J E-" Journal of Applied Technology and Innovation (e -ISSN: 2600-7304) vol. 5, no. 2, (2021) 40

Software testing for reliability and quality
improvement

Mouad Bajjouk
School of Computing
Asia Pacific University of Technology
and Innovation (APU)
Kuala Lumpur, Malaysia
TP058518@mail.apu.edu.my

Muhammad Ehsan Rana
School of Computing
Asia Pacific University of Technology
and Innovation (APU)
Kuala Lumpur, Malaysia
muhd_ehsanrana@apu.edu.my

Abstract—Software systems are hard to complete as
customers became hard to satisfy and their requirements are
more complicated. In this paper, quality factors that affect
software are discussed, with some well-known standards that
improve and assist while planning for quality assurance. The
testing strategies and types that contribute to improving quality
are also highlighted. A development methodology was
mentioned as it gives more support to the testing phase.

Keywords—Software reliability,
methodologies.

software quality, testing

[. INTRODUCTION

Nowadays, software systems became more complex and
sophisticated to develop. Customers' requirements are also
getting more complex to fully understand and implement. The
competition in software development is getting high, as every
development company is doing its best to attract more
customers and do more profit. Therefore, software products
must be reliable and high quality to meet and fulfill customers'
expectations and requirements. Software reliability can be
divided into many sub-attributes that must be addressed to
improve overall software quality.

As companies are using different development
methodologies, testing is one of the most important phases in
any methodology, it can detect errors and bugs if available in
the software. However, testing is not as easy as it seems,
because many types of testing are existing, and every testing
type can be performed in a particular situation. Therefore, this
crucial phase must have more attention to improve reliability.

II. SOFTWARE RELIABILITY

[1] highlighted that software reliability can be defined as
the probability of failure-free of a software in a specified
environment for a given time.

According to [2], software reliability has developed many
models from the early years until today to assess software
reliability and improve the overall quality, including the
testing while developing the software.

Furthermore, software reliability prediction models are
being used before testing the software using a collection of
data such as project complexity, used programming

Chandra Reka Ramachandiran
School of Computing
Asia Pacific University of Technology
and Innovation (APU)
Kuala Lumpur, Malaysia
chandra.reka@apu.edu.my

Sivananthan Chelliah
School of Computing
Asia Pacific University of Technology
and Innovation (APU)
Kuala Lumpur, Malaysia
sivananthan@apu.edu.my

languages, architecture, etc. And after the software is being
tested, a reliability model which is a mathematical formula is
used to assess the software reliability by using the collected
failure rates and fault data [3].

[4] stated that continuous testing is one of the most
important steps in software development, as it can give to the
quality assurance team an overall review of the quality of the
developed software, which can be used to improve software
reliability and meet customers’ expectations.

Additionally, [5] noted that software testability is a
considered important in software project development; many
international standards like ISTQB, IEEE, ISO, IEC, and
MIL-STD defined software testability as the degree to which
a software or software component can be tested and validated
according to the tests criteria imposed by the development
company.

Testing has improved software reliability and code
implementation (programming skills) two times more [6].

III. SOFTWARE RELIABILITY ATTRIBUTES

[7] defined in his statement that software reliability can
have many attributes (non-functional requirements) that can
produce better software quality if well considered. [7] has
listed these attributes as the following order: availability,
efficiency, installability, integrity, interoperability,
modifiability, performance, portability, reliability, reusability,
robustness, safety, scalability, security, usability, and
verifiability. [7] also mentioned that these attributes must be
combined in a good way as some of them can have a bad
impact on the system if combined.

According to [8], availability can be defined as the time or
period that a system or application can be accessed by the
users; high availability can be 99.99%, the other left
percentage can be reserved for the maintenance activities.

For software efficiency, it can be defined as the quantity
or rate of the number of inputs needed to achieve a higher
quantity of output under any workload [9]; [9] also highlighted
that scalability which is increasing the capacity of a software
by adding more functionalities and services.

