
Journal of Applied Technology and Innovation (e -ISSN: 2600-7304) vol. 5, no. 2, (2021) 40

Software testing for reliability and quality
improvement

Mouad Bajjouk
School of Computing

Asia Pacific University of Technology
and Innovation (APU)

Kuala Lumpur, Malaysia
 TP058518@mail.apu.edu.my

Muhammad Ehsan Rana
School of Computing

Asia Pacific University of Technology
and Innovation (APU)

Kuala Lumpur, Malaysia
 muhd_ehsanrana@apu.edu.my

Chandra Reka Ramachandiran
School of Computing

Asia Pacific University of Technology
and Innovation (APU)

Kuala Lumpur, Malaysia
chandra.reka@apu.edu.my

Sivananthan Chelliah
School of Computing

Asia Pacific University of Technology
and Innovation (APU)

Kuala Lumpur, Malaysia
sivananthan@apu.edu.my

Abstract—Software systems are hard to complete as
customers became hard to satisfy and their requirements are
more complicated. In this paper, quality factors that affect
software are discussed, with some well-known standards that
improve and assist while planning for quality assurance. The
testing strategies and types that contribute to improving quality
are also highlighted. A development methodology was
mentioned as it gives more support to the testing phase.

Keywords—Software reliability, software quality, testing
methodologies.

I. INTRODUCTION

Nowadays, software systems became more complex and
sophisticated to develop. Customers' requirements are also
getting more complex to fully understand and implement. The
competition in software development is getting high, as every
development company is doing its best to attract more
customers and do more profit. Therefore, software products
must be reliable and high quality to meet and fulfill customers'
expectations and requirements. Software reliability can be
divided into many sub-attributes that must be addressed to
improve overall software quality.

As companies are using different development
methodologies, testing is one of the most important phases in
any methodology, it can detect errors and bugs if available in
the software. However, testing is not as easy as it seems,
because many types of testing are existing, and every testing
type can be performed in a particular situation. Therefore, this
crucial phase must have more attention to improve reliability.

II. SOFTWARE RELIABILITY

[1] highlighted that software reliability can be defined as
the probability of failure-free of a software in a specified
environment for a given time.

According to [2], software reliability has developed many
models from the early years until today to assess software
reliability and improve the overall quality, including the
testing while developing the software.

Furthermore, software reliability prediction models are
being used before testing the software using a collection of
data such as project complexity, used programming

languages, architecture, etc. And after the software is being
tested, a reliability model which is a mathematical formula is
used to assess the software reliability by using the collected
failure rates and fault data [3].

[4] stated that continuous testing is one of the most
important steps in software development, as it can give to the
quality assurance team an overall review of the quality of the
developed software, which can be used to improve software
reliability and meet customers’ expectations.

Additionally, [5] noted that software testability is a
considered important in software project development; many
international standards like ISTQB, IEEE, ISO, IEC, and
MIL-STD defined software testability as the degree to which
a software or software component can be tested and validated
according to the tests criteria imposed by the development
company.

Testing has improved software reliability and code
implementation (programming skills) two times more [6].

III. SOFTWARE RELIABILITY ATTRIBUTES

[7] defined in his statement that software reliability can
have many attributes (non-functional requirements) that can
produce better software quality if well considered. [7] has
listed these attributes as the following order: availability,
efficiency, installability, integrity, interoperability,
modifiability, performance, portability, reliability, reusability,
robustness, safety, scalability, security, usability, and
verifiability. [7] also mentioned that these attributes must be
combined in a good way as some of them can have a bad
impact on the system if combined.

According to [8], availability can be defined as the time or
period that a system or application can be accessed by the
users; high availability can be 99.99%, the other left
percentage can be reserved for the maintenance activities.

For software efficiency, it can be defined as the quantity
or rate of the number of inputs needed to achieve a higher
quantity of output under any workload [9]; [9] also highlighted
that scalability which is increasing the capacity of a software
by adding more functionalities and services.

Journal of Applied Technology and Innovation (e -ISSN: 2600-7304) vol. 5, no. 2, (2021) 41

[10] defined software installability as the ability for the

software to be installed easily in a specific environment. [10]
explained that software installability can be categorized from
‘easy to install’ to ‘hard to install’, or sometimes ‘failed to
install’ due to implementation errors; the two categories (easy
and hard) have been assessed using the installation time factor.

