J A@)TI Journal of Applied Technology and Innovation (e -ISSN: 2600-7304) vol. 5, no. 2, (2021) 7

Investigating parameters of genetic algorithm
and neural network on classic snake game

Moo Chi Yuen
School of Computing
Asia Pacific University of Technology
and Innovation (APU)

Kuala Lumpur, Malaysia
TP054804(@mail.apu.edu.my

Shaheer Qaisar Syed
School of Computing
Asia Pacific University of Technology
and Innovation (APU)
Kuala Lumpur, Malaysia
TP054386(@mail.apu.edu.my

Abstract— Genetic Algorithm (GA) and Neural Network (NN)
are implemented in a classic Snake game to produce an optimal
snake that can achieve high scores. GA serves as a snake evolution
operator, whereas NN serves as a moving direction determinator.
In this paper, several crucial parameters of GA and NN are
modified to observe the influence of each parameter to the Snake
game. GA has population and mutation rate regarding to the
modifiable parameters, meanwhile NN has hidden layer and
hidden neuron. The experimental results show how the snake
game performs after modifying the parameters.Key words- Naive
Bayes algorithm, text classification, Multinomial Naive Bayes
(MNB)

Keywords— Genetic Algorithm (GA), Neural Network (NN),
variable parameters

L INTRODUCTION

In this study, we decided to do research on Neural
Network (NN) and Genetic Algorithm (GA) by looking the
implementation on a very simply problem- The Snake Game.
The snake game has basically 3 rules to survive which are eat
the food, never hit the wall and never hit itself. Sharma [1]
discussed about Genetic Algorithm that it is a natural
evolution approach which get the idea come from Charles
Darwin’s principle. It includes selection, crossover and
mutation. Karsoliya [2] discussed about Neural Network that
it is built by mimicking the function of a human brain. It is
formed by many neurons, and each neurons are assigned by
weights to perform learning purpose. Hence, NN is good at
local search, GA is good at global search. By combining it, in
this case we have hybrid neural network with genetic
algorithm which is being used in this study.

Hassanat, Almohammadi, Alkafaween, Abunawas,
Hammouri and Prasath [3] proposed a journal article that
concludes what mutation rates do to genetic algorithm, the
values we pass into the mutation rate will affects how the
program runs. It also suggested mutation rate should be
balanced out with other parameters to reach optimum solution.
Some dynamic approaches were suggested also, like
controlling the mutation rate and crossover rates throughout

Lee Wuan Yeong
School of Computing

Asia Pacific University of Technology
and Innovation (APU)

Kuala Lumpur, Malaysia
TP056174@mail.apu.edu.my

Edmund Chen Yi Kang
School of Computing

Asia Pacific University of Technology
and Innovation (APU)
Kuala Lumpur, Malaysia
TP054563@mail.apu.edu.my

Zailan Arabee Abdul Salam
School of Computing

Asia Pacific University of Technology
and Innovation (APU)

Kuala Lumpur, Malaysia
zailan@apu.edu.my

the generations to maximize the algorithm. Experiments are
made to compare against dynamic and static parameters, the
results show that dynamic parameters have a better
performance.

Sarmady [4] proposed a journal article to investigate the
parameters of Genetic Algorithm. In terms of the parameter
population, population sizes of 20, 100 and 200 were used to
do the tests to find a suitable population size for further
experiments. There wasn’t a specific method for choosing the
population size in the tests.

The size of 20 was considered too small as it wasn’t
enough to get a good enough result. The size of 100 and 200
gave similar results but the latter took double the time without
a significant difference therefore size of 100 was considered
as the suitable for further experiments. For the other
experiments, the other parameters were changed but
population size of 100 was kept constant throughout.
Therefore, population size of 100 was the optimal solution for
the project. If different sizes were picked, the results could
have been different.

