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Abstract— Genetic Algorithm (GA) and Neural Network (NN) 
are implemented in a classic Snake game to produce an optimal 
snake that can achieve high scores. GA serves as a snake evolution 
operator, whereas NN serves as a moving direction determinator. 
In this paper, several crucial parameters of GA and NN are 
modified to observe the influence of each parameter to the Snake 
game. GA has population and mutation rate regarding to the 
modifiable parameters, meanwhile NN has hidden layer and 
hidden neuron. The experimental results show how the snake 
game performs after modifying the parameters.Key words- Naive 
Bayes algorithm, text classification, Multinomial Naive Bayes 
(MNB) 

Keywords— Genetic Algorithm (GA), Neural Network (NN), 
variable parameters 

I. INTRODUCTION 

In this study, we decided to do research on Neural 
Network (NN) and Genetic Algorithm (GA) by looking the 
implementation on a very simply problem- The Snake Game. 
The snake game has basically 3 rules to survive which are eat 
the food, never hit the wall and never hit itself. Sharma [1] 
discussed about Genetic Algorithm that it is a natural 
evolution approach which get the idea come from Charles 
Darwin’s principle. It includes selection, crossover and 
mutation. Karsoliya [2] discussed about Neural Network that 
it is built by mimicking the function of a human brain. It is 
formed by many neurons, and each neurons are assigned by 
weights to perform learning purpose. Hence, NN is good at 
local search, GA is good at global search. By combining it, in 
this case we have hybrid neural network with genetic 
algorithm which is being used in this study. 

Hassanat, Almohammadi, Alkafaween, Abunawas, 
Hammouri and Prasath [3] proposed a journal article that 
concludes what mutation rates do to genetic algorithm, the 
values we pass into the mutation rate will affects how the 
program runs. It also suggested mutation rate should be 
balanced out with other parameters to reach optimum solution. 
Some dynamic approaches were suggested also, like 
controlling the mutation rate and crossover rates throughout 

the generations to maximize the algorithm. Experiments are 
made to compare against dynamic and static parameters, the 
results show that dynamic parameters have a better 
performance. 

Sarmady [4] proposed a journal article to investigate the 
parameters of Genetic Algorithm. In terms of the parameter 
population, population sizes of 20, 100 and 200 were used to 
do the tests to find a suitable population size for further 
experiments. There wasn’t a specific method for choosing the 
population size in the tests.  

The size of 20 was considered too small as it wasn’t 
enough to get a good enough result. The size of 100 and 200 
gave similar results but the latter took double the time without 
a significant difference therefore size of 100 was considered 
as the suitable for further experiments. For the other 
experiments, the other parameters were changed but 
population size of 100 was kept constant throughout. 
Therefore, population size of 100 was the optimal solution for 
the project. If different sizes were picked, the results could 
have been different. 

Karsoliya [2] discussed about approaches to determine the 
number of hidden layers and hidden neurons in neural 
network. First, rule-of-thumb method is discussed. It includes 
three rules:  

 Number of hidden layer neurons < twice of the number 
of neurons in input layer 

 Size of output/input layer < size of hidden layer 
neurons < size of input/output layer 

 Number of hidden layer neurons = 2/3 size of input 
layer 

Structured trial and error method was discussed for 
estimating number of hidden layers. It supposed that the 
researcher should increment the number of hidden layers and 
observe the results. Also, hidden neurons in the hidden layers 
should be equivalent. According to the rule-of-thumb 
methods, four hidden layers are not recommended because it 
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violates the rules, whereas one to three can be accepted. To 
conclude from the above, there is not an optimal value for 
number of hidden neurons and hidden layers that can satisfy 
any problems. Hence, researchers have to implement 
exhaustive methods which are time-consuming to find out the 
best solution based on the problems. 

S. Panchal and Panchal [5] reviewed on methods of 
selecting number of hidden nodes in artificial neural network. 
There were two problems that need to put into consideration, 
the underfitting and overfitting. To find out the best result for 
choosing the numbers of hidden nodes, there were 5 methods 
that can be apply. The first method that can be apply is trial 
and error method. The method is run by repeating until the 
program reached its goal. Second, the rule of thumb method is 
discussed. 