J E-" Journal of Applied Technology and Innovation (e -ISSN: 2600-7304) vol. 5, no. 2, (2021) 41

[10] defined software installability as the ability for the
software to be installed easily in a specific environment. [10]
explained that software installability can be categorized from
‘easy to install’ to ‘hard to install’, or sometimes ‘failed to
install’ due to implementation errors; the two categories (easy
and hard) have been assessed using the installation time factor.

[11] asserted that integrity is one of the important aspects
of a software, as integrity means the protection of the source
code (logic) and the data of the software; and every
modification on the internal implementation of the software
can change its intended behavior; integrity can be a subpart of
the security attribute, as strong security in software systems
mean the ability to prevent any incoming malicious attacks,
no matter what type of the attack is.

For the interoperability attribute, it can be defined as the
ability of the software or hardware to work and interact
smoothly with other systems [12].

As technology is evolving, customers’ requirements are
also constantly changing, which forces developers to
frequently modify the software to adapt to these changes;
Modifiability is the ability of the software to be upgraded and
improved to meet users’ requirements [13].

[14] claim that performance is also one of the most
important aspects of a software. Performance is the ability of
a software to quickly respond and interact with the user. [14]
also stated that the throughput can be a part of the performance
attribute.

As stated before, computer environments are frequently
changing due to the rapid evolvement of the technology;
therefore, portability is important for software systems to
migrate from old to new computing environments [15].

[16] defined robustness in the testing approach as the
capability of a software to be stable under unexpected or
stressful environments, and function correctly while getting
invalid inputs.

As software systems can be used in critical situations like
controllers, safety attribute is the potential of a software
system or controller to work properly during critical
operations and environments [17].

IV. SOFTWARE QUALITY

Software quality as defined by the IEEE organization in
their IEEE 730-2014 standard, is the ability of the developed
software to meet all user’s requirements as well as the
company’s stakeholders’ requirements [18].

Unlike [7], [18] states that software quality attributes are
containing reliability and all other previously mentioned
attributes by [7]. These quality attributes can be assured via
the software quality assurance (SQA). The SQA consists of
many activities to ensure that the produced software is
adequate in terms of software services and is fulfilling all the
described requirements by the client [18].

In [18]’s statement, software quality can be achieved by
different approaches, during all the software development
lifecycle (SDLC) phases. A software system that has several
errors can be low quality, these errors can be caused by wrong
requirements, lack of communication between developers and
clients, deviating from client’s requirements, poor software
design, implementation errors, non-conformance of

documentation and code, inefficient testing processes, faulty
user interfaces and procedures, and finally erroneous
documentation [18].

V. QUALITY STANDARDS

Achieving software quality can be done by following the
well known international standards such as ISO/IEC and IEEE
[18]. The ISO/IEC 9000 standard family can be followed by
the software manufacturer organization to achieve an optimal
software quality management system, as this family of
standards provides guidelines to reach a good level of
quality[18].

For the quality assurance, [18] stated that IEEE Std. 730-
2014 can be followed. For the lifecycle processes,
ISO/IEC/IEEE 12207:2008 is the standard that helps to
improve the SDLC processes. Finally, for the software
verification and validation, IEEE Std. 1012-2012 can provide
guidelines to better perform this task.

VI. SOFTWARE TESTING

Software testing, which can be defined as the evaluation
of the produced software, is a very important step for ensuring
a good software quality [18]. To add more clarity to this
statement, [19] highlighted that software testing can be
divided into two major categories, which are static testing and
dynamic testing. The first type which is static is performed to
evaluate the requirement document, software design, and
source code through inspections, walkthrough, and reviews.
On the other hand, dynamic testing is the examination of the
produced software by executing it using different inputs; this
type of tests let developers to observe the performance and
behavior of the system [19].

A good software quality cannot be done using one type of
dynamic testing. Hence, many types of dynamic testing are
available like unit testing, integration testing, system testing,
and acceptance testing [19].