Karsoliya [2] discussed about approaches to determine the
number of hidden layers and hidden neurons in neural
network. First, rule-of-thumb method is discussed. It includes
three rules:

e Number of hidden layer neurons < twice of the number
of neurons in input layer

e Size of output/input layer < size of hidden layer
neurons < size of input/output layer

e Number of hidden layer neurons = 2/3 size of input
layer

Structured trial and error method was discussed for
estimating number of hidden layers. It supposed that the
researcher should increment the number of hidden layers and
observe the results. Also, hidden neurons in the hidden layers
should be equivalent. According to the rule-of-thumb
methods, four hidden layers are not recommended because it



J A@)TI Journal of Applied Technology and Innovation (e -ISSN: 2600-7304) vol. 5, no. 2, (2021) 8

violates the rules, whereas one to three can be accepted. To
conclude from the above, there is not an optimal value for
number of hidden neurons and hidden layers that can satisfy
any problems. Hence, researchers have to implement
exhaustive methods which are time-consuming to find out the
best solution based on the problems.

S. Panchal and Panchal [5] reviewed on methods of
selecting number of hidden nodes in artificial neural network.
There were two problems that need to put into consideration,
the underfitting and overfitting. To find out the best result for
choosing the numbers of hidden nodes, there were 5 methods
that can be apply. The first method that can be apply is trial
and error method. The method is run by repeating until the
program reached its goal. Second, the rule of thumb method is
discussed.

Third, the simple method, is by considering the input
nodes, hidden nodes, and output nodes, with the same input
output and output nodes, we can take the same number of
hidden nodes. Forth, the two-phase method is most likely the
trial and error method, but the data set was divided into 4
groups and by doing difference task to get the total number of
error conditions for determining the number of nodes in the
hidden layer. Lastly, the sequential orthogonal approach is by
adding a neuron 1 by 1 until error is sufficiently small. In
conclusion, the suitable number of hidden nodes can lead to a
better result and less in time consuming.

IL. MATERIALS AND METHODS

A) GENETIC ALGORITHM

For the genetic algorithm, the operators that used were the
natural selection, fitness and the crossover and mutation. The
natural selection was to create a population of 2000 snakes for
each generation and to search for the best snakes to reproduce.
Next, for the fitness, it was all about how the snake staying
alive and getting a new high score. The strategy given for the
snake to keep getting a new high score than rather staying
alive without any improvement was to set a limit of 100 more
moves, with a maximum of 500 moves.

In terms of crossover and mutation, the snake’s brains
were crossed with two different parents and developing a new
child. The mutation happened after the process of the
crossover and the brain of the snake will altered according to
the mutation rate of 5%.

B) NEURAL NETWORK

Each snake has a neural network to compute and
determine the direction to move. As there are several types of
Neural Networks available, a Feedforward Neural Network is
implemented for this problem.

Fig. 1. shows the neural network implemented in the
program, which has an input layer of 24 neurons, 2 hidden
layers of 16 neurons, and 1 output layer of 4 neurons. The
inputs are snake’s vision in 8 directions searching for food, its
own body and wall, whereby the outputs are the directions to
move.

C) COMPUTER SPECIFICATION

e CPU: Intel® Core™ i5-8300H @ 2.30GHz, 4 Cores,
8 Threads

e RAM: 8GB

e OS: Windows 10 Pro

o>
«»
<>
=
o>
>
[
<>
L= <
<«
o>
<
<>
>
>
<>
>
«B
>
>
<D
<>
=
<=

Fig. 1. Neural network of snake game
111 RESULT AND DISCUSSION
A) MUTATION RATE

Mutation rate is the probability of mutation when it
proceeds to the next generation, in this case, randomly
swapping the bits of the chromosomes which represents the
snakes. The snake program will be run for 3 times for each
mutation rate. The mutation rates are 0, 0.05, and 0.8 in a
constant population of 2000. To monitor the difference, a high
score graph will be generated to display the output.

1) Mutation Rate 0.0

The mutation rate is set to 0.00 to study the situation when
a genetic algorithm lost one of its key features which is
mutation. Under this mutation rate, we can see that three out
of three attempts having a very low score, and it does not
increase when proceeding to the next generation as shown in
Fig. 2.

Generation Scores of Mutation Rate 0.0

Score
—

13151719212325272931333537394143454749

Generation

Fig. 2. Generation scores of mutation rate 0.0

2) Mutation Rate 0.05

This is a more common and efficient value as you can see
the graph in Fig. 3. where the scores constantly went up across
the generation. With this result, we can say that the “snake” is
learning as the scores of it is constantly going up, in the very
lately generations, it will reach its optimum solution.

