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Abstract—Software systems are hard to complete as
customers became hard to satisfy and their requirements are
more complicated. In this paper, quality factors that affect
software are discussed, with some well-known standards that
improve and assist while planning for quality assurance. The
testing strategies and types that contribute to improving quality
are also highlighted. A development methodology was
mentioned as it gives more support to the testing phase.
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[. INTRODUCTION

Nowadays, software systems became more complex and
sophisticated to develop. Customers' requirements are also
getting more complex to fully understand and implement. The
competition in software development is getting high, as every
development company is doing its best to attract more
customers and do more profit. Therefore, software products
must be reliable and high quality to meet and fulfill customers'
expectations and requirements. Software reliability can be
divided into many sub-attributes that must be addressed to
improve overall software quality.

As companies are using different development
methodologies, testing is one of the most important phases in
any methodology, it can detect errors and bugs if available in
the software. However, testing is not as easy as it seems,
because many types of testing are existing, and every testing
type can be performed in a particular situation. Therefore, this
crucial phase must have more attention to improve reliability.

II. SOFTWARE RELIABILITY

[1] highlighted that software reliability can be defined as
the probability of failure-free of a software in a specified
environment for a given time.

According to [2], software reliability has developed many
models from the early years until today to assess software
reliability and improve the overall quality, including the
testing while developing the software.

Furthermore, software reliability prediction models are
being used before testing the software using a collection of
data such as project complexity, used programming
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languages, architecture, etc. And after the software is being
tested, a reliability model which is a mathematical formula is
used to assess the software reliability by using the collected
failure rates and fault data [3].

[4] stated that continuous testing is one of the most
important steps in software development, as it can give to the
quality assurance team an overall review of the quality of the
developed software, which can be used to improve software
reliability and meet customers’ expectations.

Additionally, [5] noted that software testability is a
considered important in software project development; many
international standards like ISTQB, IEEE, ISO, IEC, and
MIL-STD defined software testability as the degree to which
a software or software component can be tested and validated
according to the tests criteria imposed by the development
company.

Testing has improved software reliability and code
implementation (programming skills) two times more [6].

III. SOFTWARE RELIABILITY ATTRIBUTES

[7] defined in his statement that software reliability can
have many attributes (non-functional requirements) that can
produce better software quality if well considered. [7] has
listed these attributes as the following order: availability,
efficiency, installability,  integrity, interoperability,
modifiability, performance, portability, reliability, reusability,
robustness, safety, scalability, security, usability, and
verifiability. [7] also mentioned that these attributes must be
combined in a good way as some of them can have a bad
impact on the system if combined.

According to [8], availability can be defined as the time or
period that a system or application can be accessed by the
users; high availability can be 99.99%, the other left
percentage can be reserved for the maintenance activities.

For software efficiency, it can be defined as the quantity
or rate of the number of inputs needed to achieve a higher
quantity of output under any workload [9]; [9] also highlighted
that scalability which is increasing the capacity of a software
by adding more functionalities and services.
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[10] defined software installability as the ability for the
software to be installed easily in a specific environment. [10]
explained that software installability can be categorized from
‘easy to install’ to ‘hard to install’, or sometimes ‘failed to
install’ due to implementation errors; the two categories (easy
and hard) have been assessed using the installation time factor.

[11] asserted that integrity is one of the important aspects
of a software, as integrity means the protection of the source
code (logic) and the data of the software; and every
modification on the internal implementation of the software
can change its intended behavior; integrity can be a subpart of
the security attribute, as strong security in software systems
mean the ability to prevent any incoming malicious attacks,
no matter what type of the attack is.

For the interoperability attribute, it can be defined as the
ability of the software or hardware to work and interact
smoothly with other systems [12].

As technology is evolving, customers’ requirements are
also constantly changing, which forces developers to
frequently modify the software to adapt to these changes;
Modifiability is the ability of the software to be upgraded and
improved to meet users’ requirements [13].

[14] claim that performance is also one of the most
important aspects of a software. Performance is the ability of
a software to quickly respond and interact with the user. [ 14]
also stated that the throughput can be a part of the performance
attribute.

As stated before, computer environments are frequently
changing due to the rapid evolvement of the technology;
therefore, portability is important for software systems to
migrate from old to new computing environments [15].

[16] defined robustness in the testing approach as the
capability of a software to be stable under unexpected or
stressful environments, and function correctly while getting
invalid inputs.

As software systems can be used in critical situations like
controllers, safety attribute is the potential of a software
system or controller to work properly during critical
operations and environments [17].