These tests are not done without planning as [18] states,
the software producer determine test strategies, then it plans
and designs tests in order to perform them upon the software
system. Two more important testing types are black box
testing and white box (or glass box testing) [18]. The black
box test consists of testing the system without knowing its
code, it mainly serves for detecting bugs and malfunctioning
functions. However, white box testing is a test where the
internal code can be examined to find bugs and errors.
Generally, black box testing can do more than the glass box
testing, as it checks for correctness, availability, reliability,
stress, security, usability, maintainability, flexibility,
testability, portability, reusability, and interoperability.
However, glass box testing can only serve for correctness,
maintainability, and reusability [18].

All the mentioned tests including either automated or
manual testing can serve for improving the overall reliability
and quality of the produced software [20]. [20] added that
development methodologies also play a great role in
improving software quality, as an adequate methodology can
give more efficiency to all lifecycle phases which includes the
testing phase. [20] also refers to the scrum agile methodology
as a good way of improving software quality as requirements
are clear and unambiguous. Hence, performed tests can assess
these requirements to check if it is conforming to the user’s
needs.

J -r| Journal of Applied Technology and Innovation (e -ISSN: 2600-7304) vol. 5, no. 2, (2021) 42
TABLE L LITERATURE REVIEW MATRIX
Author/ Theoretical/ Research Methodology Analysis & Conclusions Implications Implications
Date Conceptual Question(s)/ Results for For practice
Framework Hypotheses Future research
Nikolay Using Can Geompertz | Using The paper | Gompertz N/A Using the
Pavlov, Georgi | Gompertz be the Dbest | numerical data | compares the | function is the same data
Spasov, Asen | model to | model? in the old and | generalized cut | best model for
Rahnev, measure new model | function and the | data types that type and the
Nikolay software using the | Gompertz— includes hours, new
Kyurkchiev reliability. Gompertz Makeham software | number of reliability
(2018) model to | reliability model. | failures, and model can
calculate The Gompertz | cumulative .
reliability. model was found | failures. give better
the best. results in
terms of
accuracy.
Yoshinobu Choosing the | What is the best | Using Selecting a | The paper | N/A Software
Tamura, best reliability | reliability numerical data | reliability —model | proposed a reliability
Shigeru model using | model that uses | to perform a | using optimal | selection
Yamada deep learning. deep learning? comparison of | release time is | method for can be
(2016) reliability considered Dbetter | optimal assessed
models. than selecting | software better than
using software | reliability before.
cost. model,
compared
different
reliability
evaluation
models using
deep learning.
Kwang Yoon | Proposing a | What are the | Studying The selected | The proposed | The proposed | The
Song, In Hong | new reliability | best models to | several models and the | model has more | models can proposed
Chang, Hoang | model by | measure software proposed model | efficiency in | have more .
Pham adding fault | reliability? reliability were assessed | reliability validation with | model gives
(2019) detection rate models using | based on 5 | prediction as it | new datasets. | MOIe
function on the the non- | datasets, 2 datasets | considers the | New accuracy in
non- homogeneous from a | uncertainty of | parameters reliability
homogeneous Poisson telecommunication | operating estimation LT
Poisson process. system, and 3 | environments. using Bayesian predlctlpn mn
process. datasets from an and bigdatacan | comparison
on-line be conducted, | with other
communication considering the models
system. multi release ’
point.
Roberto Introducing How can | DevOpRET is | Two profiles were | Using real- | Using more | The
Pietrantuono, DevOpRET to | developers being appliedto | used in the | world advanced DevOpsRET
Antonia continually estimate a case study | reliability applications testing
Bertolino, perform reliability? using estimation: and more usage | algorithms and approach
Guglielmo De | reliability tests Discourse, uniform estimated | data collection | machine g1ves more
Angelis, Breno | in the DevOps which is a | profile and | helped the | learning can accuracy to
Miranda, methodology. platform proportional DevOpRET to | further improve reliability
Stefano Russo dedicated for | estimated profile, | easily converge | the DevOps
(2019) discussions. the profiles were | to the exact | reliability asgessment
Tests are | using a various | reliability assessment. using more
performed on | number of tests on | prediction. DevOpsRET test cases.
this platform to | each DevOps can also be
get reliability | cycle. Increasing more studied
results. the number of tests using actual
has significantly application
improved the deployment, to
accuracy of the assess the
prediction. impact on other
quality factors.
Vahid Garousi, | Summarizing How testing | Compiling 208 | Many kinds of | The conducted | Testing trends | Industrial
Michael the disciplineof | can improve | papers to | research addressed | research is an | are available in collaborators
Felderer, Feyza | software testing | reliability? collect all | the improvement | index of the | this research, .
Nur Kiligaslan to improve pieces of | of software | body of | which can be found this
(2019) software information on | testability and | knowledge of | more paper useful
testability. software extracted the | testing, which | investigated in | when
testing. iff;(lztors that h?flvps' to | future work. performing
prove efficiently test
testability. software tests.