[11] asserted that integrity is one of the important aspects
of a software, as integrity means the protection of the source
code (logic) and the data of the software; and every
modification on the internal implementation of the software
can change its intended behavior; integrity can be a subpart of
the security attribute, as strong security in software systems
mean the ability to prevent any incoming malicious attacks,
no matter what type of the attack is.

For the interoperability attribute, it can be defined as the
ability of the software or hardware to work and interact
smoothly with other systems [12].

As technology is evolving, customers’ requirements are
also constantly changing, which forces developers to
frequently modify the software to adapt to these changes;
Modifiability is the ability of the software to be upgraded and
improved to meet users’ requirements [13].

[14] claim that performance is also one of the most
important aspects of a software. Performance is the ability of
a software to quickly respond and interact with the user. [14]
also stated that the throughput can be a part of the performance
attribute.

As stated before, computer environments are frequently
changing due to the rapid evolvement of the technology;
therefore, portability is important for software systems to
migrate from old to new computing environments [15].

[16] defined robustness in the testing approach as the
capability of a software to be stable under unexpected or
stressful environments, and function correctly while getting
invalid inputs.

As software systems can be used in critical situations like
controllers, safety attribute is the potential of a software
system or controller to work properly during critical
operations and environments [17].

IV. SOFTWARE QUALITY

Software quality as defined by the IEEE organization in
their IEEE 730-2014 standard, is the ability of the developed
software to meet all user’s requirements as well as the
company’s stakeholders’ requirements [18].

Unlike [7], [18] states that software quality attributes are
containing reliability and all other previously mentioned
attributes by [7]. These quality attributes can be assured via
the software quality assurance (SQA). The SQA consists of
many activities to ensure that the produced software is
adequate in terms of software services and is fulfilling all the
described requirements by the client [18].

In [18]’s statement, software quality can be achieved by
different approaches, during all the software development
lifecycle (SDLC) phases. A software system that has several
errors can be low quality, these errors can be caused by wrong
requirements, lack of communication between developers and
clients, deviating from client’s requirements, poor software
design, implementation errors, non-conformance of

documentation and code, inefficient testing processes, faulty
user interfaces and procedures, and finally erroneous
documentation [18].

V. QUALITY STANDARDS

Achieving software quality can be done by following the
well known international standards such as ISO/IEC and IEEE
[18]. The ISO/IEC 9000 standard family can be followed by
the software manufacturer organization to achieve an optimal
software quality management system, as this family of
standards provides guidelines to reach a good level of
quality[18].

For the quality assurance, [18] stated that IEEE Std. 730-
2014 can be followed. For the lifecycle processes,
ISO/IEC/IEEE 12207:2008 is the standard that helps to
improve the SDLC processes. Finally, for the software
verification and validation, IEEE Std. 1012-2012 can provide
guidelines to better perform this task.

VI. SOFTWARE TESTING

Software testing, which can be defined as the evaluation
of the produced software, is a very important step for ensuring
a good software quality [18]. To add more clarity to this
statement, [19] highlighted that software testing can be
divided into two major categories, which are static testing and
dynamic testing. The first type which is static is performed to
evaluate the requirement document, software design, and
source code through inspections, walkthrough, and reviews.
On the other hand, dynamic testing is the examination of the
produced software by executing it using different inputs; this
type of tests let developers to observe the performance and
behavior of the system [19].

A good software quality cannot be done using one type of
dynamic testing. Hence, many types of dynamic testing are
available like unit testing, integration testing, system testing,
and acceptance testing [19].

These tests are not done without planning as [18] states,
the software producer determine test strategies, then it plans
and designs tests in order to perform them upon the software
system. Two more important testing types are black box
testing and white box (or glass box testing) [18]. The black
box test consists of testing the system without knowing its
code, it mainly serves for detecting bugs and malfunctioning
functions. However, white box testing is a test where the
internal code can be examined to find bugs and errors.
Generally, black box testing can do more than the glass box
testing, as it checks for correctness, availability, reliability,
stress, security, usability, maintainability, flexibility,
testability, portability, reusability, and interoperability.
However, glass box testing can only serve for correctness,
maintainability, and reusability [18].

