given by the “Required” column in Table III. The 3-
day Validation dataset, from Days 26-28 was used for finding 
the optimal 𝑠𝑝𝑙 and the final 3-day Test dataset, from Days 
29-31 was used for evaluating the performance of each of the 
models on three metrics: RMSE, SMAPE and MAPRE, 
outlined in Section IV-B. The results obtained from this 
evaluation are summarized in Table III below. A summary of 
all the model parameters for each kinematic state is also 
summarized in Table IV. 

Table III. Summary of evaluation results on Test data 

Name 𝒔𝒑𝒍 Required 
RMSE 

(km, km/s) 
SMAPE 

(%) 
MAPRE 

(%) 

𝒙 5.4 5d 4.5hrs 863.21 11.56 10.96 

𝒚 5.4 5d 4.5hrs 830.99 11.80 11.23 

𝒛 7.5 3d 17hrs 285.71 9.38 10.34 

𝑽𝒙 9.5 2d 23hrs 0.847 14.00 18.99 

𝑽𝒚 5.0 5d 14hrs 0.887 18.79 20.21 

𝑽𝒛 5.4 5d 4.5hrs 0.329 18.69 19.93 

 

Table IV. Summary of model parameters 

Name 𝑨  
(km, km/s) 𝑻 (s) 𝝓 𝒎  

(km/s, km/s2) 
𝒄  

(km, km/s) 

𝒙 9.65 × 10ଷ 1.01 × 10ସ 41.3 3.70 × 10ିସ 1.86 × 10ଷ 

𝒚 9.55 × 10ଷ 1.01 × 10ସ 14.7 −4.7 × 10ିସ 6.15 × 10ଶ 

𝒛 3.58 × 10ଷ 1.01 × 10ସ 15.9 3.81 × 10ିସ −1.4 × 10ଷ 

𝑽𝒙 6.01 1.01 × 10ସ 14.3 2.1 × 10ି଼* −4 × 10ିଶ* 

𝑽𝒚 5.95 1.01 × 10ସ 16.3 −3 × 10ି଼* 5.9 × 10ିଶ* 

𝑽𝒛 2.22 1.01 × 10ସ 14.5 6.9 × 10ିଽ* −2 × 10ିଶ* 

* Not statistically significant, 𝒑 ≫ 𝟎. 𝟎𝟓 

Firstly, all kinematic states required no more than 5 days 
and 14 hours of training data in order to predict 3 days in 
advance. It is also much easier to predict positions instead of 
velocities, as indicated by the lower SMAPE and MAPRE 
values. The 𝑧  coordinate produced the most accurate 
forecasts, while also requiring less than 4 days of training data, 
whereas the 𝑉௬ coordinate produced the least accurate ones. In 
addition, all model parameters were obtained with a 
significance of 𝑝 < 0.05 except for the velocity component 

slopes and intercepts. This could be attributed to their low 
magnitudes of amplitude 𝐴  compared to the position 
components. However, even after converting time from 
seconds to hours (to increase the order of magnitude value of 
the slope), the 𝑚  and 𝑐  parameters could not be estimated 
with statistical significance. The standard errors were too high 
compared with their estimates.  

Secondly, the RMSE metric has units of 𝑘𝑚 (or 𝑘𝑚/𝑠 for 
velocities), which are the same units as the kinematic states 
themselves. In this sense, the RMSE value can be interpreted 
as the average interval around the predicted value within 
which the true coordinate can be found. Also, the estimated 
value of the period 𝑇 is the same for all kinematic states. This 
was expected from the visualizations done previously, and 
over 3 days, the period of the satellite is going to stay 
relatively unchanged. The data confirm the period of orbit as 
constant. 

Thirdly, the optimal split was found by plotting the 
SMAPE metric against the 𝑠𝑝𝑙 hyperparameter and choosing 
the 𝑠𝑝𝑙 with the lowest validation SMAPE value, which also 
produces significant model parameters. This process is shown 
in Fig. 15. 

In Figure 15, further splits of the dataset resulted in non-
significant values for the model parameters, so in this case, the 
best 𝑠𝑝𝑙  was chosen as 5.4  for the 𝑥 -coordinate. For the 
velocity components however, no splits from 1 to 15 (step-
size 0.1) produced significant 𝑚 and 𝑐 values, so the criteria 
for choosing the best 𝑠𝑝𝑙 was based only on the minima of the 
validation curve. 

VI. CONCLUSION 

To recap, this study looked at data on satellite kinematics 
and introduced a simple non-linear regression technique that 
can be used as a baseline for predicting the kinematic states of 
an MEO satellite. This satellite (Satellite 372 from the IDAO 
dataset) was chosen based on having the highest number of 
observations, however, not all of the data was required. The 
prediction was done 3 days into the future and used no more 
than 5 days and 14 hours of historical data. The lowest error 
achieved was for the 𝑧-coordinate with a SMAPE value of 
9.38% and the highest was for the 𝑉௬ velocity coordinate with 
a SMAPE value of 18.79% . The average SMAPE value 

 
Fig. 15.   Train and Validation curves for hyperparameter optimization 
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across the six kinematic states is 14.0% , resulting in an 
overall model score of 86.0%. 

In comparison with Peng and Bai’s work, where they 
applied Support Vector Regression to 11 satellites in different 
orbits (3 SSOs, 4 LEOs and 4 MEOs) [20], this paper only 
applied non-linear regression to one MEO satellite. However, 
the SVR technique in [20] required 300 days of training data 
to predict 14 days in advance while this paper used less than 5 
days 14 hours of data to predict 3 days in advance. Reference 
[20] also used additional features in their training (such as drag 
information) that were not included in the present study. In 
addition, [20] also investigated different training data lengths, 
testing data lengths, different random seeds and different 
satellite orbits. Similar to this study, their results indicated a 
higher performance of the model on position coordinates as 
opposed to velocity coordinates. As for accuracies, it would 
not be fair to compare the performance between two studies 
that used different amounts of training and test data. That 
being said, the best performances in [20] range from MAPRE 
values between 13%  and 25%  while the worst ones were 
above 100%. 

Finally, now that a non-linear regression baseline has been 
established, application of more complex ML models can be 
investigated. These include RNNs and LSTMs that can 
capture the periodic pattern of data and extrapolate into the 
future. Classical forecasting techniques such as the ARIMA 
and Holt-Winters exponential smoothing techniques may also 
be applied. In addition, the performance of prediction models 
on different satellite orbits and longer forecast horizons 
(between 7 to 14 days) can be investigated.  

VII.  APPENDIX 

Table V. Table of Abbreviations 

Abbreviation Complete Form 

ML Machine Learning 

AI Artificial Intelligence 

RSO Resident Space Object 

SSA Space Situational Awareness 

LEO Low Earth Orbit 

MEO Medium Earth Orbit 

HEO High Earth Orbit 

NLR Non-Linear Regression 

IDAO International Data Analysis Olympiad 

SSO Sun Synchronous Orbit 

GSO Geosynchronous Orbit 

GEO Geosynchronous Equatorial Orbit 

GPS Global Positioning System 

SGP4 Simplified General Perturbations 4 

TLE Two-Line Element 

ILRS International Laser Ranging Service 

RMSE Root Mean Square Error 

SMAPE Symmetric Mean Absolute Percentage Error 

MAPRE Mean Absolute Percentage Residual Error 

RNN Recurrent Neural Network 

LSTM Long Short-Term Memory 
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