projects.

J -r| Journal of Applied Technology and Innovation (e -ISSN: 2600-7304) vol. 5, no. 2, (2021) 43
Otavio Augusto | Giving more | What are the | Conducting Learning Having the test | Conducting Teaching
Lazzarini knowledge in | steps that | experiments principles and | knowledge more students
Lemos, Fabio | software testing | should be | with students | techniques of | produced a | researches with
Fagundes to improve | followed to | and teachers to | testing improved | reliable code by | more students (new
Silveira, code reliability. | improve the | evaluate the | more than two | developers and developers)
Fabiano Cutigi quality of code? | knowledge of | times code | without even | professional testing
Ferrari, software testing | implementation writing developers, skills. tools
Alessandro among written by | additional lines | with analyzing ’ ’
Garcia students, and | developers. of code. how test and .
(2018) teaching training could | techniques

practices impact the | can impact
among programming s
teachers. skills. p osmvely
code
reliability.
Fernando Improving What are the | Using metrics | Quality attributes | System identity | N/A Choosing
Pinciroli compatible compatible to calculate | like usability, | which is the the adequate
(2016) software quality factors? | solutions with | security, and | best .
quality different performance can | combination of qua‘hty
attributes can quality have a negative | quality attributes
give better attributes. impact on the | attributes can can give the
results on system. Selecting | be achieved best
software different solutions | using the
quality. and calculating | metrics. The SOftWare
their values using | expected value quality.
the provided | (level of
metrics can give | quality) can be
the best solution. changing
depending on
the situation
and the wused
quality
attributes.
Mina Nabi, | Providing How can cloud | Using 21 out of | Many cloud | Cloud Future work | N/A
Maria Toeroe, | solutions for | providers 100 relevant | providers do not | availability can address
Ferhat availability in | improve papers and | protect cloud | solutions are | cloud
Khendek cloud availability? conferences, services from | not the same, as | mechanisms
computing. with additional | application failure. | every cloud | (elasticity and
information provider has his | inherent
from some of own characteristic)
the main cloud availability in cloud
providers. definition. upgrade.
Amro Al-Said | Using How scalability | Using the | Using two | Different Future work Getting
Ahmad, Peter | scalability can be | same/different scenarios hosted in | services were | can address more
Andras metrics to | measured in | services in the | EC2 provided | used in AWS | other cloud
(2019) measure cloud | cloud same/different more improvement | and AZURE | services and accurate
services platforms? cloud platforms | in cloud services | cloud platforms | other cloud | scalability
scalability. to measures | scalability. and assessed | platforms. results.
scalability. using metrics
that address
volume scaling
as well as
quality scaling,
which gives
more accurate
scalability
results.
Serghei Providing How to | An empirical | 49% of 98 | Standard N/A Improving
Mangul, solutions for | improve quality | study of 36702 | software products | approaches quality
Thiago increasing the | factors? software failed the easy | mustbe applied
Mosqueiro, stability — and resources installation, to increase the factors for
Richard J. | installability of varying from | whereas 27.6% of | installability software
Abdill, Dat | software. 2005 to 2017. these software | and stability of systems.
Duong, Keith failed to install due | the software.
Mitchell, to some technical

Varuni Sarwal,
Brian Hill,
Jaqueline Brito,
Russell
JaredLittman,
Benjamin Statz,
Angela Ka-Mei
Lam, Gargi
Dayama, Laura
Grieneisen,
Lana S. Martin,

problems in their
implementation.