All the mentioned tests including either automated or
manual testing can serve for improving the overall reliability
and quality of the produced software [20]. [20] added that
development methodologies also play a great role in
improving software quality, as an adequate methodology can
give more efficiency to all lifecycle phases which includes the
testing phase. [20] also refers to the scrum agile methodology
as a good way of improving software quality as requirements
are clear and unambiguous. Hence, performed tests can assess
these requirements to check if it is conforming to the user’s
needs.

Journal of Applied Technology and Innovation (e -ISSN: 2600-7304) vol. 5, no. 2, (2021) 42

TABLE I. LITERATURE REVIEW MATRIX

Author/
Date

Theoretical/
Conceptual
Framework

Research
Question(s)/
Hypotheses

Methodology Analysis &
Results

Conclusions Implications
for
Future research

Implications
For practice

Nikolay
Pavlov, Georgi
Spasov, Asen
Rahnev,
Nikolay
Kyurkchiev
(2018)

Using
Gompertz
model to
measure
software
reliability.

Can Geompertz
be the best
model?

Using
numerical data
in the old and
new model
using the
Gompertz
model to
calculate
reliability.

The paper
compares the
generalized cut
function and the
Gompertz–
Makeham software
reliability model.
The Gompertz
model was found
the best.

Gompertz
function is the
best model for
data types that
includes hours,
number of
failures, and
cumulative
failures.

N/A Using the
same data
type and the
new
reliability
model can
give better
results in
terms of
accuracy.

Yoshinobu
Tamura,
Shigeru
Yamada
(2016)

Choosing the
best reliability
model using
deep learning.

What is the best
reliability
model that uses
deep learning?

Using
numerical data
to perform a
comparison of
reliability
models.

Selecting a
reliability model
using optimal
release time is
considered better
than selecting
using software
cost.

The paper
proposed a
selection
method for
optimal
software
reliability
model,
compared
different
reliability
evaluation
models using
deep learning.

N/A Software
reliability
can be
assessed
better than
before.

Kwang Yoon
Song, In Hong
Chang, Hoang
Pham
(2019)

Proposing a
new reliability
model by
adding fault
detection rate
function on the
non-
homogeneous
Poisson
process.

What are the
best models to
measure
reliability?

Studying
several
software
reliability
models using
the non-
homogeneous
Poisson
process.

The selected
models and the
proposed model
were assessed
based on 5
datasets, 2 datasets
from a
telecommunication
system, and 3
datasets from an
on-line
communication
system.

The proposed
model has more
efficiency in
reliability
prediction as it
considers the
uncertainty of
operating
environments.

The proposed
models can
have more
validation with
new datasets.
New
parameters
estimation
using Bayesian
and big data can
be conducted,
considering the
multi release
point.

The
proposed
model gives
more
accuracy in
reliability
prediction in
comparison
with other
models.

Roberto
Pietrantuono,
Antonia
Bertolino,
Guglielmo De
Angelis, Breno
Miranda,
Stefano Russo
(2019)

Introducing
DevOpRET to
continually
perform
reliability tests
in the DevOps
methodology.

How can
developers
estimate
reliability?

DevOpRET is
being applied to
a case study
using
Discourse,
which is a
platform
dedicated for
discussions.
Tests are
performed on
this platform to
get reliability
results.

Two profiles were
used in the
reliability
estimation:
uniform estimated
profile and
proportional
estimated profile,
the profiles were
using a various
number of tests on
each DevOps
cycle. Increasing
the number of tests
has significantly
improved the
accuracy of the
prediction.

Using real-
world
applications
and more usage
data collection
helped the
DevOpRET to
easily converge
to the exact
reliability
prediction.

Using more
advanced
testing
algorithms and
machine
learning can
further improve
the DevOps
reliability
assessment.
DevOpsRET
can also be
more studied
using actual
application
deployment, to
assess the
impact on other
quality factors.

The
DevOpsRET
approach
gives more
accuracy to
reliability
assessment
using more
test cases.

Vahid Garousi,
Michael
Felderer, Feyza
Nur Kılıçaslan
(2019)

Summarizing
the discipline of
software testing
to improve
software
testability.

How testing
can improve
reliability?

Compiling 208
papers to
collect all
pieces of
information on
software
testing.