3) Mutation Rate 0.8

Based on the graph in Fig. 4., the scores are growing in the
early generations. However, in the late generations, the scores
did not grow. It can say that it reaches its peak value but the



J AQ-" Journal of Applied Technology and Innovation (e -ISSN: 2600-7304) vol. 5, no. 2, (2021) 9

value isn’t satisfied for the snake game as it will never finish
the game, the peak value will be stuck for long generations.
Although the score for it is high, but it only stops as it reaches
its peak value.

Generation Scores of Mutation Rate 0.05

N
i

S e

1 3 5 7 91113151719212325272931333537394143454749

Generation

Fig. 3. Generation scores of mutation rate 0.05

Generation Score of Mutation Rate 0.8

Score

1 35 7 91113151719212325272931333537394143454749

Generation

Fig. 4. Generation scores of mutation rate 0.8

The results of these observations can be explained as the
mutation rate of 0.00 is too low and eventually out of the limit
of the rate. The “snake” cannot learn anything without
mutation rate, it is basically copying another “snake” with the
same information, that is why the score is stuck and reaches
its local maximum after a few early generations. However, for
the mutation rate of 0.8 is too high for the “snake”.

At early generations, the “snake” can learn but it doesn’t
perform stable. In late generations, it also reaches its local
maximum and get stuck. This is because the mutation rate is
too high for this case, the useful information in the generations
does not get inherited most of the time, the search becomes
too random. Lastly, mutation rate of 0.05 is more suitable for
this population. The “snake” is learning and the score grows
continuously.

However, 0.05 is not a magic number that is suitable for
all different problems. The mutation rate has to be balanced
with other parameters also, like population, crossover rates.
To determine the mutation rate, experiments had to be made
to test out which is more suitable for that problem.

B) POPULATION

Population refers to the number of snakes in each
generation for this experiment. At the end of each generation,
two parents will be picked based on the fitness score and
selection method. Population sizes of 20, 200 and 20000 are
implemented and each size was tested 3 times.

Generation Scores of Population Size 20

p— A,J;f
\WAN |

4 cm—

Score
w

1 3 5 7 9 1113151719212325272931333537394143454749

Generation

Fig. 5. Generation scores of population size 20

Generation Scores of Population Size 200

Score
)

1 3 5 7 91113151719212325272931333537394143454749
Generation

Fig. 6. Generation scores of population size 200

Generation Score of Population Size 20000

Y,

80 /—»/5'—
60 f—
N
40 _‘.y"df./y:f
20 L~
//

Score

1 3 5 7 91113151719212325272931333537394143454749

Generation

Fig. 7. Generation scores of population size 20000

The experiment results are shown in Fig. 5. — Fig. 7. When
the population size was 20, although the time taken for the
results was the quickest, the scores were very low compared
to other population sizes.

When the population size was 200, the scores were only a
little better compared to the previous size and the time taken
was a bit more. When the population size was 20000, the
scores were significantly better compared to the previous sizes
even though it took a lot longer to get these scores.

Based on the observations, we can note that the population
size is affecting the scores because the smaller population will
have smaller chance to get 2 distinct snakes that have
relatively high scores to be selected as parents for breeding
purpose. According to this concept, the population size 20000
gave better results than other sizes, including the default
population size of 2000.

C) HIDDEN LAYER



J A@T| Journal of Applied Technology and Innovation (e -ISSN: 2600-7304) vol. 5, no. 2, (2021) 10

TABLE L. ENT RESULTS OF DIFFERENT NUMBER OF HIDDEN LAYERS
Hidden Experiment Results
Layer Mean Score Mean Run Time (mins)
1 97.8 137.0
2 66.4 93.4
3 62.8 126.6
Generation Scores of 1 Hidden Layer
160
140
120
100
Q
g 80
wv

P, |
p— -

1 3 5 7 91113151719212325272931333537394143454749

Generation

Fig. 8. Generation scores of 1 hidden layer
Generation Scores of 2 Hidden Layers
100
90
80
70 ~ -
. 60 / —_—
§ o ~—7 n/
9 a0 .
30
20
10 -
o 3
1 3 5 7 91113151719212325272931333537394143454749
Generation
Fig. 9. Generation scores of 2 hidden layers
Generation Scores of 3 Hidden Layers
100

90
80
70
60
50

40
30 /—/—_

20
10 o —

1 35 7 91113151719212325272931333537394143454749

Score

Generation

Fig. 10. Generation scores of 3 hidden layers

Fig. 8. — Fig. 10. show the experiment results of each
number of hidden layers with 16 neurons. Each case has 5
times of execution. Table I shows the mean score and run time
of each number of hidden layers with 16 neurons.