J -r| Journal of Applied Technology and Innovation (e -ISSN: 2600-7304) vol. 5, no. 2, (2021) 44
Jonathan Flint,
Eleazar Eskin,
Ran Blekhman
(2019)
Mohsen Defending and | What are the | Applying a | Coming up with | Many Future research Building
Ahmadvand, protecting areas that must | taxonomy on | correlated techniques for | can address the more secure
Alexander systems from | be addressed to | literature elements for | protecting or | resilience of
Pretschner, integrity protect papers, and | protecting the | mitigating these systems.
Florian Kelbert | attacks. systems? evaluating it | integrity of the | integrity techniques.
(2019) using 49 | software systems. attacks like | Performance
papers. MATE attacks | can be
are available. | benchmarked
Each one can | using more
have datasets on
advantages and | these various
disadvantages. techniques.
Gozde Basak | Summarizing N/A Selecting and | The 2091 papers | Problems Future work | N/A
Ozturk interoperability evaluating were filtered by the | remain when | can get more
(2020) attribute trends 2091 research | English language | implementing papers from
and gaps. papers fromthe | to have 2052 | BIM such as | other databases
Scopus article, then | lack of | with different
database. filtered by type, | communication | languages.
using only journal | and lack of
articles which let | data.
only 886 articles.
The remained
articles were
reduced to 447
articles by
including only
interoperability
related articles.
Milu Mary | Using Will the | Using a | Using the selected | The used model | N/A Software
Philip, Nishank | architectural proposed document design, with the | in this paper systems can
Singhal, style in | model improve | processing Java language and | will help in .
Raagashree software software software as a | Ubuntu system, | building be built
Ravi, development. quality? case study. helped the selected | flexible more
Vijayakumar B. software in the | software that efficiently.
(2020) case study to have | will easily meet
more modifiability | users’
with low coupling | requirements.
while increasing
the number of
parallel
connections.
Huong Ha, | Using a | Can this neural | Using datasets | Conducting the | The proposed | The provided Accuracy in
Hongyu Zhang | feedforward model give | to perform the | experiment on | deepperf model design software
(2019) neural network | more proposed different systems | method has | can be more
in modeling | performance in | model showed that the | outperformed improved by perfqrrpance
configurable prediction? experiments. approach gives | various conducting prediction
systems, with more accuracy in | prediction researches on | can be more
their prediction without | models, using | neural network accurate if
performance using a lot of input | fewer data and | universal .
prediction. data. different types | property. using the
of deepperf
configurations. model.
Hamza Measuring N/A Using the | Most of the papers | Different Future work | N/A
Ghandorh, software systematic focused on | software can be
Abdulfattah portability. literature measuring portability conducted to
Noorwali, Ali review using 49 | software metrics were | find if neural
Bou Nassif, research portability in the | listed, using the | networks can
Luiz Fernando papers. The | development collected be used in
Capretz, Roy selected papers | approach area. papers that only | software
Eagleson were chosen focus on | portability
based on their portability. measurements.
quality. All
data were
collected from
these 49 papers.
Casidhe Presenting How to test | Using real | Performing tests | Robustness N/A The given
Hutchison, robustness robustness? systems and | showed that the | tests can be scalable
Milda Zizyte, | testing system applying the | number of bugs | useful, but at
Patrick E. | for autonomous selected testing | increases when | the same time approach
Lanigan, David | systems. approach. injecting single | can activate helps to find
Guttendorf, instances. Two of | critical bugs serious bugs,
Michael the dangerous bugs | that can