Third, the simple method, is by considering the input 
nodes, hidden nodes, and output nodes, with the same input 
output and output nodes, we can take the same number of 
hidden nodes. Forth, the two-phase method is most likely the 
trial and error method, but the data set was divided into 4 
groups and by doing difference task to get the total number of 
error conditions for determining the number of nodes in the 
hidden layer. Lastly, the sequential orthogonal approach is by 
adding a neuron 1 by 1 until error is sufficiently small. In 
conclusion, the suitable number of hidden nodes can lead to a 
better result and less in time consuming. 

II. MATERIALS AND METHODS 

A) GENETIC ALGORITHM 

For the genetic algorithm, the operators that used were the 
natural selection, fitness and the crossover and mutation. The 
natural selection was to create a population of 2000 snakes for 
each generation and to search for the best snakes to reproduce. 
Next, for the fitness, it was all about how the snake staying 
alive and getting a new high score. The strategy given for the 
snake to keep getting a new high score than rather staying 
alive without any improvement was to set a limit of 100 more 
moves, with a maximum of 500 moves.  

In terms of crossover and mutation, the snake’s brains 
were crossed with two different parents and developing a new 
child. The mutation happened after the process of the 
crossover and the brain of the snake will altered according to 
the mutation rate of 5%. 

B) NEURAL NETWORK 

Each snake has a neural network to compute and 
determine the direction to move. As there are several types of 
Neural Networks available, a Feedforward Neural Network is 
implemented for this problem.  

Fig. 1. shows the neural network implemented in the 
program, which has an input layer of 24 neurons, 2 hidden 
layers of 16 neurons, and 1 output layer of 4 neurons. The 
inputs are snake’s vision in 8 directions searching for food, its 
own body and wall, whereby the outputs are the directions to 
move.  

C) COMPUTER SPECIFICATION 

 CPU: Intel® Core™ i5-8300H @ 2.30GHz, 4 Cores, 
8 Threads 

 RAM: 8GB 

 OS: Windows 10 Pro 

 

Fig. 1. Neural network of snake game 

III. RESULT AND DISCUSSION 

A) MUTATION RATE 

Mutation rate is the probability of mutation when it 
proceeds to the next generation, in this case, randomly 
swapping the bits of the chromosomes which represents the 
snakes. The snake program will be run for 3 times for each 
mutation rate. The mutation rates are 0, 0.05, and 0.8 in a 
constant population of 2000. To monitor the difference, a high 
score graph will be generated to display the output. 

1) Mutation Rate 0.0 
The mutation rate is set to 0.00 to study the situation when 

a genetic algorithm lost one of its key features which is 
mutation. Under this mutation rate, we can see that three out 
of three attempts having a very low score, and it does not 
increase when proceeding to the next generation as shown in 
Fig. 2.  

 

Fig. 2. Generation scores of mutation rate 0.0 

2) Mutation Rate 0.05 

This is a more common and efficient value as you can see 
the graph in Fig. 3. where the scores constantly went up across 
the generation. With this result, we can say that the “snake” is 
learning as the scores of it is constantly going up, in the very 
lately generations, it will reach its optimum solution. 

3) Mutation Rate 0.8 

Based on the graph in Fig. 4., the scores are growing in the 
early generations. However, in the late generations, the scores 
did not grow. It can say that it reaches its peak value but the 
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value isn’t satisfied for the snake game as it will never finish 
the game, the peak value will be stuck for long generations. 
Although the score for it is high, but it only stops as it reaches 
its peak value.  

 
Fig. 3. Generation scores of mutation rate 0.05 

 

Fig. 4. Generation scores of mutation rate 0.8 

The results of these observations can be explained as the 
mutation rate of 0.00 is too low and eventually out of the limit 
of the rate. The “snake” cannot learn anything without 
mutation rate, it is basically copying another “snake” with the 
same information, that is why the score is stuck and reaches 
its local maximum after a few early generations. However, for 
the mutation rate of 0.8 is too high for the “snake”.  

At early generations, the “snake” can learn but it doesn’t 
perform stable. In late generations, it also reaches its local 
maximum and get stuck. This is because the mutation rate is 
too high for this case, the useful information in the generations 
does not get inherited most of the time, the search becomes 
too random. Lastly, mutation rate of 0.05 is more suitable for 
this population. The “snake” is learning and the score grows 
continuously.  