It is hard to evaluate the efficiency of each number of
hidden layers because run time is proportional to the mean

score, except when the snake can already achieve high score
in the early generations. In terms of mean high score, it shows
that one hidden layer performs better compared to two and
three hidden layers as it has higher mean high score.

On the other hand, we observed that the movement of
snake will become slower if more hidden layers are added.
This is because it requires more computational time due to the
complexity of neural network.

If each case has the exact same score trend, the highest
number of hidden layers will have the longest run time. Hence,
we can conclude that 1 hidden layer is the optimal choice for
choosing the number of hidden layers.

D)HIDDEN NEURON

There are two specific result that have arisen due to the
hidden nodes, the overfitting and underfitting. The program
will be run 5 times by using the number of hidden nodes of 8,
16 and 22.

Generation Scores of 8 Hidden Nodes

Score
@
(=]

1357 91113151719212325272931333537394143454749
Generation

Fig. 11. Generation Scores of 8 Hidden Nodes

Generation Scores of 16 Hidden Nodes

Score
o
(=]

1 357 91113151719212325272931333537394143454749

Generation

Fig. 12. Generation scores of 16 hidden nodes

Fig. 11. has a mean high score of 58.8, Fig. 12. has a mean
high score of 65.8 and Fig. 13. has a mean high score of 46.4.
By comparing the mean high score of Fig. 11. — Fig. 13., the
highest mean high score belongs to the number of 16 hidden
neurons, whereas the lowest belongs to the number of 22
hidden neurons.

In conclusion, we found out that the number of 8 hidden
nodes is underfitting for solving the snake game while the
number of 22 hidden nodes is overfitting and the most time
consuming. Therefore, the number of 16 hidden nodes is the
optimal choice.



JATI Journal of Applied Technology and Innovation (e -ISSN: 2600-7304) vol. 5, no. 2, (2021)

11

Generation Scores of 22 Hidden Nodes

90
80
70
60
50
40
30
20
10

Score

1 3 5 7 91113151719212325272931333537394143454749

Generation

Fig. 13. Generation scores of 22 hidden nodes

IV. CONCLUSION

The experiments done were related to Genetic Algorithm
and Neural Network which was implemented on a snake
game. The findings of the experiments are specific to four
parameters and each were tested individually without
changing any other parameters. It is possible that if further
experiments are done by changing the parameters together,
better results could be achieved. The first experiment was
done on the mutation rate and the best result was found when
the mutation rate was set to 0.05. The second experiment was
done on population size and the best result was found when
the population was set to 20000. The third experiment was
done on hidden layer and the best result was found when the
hidden layer was set to 1. The last experiment was done on
hidden neurons and the best result was found when the hidden
neurons were set to 16.

REFERENCES

[1] M. Sharma, “Role and working of Genetic Algorithm in Computer
Science role and working of Genetic Algorithm in Computer
Science”, International Journal of Computer Applications &
Information Technology, 2(1), pp. 27-32, 2013.

[2] S. Karsoliya, “Approximating number of hidden layer neurons in
Multiple Hidden Layer BPNN Architecture”, International Journal of
Engineering Trends and Technology, 3(6), pp. 714-717, 2012.

[3] A. Hassanat, K. Almohammadi, E. Alkafaween, E. Abunawas, A.
Hammouri and V. B. S. Prasath, “Choosing mutation and crossover
ratios for Genetic Algorithms-a review with a new dynamic approach”,
Information, 10(12), 2019.

[4] S. Sarmady, “An Investigation on Genetic Algorithm Parameters”,
2007.

[5] F. S. Panchal and M. Panchal, “Review on methods of selecting
number of hidden nodes in Artificial Neural Network”, International
Journal of Computer Science and Mobile Computing, 3(11), pp.455—
464,2014.