IV. SOFTWARE QUALITY

Software quality as defined by the IEEE organization in
their IEEE 730-2014 standard, is the ability of the developed
software to meet all user’s requirements as well as the
company’s stakeholders’ requirements [ 18].

Unlike [7], [18] states that software quality attributes are
containing reliability and all other previously mentioned
attributes by [7]. These quality attributes can be assured via
the software quality assurance (SQA). The SQA consists of
many activities to ensure that the produced software is
adequate in terms of software services and is fulfilling all the
described requirements by the client [18].

In [18]’s statement, software quality can be achieved by
different approaches, during all the software development
lifecycle (SDLC) phases. A software system that has several
errors can be low quality, these errors can be caused by wrong
requirements, lack of communication between developers and
clients, deviating from client’s requirements, poor software
design, implementation errors, non-conformance of

documentation and code, inefficient testing processes, faulty
user interfaces and procedures, and finally erroneous
documentation [18].

V. QUALITY STANDARDS

Achieving software quality can be done by following the
well known international standards such as ISO/IEC and IEEE
[18]. The ISO/IEC 9000 standard family can be followed by
the software manufacturer organization to achieve an optimal
software quality management system, as this family of
standards provides guidelines to reach a good level of
quality[18].

For the quality assurance, [18] stated that IEEE Std. 730-
2014 can be followed. For the lifecycle processes,
ISO/IEC/IEEE 12207:2008 is the standard that helps to
improve the SDLC processes. Finally, for the software
verification and validation, IEEE Std. 1012-2012 can provide
guidelines to better perform this task.

VI. SOFTWARE TESTING

Software testing, which can be defined as the evaluation
of the produced software, is a very important step for ensuring
a good software quality [18]. To add more clarity to this
statement, [19] highlighted that software testing can be
divided into two major categories, which are static testing and
dynamic testing. The first type which is static is performed to
evaluate the requirement document, software design, and
source code through inspections, walkthrough, and reviews.
On the other hand, dynamic testing is the examination of the
produced software by executing it using different inputs; this
type of tests let developers to observe the performance and
behavior of the system [19].

A good software quality cannot be done using one type of
dynamic testing. Hence, many types of dynamic testing are
available like unit testing, integration testing, system testing,
and acceptance testing [19].

These tests are not done without planning as [18] states,
the software producer determine test strategies, then it plans
and designs tests in order to perform them upon the software
system. Two more important testing types are black box
testing and white box (or glass box testing) [18]. The black
box test consists of testing the system without knowing its
code, it mainly serves for detecting bugs and malfunctioning
functions. However, white box testing is a test where the
internal code can be examined to find bugs and errors.
Generally, black box testing can do more than the glass box
testing, as it checks for correctness, availability, reliability,
stress, security, usability, maintainability, flexibility,
testability, portability, reusability, and interoperability.
However, glass box testing can only serve for correctness,
maintainability, and reusability [18].

All the mentioned tests including either automated or
manual testing can serve for improving the overall reliability
and quality of the produced software [20]. [20] added that
development methodologies also play a great role in
improving software quality, as an adequate methodology can
give more efficiency to all lifecycle phases which includes the
testing phase. [20] also refers to the scrum agile methodology
as a good way of improving software quality as requirements
are clear and unambiguous. Hence, performed tests can assess
these requirements to check if it is conforming to the user’s
needs.
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Jingyue Li testing and research selected  papers, | neural researches can
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network in articles. systems is gaining | systems is | neural network
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cyber-physical researchers. Hence, test and | compare it with
systems. validation for | other models,
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trending. robustness
model.
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tests and the market,
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Haiderzai, on quality. for a quality | literature interoperability, improve .
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testing? Additionally, functional
testing sides of
methodologies
such as functional, software
security  testing, systems.
performance
testing can also
improve the
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VII. CONCLUSION REFERENCES

Software quality and reliability got more attention from
developers after the technological evolution. Customers'
requirements were more sophisticated and more complicated.
many international organizations introduced
standards for quality management systems and quality
assurance, to maintain software quality and satisfy customers.

Therefore,

Software testing plays an important role in managing the
quality and reliability and a software, as many testing
strategies are available to cover and assess all software
functionalities. Different development methodologies are
available for developing projects. Yet, managing the time and

cost of a project can still be challenging.

As a result, this affects testing strategies, because this
phase can be costly in terms of time and budget. Future work
can focus on how choosing methodologies can give more
efficiency when performing different tests, to add more

improvement upon software quality.
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