However, 0.05 is not a magic number that is suitable for 
all different problems. The mutation rate has to be balanced 
with other parameters also, like population, crossover rates. 
To determine the mutation rate, experiments had to be made 
to test out which is more suitable for that problem. 

B) POPULATION 

Population refers to the number of snakes in each 
generation for this experiment. At the end of each generation, 
two parents will be picked based on the fitness score and 
selection method. Population sizes of 20, 200 and 20000 are 
implemented and each size was tested 3 times.  

 

Fig. 5. Generation scores of population size 20 

 

Fig. 6. Generation scores of population size 200 

 

Fig. 7. Generation scores of population size 20000 

The experiment results are shown in Fig. 5. – Fig. 7. When 
the population size was 20, although the time taken for the 
results was the quickest, the scores were very low compared 
to other population sizes.  

When the population size was 200, the scores were only a 
little better compared to the previous size and the time taken 
was a bit more. When the population size was 20000, the 
scores were significantly better compared to the previous sizes 
even though it took a lot longer to get these scores.  

Based on the observations, we can note that the population 
size is affecting the scores because the smaller population will 
have smaller chance to get 2 distinct snakes that have 
relatively high scores to be selected as parents for breeding 
purpose. According to this concept, the population size 20000 
gave better results than other sizes, including the default 
population size of 2000. 

C) HIDDEN LAYER 
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TABLE I.  ENT RESULTS OF DIFFERENT NUMBER OF HIDDEN LAYERS 

Hidden 
Layer 

Experiment Results 

Mean Score Mean Run Time (mins) 

1 97.8 137.0 

2 66.4 93.4 

3 62.8 126.6 

 

 

Fig. 8. Generation scores of 1 hidden layer 

 

Fig. 9. Generation scores of 2 hidden layers 

 

Fig. 10. Generation scores of 3 hidden layers 

Fig. 8. – Fig. 10. show the experiment results of each 
number of hidden layers with 16 neurons. Each case has 5 
times of execution. Table I shows the mean score and run time 
of each number of hidden layers with 16 neurons.  

It is hard to evaluate the efficiency of each number of 
hidden layers because run time is proportional to the mean 

score, except when the snake can already achieve high score 
in the early generations. In terms of mean high score, it shows 
that one hidden layer performs better compared to two and 
three hidden layers as it has higher mean high score.  

On the other hand, we observed that the movement of 
snake will become slower if more hidden layers are added. 
This is because it requires more computational time due to the 
complexity of neural network.  

If each case has the exact same score trend, the highest 
number of hidden layers will have the longest run time. Hence, 
we can conclude that 1 hidden layer is the optimal choice for 
choosing the number of hidden layers.  

D) HIDDEN NEURON 

There are two specific result that have arisen due to the 
hidden nodes, the overfitting and underfitting. The program 
will be run 5 times by using the number of hidden nodes of 8, 
16 and 22. 

 

Fig. 11. Generation Scores of 8 Hidden Nodes 

 

Fig. 12. Generation scores of 16 hidden nodes 

Fig. 11. has a mean high score of 58.8, Fig. 12. has a mean 
high score of 65.8 and Fig. 13. has a mean high score of 46.4. 
By comparing the mean high score of Fig. 11. – Fig. 13., the 
highest mean high score belongs to the number of 16 hidden 
neurons, whereas the lowest belongs to the number of 22 
hidden neurons.  

In conclusion, we found out that the number of 8 hidden 
nodes is underfitting for solving the snake game while the 
number of 22 hidden nodes is overfitting and the most time 
consuming. Therefore, the number of 16 hidden nodes is the 
optimal choice. 
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Fig. 13. Generation scores of 22 hidden nodes 

IV. CONCLUSION 

The experiments done were related to Genetic Algorithm 
and Neural Network which was implemented on a snake 
game. The findings of the experiments are specific to four 
parameters and each were tested individually without 
changing any other parameters. It is possible that if further 
experiments are done by changing the parameters together, 
better results could be achieved. The first experiment was 
done on the mutation rate and the best result was found when 
the mutation rate was set to 0.05. The second experiment was 
done on population size and the best result was found when 
the population was set to 20000. The third experiment was 
done on hidden layer and the best result was found when the 
hidden layer was set to 1. The last experiment was done on 
hidden neurons and the best result was found when the hidden 
neurons were set to 16. 
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