Many kinds of
research addressed
the improvement
of software
testability and
extracted the
factors that
improve
testability.

The conducted
research is an
index of the
body of
knowledge of
testing, which
helps to
efficiently test
software
projects.

Testing trends
are available in
this research,
which can be
more
investigated in
future work.

Industrial
collaborators
found this
paper useful
when
performing
tests.

Journal of Applied Technology and Innovation (e -ISSN: 2600-7304) vol. 5, no. 2, (2021) 43

Otávio Augusto
Lazzarini
Lemos, Fábio
Fagundes
Silveira,
Fabiano Cutigi
Ferrari,
Alessandro
Garcia
(2018)

Giving more
knowledge in
software testing
to improve
code reliability.

What are the
steps that
should be
followed to
improve the
quality of code?

Conducting
experiments
with students
and teachers to
evaluate the
knowledge of
software testing
among
students, and
teaching
practices
among
teachers.

Learning
principles and
techniques of
testing improved
more than two
times code
implementation
written by
developers.

Having the test
knowledge
produced a
reliable code by
developers
without even
writing
additional lines
of code.

Conducting
more
researches with
more students
and
professional
developers,
with analyzing
how test
training could
impact the
programming
skills.

Teaching
students
(new
developers)
testing
skills, tools,
and
techniques
can impact
positively
code
reliability.

Fernando
Pinciroli
(2016)

Improving
compatible
software
quality
attributes can
give better
results on
software
quality.

What are the
compatible
quality factors?

Using metrics
to calculate
solutions with
different
quality
attributes.

Quality attributes
like usability,
security, and
performance can
have a negative
impact on the
system. Selecting
different solutions
and calculating
their values using
the provided
metrics can give
the best solution.

System identity
which is the
best
combination of
quality
attributes can
be achieved
using the
metrics. The
expected value
(level of
quality) can be
changing
depending on
the situation
and the used
quality
attributes.

N/A Choosing
the adequate
quality
attributes
can give the
best
software
quality.

Mina Nabi,
Maria Toeroe,
Ferhat
Khendek

Providing
solutions for
availability in
cloud
computing.

How can cloud
providers
improve
availability?

Using 21 out of
100 relevant
papers and
conferences,
with additional
information
from some of
the main cloud
providers.

Many cloud
providers do not
protect cloud
services from
application failure.

Cloud
availability
solutions are
not the same, as
every cloud
provider has his
own
availability
definition.

Future work
can address
cloud
mechanisms
(elasticity and
inherent
characteristic)
in cloud
upgrade.

N/A

Amro Al-Said
Ahmad, Peter
Andras
(2019)

Using
scalability
metrics to
measure cloud
services
scalability.

How scalability
can be
measured in
cloud
platforms?

Using the
same/different
services in the
same/different
cloud platforms
to measures
scalability.

Using two
scenarios hosted in
EC2 provided
more improvement
in cloud services
scalability.

Different
services were
used in AWS
and AZURE
cloud platforms
and assessed
using metrics
that address
volume scaling
as well as
quality scaling,
which gives
more accurate
scalability
results.

Future work
can address
other cloud
services and
other cloud
platforms.

Getting
more
accurate
scalability
results.

Serghei
Mangul,
Thiago
Mosqueiro,
Richard J.
Abdill, Dat
Duong, Keith
Mitchell,
Varuni Sarwal,
Brian Hill,
Jaqueline Brito,
Russell
JaredLittman,
Benjamin Statz,
Angela Ka-Mei
Lam, Gargi
Dayama, Laura
Grieneisen,
Lana S. Martin,

Providing
solutions for
increasing the
stability and
installability of
software.

How to
improve quality
factors?

An empirical
study of 36702
software
resources
varying from
2005 to 2017.

49% of 98
software products
failed the easy
installation,
whereas 27.6% of
these software
failed to install due
to some technical
problems in their
implementation.

Standard
approaches
must be applied
to increase the
installability
and stability of
the software.

N/A Improving
quality
factors for
software
systems.

Journal of Applied Technology and Innovation (e -ISSN: 2600-7304) vol. 5, no. 2, (2021) 44

Jonathan Flint,
Eleazar Eskin,
Ran Blekhman
(2019)
Mohsen
Ahmadvand,
Alexander
Pretschner,
Florian Kelbert
(2019)

Defending and
protecting
systems from
integrity
attacks.