J -r| Journal of Applied Technology and Innovation (e -ISSN: 2600-7304) vol. 5, no. 2, (2021) 45
Wagner, Claire are floating point | damage the errors, and
Le Goues, and NaN bugs. systems, like faults before
Philip robots that have .
Koopman these types of happempg at
(2018) software. the runtime.
Jin Zhang, | Performing N/A Using six | Afteranalyzing the | The usage of | Future N/A
Jingyue Li testing and research selected papers, | neural researches can
(2020) verification for libraries and | test and validation | networks in | be conducted to

a neural filtering 950 | on neural network | safety-critical assess the
network in articles. systems is gaining | systems is | neural network
safety-critical more focus by | trending. model, and
cyber-physical researchers. Hence, test and | compare it with
systems. validation for | other models,
these systems is | to get the best
trending. robustness
model.
Nirali Honest Emphasizing What are the | Using existing | Software testing | To have good | N/A Using tests
(2019) how testing can | good testing | literature to | and its levels can | software to improve
improve strategies for | clarify levels of | improve the | quality among
software quality tests. overall quality of | other SOftWare
quality using | improvement? the produced | competitors quality.
various types of software. and sustain in
tests and the market,
methods, testing must be
throughout the well performed.
software
development
lifecycle.
Mohammad The impact of | What are the | Using a | Different factors | Software N/A Using
Daud software testing | quality factors | systematic such as security, | testing can different
Haiderzai, on quality. for a quality | literature interoperability, improve .
Mohammad software review to find | portability, software testmgl
Ismail Khattab system? related testability, quality if well strategies
(2019) What are the | literature to the | usability, and | conducted, can cover
suitable research correctness are | without the
development questions. considered deviating from .
methodologies important for | customer’s functional
in software improving quality. | requirements. and non-
testing? Additionally, functional
testing sides of
methodologies
such as functional, software
security testing, systems.
performance
testing can also
improve the
quality of the
software.
VII. CONCLUSION REFERENCES

Software quality and reliability got more attention from
developers after the technological evolution. Customers'
requirements were more sophisticated and more complicated.
many international organizations introduced
standards for quality management systems and quality
assurance, to maintain software quality and satisfy customers.

Therefore,

Software testing plays an important role in managing the
quality and reliability and a software, as many testing
strategies are available to cover and assess all software
functionalities. Different development methodologies are
available for developing projects. Yet, managing the time and

cost of a project can still be challenging.

As a result, this affects testing strategies, because this
phase can be costly in terms of time and budget. Future work
can focus on how choosing methodologies can give more
efficiency when performing different tests, to add more

improvement upon software quality.

(1

(4]

N. Pavlov, G. Spasov, A. Rahnev, and N. Kyurkchiev, “A new class of
Gompertz—type software reliability models,” Int. Electron. J. Pure
Appl. Math,, wvol. 12, no. 1, pp. 43-57, 2018, doi:
10.12732/iejpam.v12il 4.

Y. Tamura and S. Yamada, “Software Reliability Model Selection
Based on Deep Learning with Application to the Optimal Release
Problem,” J. Ind. Eng. Manag. Sci., vol. 2016, no. 1, pp. 43-58, 2016,
doi: 10.13052/jiems2446-1822.2016.003.

K. Y. Song, I. H. Chang, and H. Pham, “NHPP software reliability
model with inflection factor of the fault detection rate considering the
uncertainty of software operating environments and predictive
analysis,” Symmetry (Basel)., vol. 11, no. 4, 2019, doi:
10.3390/sym11040521.

R. Pietrantuono, A. Bertolino, G. De Angelis, B. Miranda, and S.
Russo, “Towards continuous software reliability testing in DevOPs,”
in Proceedings - 2019 IEEE/ACM 14th International Workshop on
Automation of Software Test, AST 2019, 2019, pp. 21-27, doi:
10.1109/AST.2019.00009.

V. Garousi, M. Felderer, and F. N. Kiligaslan, “A survey on software
testability,” Inf. Softw. Technol., vol. 108, pp. 35-64, 2019, doi:
10.1016/j.infs0£.2018.12.003.

O. A. Lazzarini Lemos, F. Fagundes Silveira, F. Cutigi Ferrari, and A.
Garcia, “The impact of Software Testing education on code reliability:
An empirical assessment,” J. Syst. Softw., vol. 137, no. Issre 2015, pp.

J ﬁ)-" Journal of Applied Technology and Innovation (e -ISSN: 2600-7304) vol. 5, no. 2, (2021)

(71

(8]

(9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

46

497-511, 2018, doi: 10.1016/j.js5.2017.02.042.

F. Pinciroli, “Improving Software Applications Quality by Considering
the Contribution Relationship among Quality Attributes,” Procedia
Comput. Sci., vol. 83, no. Antifragile, pp. 970-975, 2016, doi:
10.1016/j.procs.2016.04.194.

M. Nabi, M. Toeroe, and F. Khendek, “Availability in the cloud: State
of the art,” J. Netw. Comput. Appl., vol. 60, pp. 54-67, 2016, doi:
10.1016/j.jnca.2015.11.014.

A. Al-Said Ahmad and P. Andras, “Scalability analysis comparisons of
cloud-based software services,” J. Cloud Comput., vol. 8, no. 1, 2019,
doi: 10.1186/513677-019-0134-y.

S. Mangul et al., “Challenges and recommendations to improve the
installability and archival stability of omics computational tools,” PLoS
Biol., vol. 17, no. 6, pp- 1-16, 2019, doi:
10.1371/journal.pbio.3000333.

M. Ahmadvand, A. Pretschner, and F. Kelbert, “A Taxonomy of
Software Integrity Protection Techniques,” Adv. Comput., vol. 112, pp.
413-486, 2019, doi: 10.1016/bs.adcom.2017.12.007.

G. B. Ozturk, “Interoperability in building information modeling for
AECO/FM industry,” Autom. Constr., vol. 113, no. January, p. 103122,
2020, doi: 10.1016/j.autcon.2020.103122.

M. Philip, N. Singhal, R. Ravi, and V. B., “A Quantitative Approach to
Analyze Modifiability in Software Architectural Design of Agile
Application Systems,” Inf. Technol. Control, vol. 49, no. 2, pp. 249—
259, 2020, doi: 10.5755/j01.itc.49.2.22893.

H. Ha and H. Zhang, “DeepPerf: Performance Prediction for
Configurable Software with Deep Sparse Neural Network,” Proc. - Int.
Conf. Softw. Eng., vol. 2019-May, pp. 1095-1106, 2019, doi:
10.1109/ICSE.2019.00113.

H. Ghandorh, A. Noorwali, A. B. Nassif, L. F. Capretz, and R.
Eagleson, “A Systematic Literature Review for Software Portability
Measurement,” pp. 152-157, 2020, doi: 10.1145/3384544.3384569.

C. Hutchison et al., “Robustness testing of autonomy software,” Proc.
- Int. Conf. Softw. Eng., pp. 276-285, 2018, doi:
10.1145/3183519.3183534.

J. Zhang and J. Li, “Testing and verification of neural-network-based
safety-critical control software: A systematic literature review,” Inf.
Sofiw. Technol., vol. 123, mno. April 2019, 2020, doi:
10.1016/j.infs0£.2020.106296.

D. Galin, Software Quality Assurance: Concepts and Practice. Wiley-
IEEE Press, 2018.

N. Honest, “Role of Testing in Software Development Life Cycle,” Int.
J. Comput. Sci. Eng., vol. 7, no. 5, pp. 886-889, May 2019, doi:
10.26438/ijcse/v7i5.886889.

M. D. Haiderzai and M. 1. Khattab, “How software testing impact the
quality of software systems ?,” Int. J. Eng. Comput. Sci., vol. 1, no. 2,
pp- 5-9, 2019.