What are the
areas that must
be addressed to
protect
systems?

Applying a
taxonomy on
literature
papers, and
evaluating it
using 49
papers.

Coming up with
correlated
elements for
protecting the
integrity of the
software systems.

Many
techniques for
protecting or
mitigating
integrity
attacks like
MATE attacks
are available.
Each one can
have
advantages and
disadvantages.

Future research
can address the
resilience of
these
techniques.
Performance
can be
benchmarked
using more
datasets on
these various
techniques.

Building
more secure
systems.

Gozde Basak
Ozturk
(2020)

Summarizing
interoperability
attribute trends
and gaps.

N/A Selecting and
evaluating
2091 research
papers from the
Scopus
database.

The 2091 papers
were filtered by the
English language
to have 2052
article, then
filtered by type,
using only journal
articles which let
only 886 articles.
The remained
articles were
reduced to 447
articles by
including only
interoperability
related articles.

Problems
remain when
implementing
BIM such as
lack of
communication
and lack of
data.

Future work
can get more
papers from
other databases
with different
languages.

N/A

Milu Mary
Philip, Nishank
Singhal,
Raagashree
Ravi,
Vijayakumar B.
(2020)

Using
architectural
style in
software
development.

Will the
proposed
model improve
software
quality?

Using a
document
processing
software as a
case study.

Using the selected
design, with the
Java language and
Ubuntu system,
helped the selected
software in the
case study to have
more modifiability
with low coupling
while increasing
the number of
parallel
connections.

The used model
in this paper
will help in
building
flexible
software that
will easily meet
users’
requirements.

N/A Software
systems can
be built
more
efficiently.

Huong Ha,
Hongyu Zhang
(2019)

Using a
feedforward
neural network
in modeling
configurable
systems, with
their
performance
prediction.

Can this neural
model give
more
performance in
prediction?

Using datasets
to perform the
proposed
model
experiments.

Conducting the
experiment on
different systems
showed that the
approach gives
more accuracy in
prediction without
using a lot of input
data.

The proposed
deepperf
method has
outperformed
various
prediction
models, using
fewer data and
different types
of
configurations.

The provided
model design
can be more
improved by
conducting
researches on
neural network
universal
property.

Accuracy in
software
performance
prediction
can be more
accurate if
using the
deepperf
model.

Hamza
Ghandorh,
Abdulfattah
Noorwali, Ali
Bou Nassif,
Luiz Fernando
Capretz, Roy
Eagleson

Measuring
software
portability.

N/A Using the
systematic
literature
review using 49
research
papers. The
selected papers
were chosen
based on their
quality. All
data were
collected from
these 49 papers.

Most of the papers
focused on
measuring
software
portability in the
development
approach area.

Different
software
portability
metrics were
listed, using the
collected
papers that only
focus on
portability.

Future work
can be
conducted to
find if neural
networks can
be used in
software
portability
measurements.

N/A

Casidhe
Hutchison,
Milda Zizyte,
Patrick E.
Lanigan, David
Guttendorf,
Michael

Presenting
robustness
testing system
for autonomous
systems.

How to test
robustness?

Using real
systems and
applying the
selected testing
approach.

Performing tests
showed that the
number of bugs
increases when
injecting single
instances. Two of
the dangerous bugs

Robustness
tests can be
useful, but at
the same time
can activate
critical bugs
that can

N/A The given
scalable
approach
helps to find
serious bugs,

Journal of Applied Technology and Innovation (e -ISSN: 2600-7304) vol. 5, no. 2, (2021) 45

Wagner, Claire
Le Goues,
Philip
Koopman
(2018)

are floating point
and NaN bugs.

damage the
systems, like
robots that have
these types of
software.

errors, and
faults before
happening at
the runtime.

Jin Zhang,
Jingyue Li
(2020)

Performing
testing and
verification for
a neural
network in
safety-critical
cyber-physical
systems.

N/A Using six
research
libraries and
filtering 950
articles.

After analyzing the
selected papers,
test and validation
on neural network
systems is gaining
more focus by
researchers.

The usage of
neural
networks in
safety-critical
systems is
trending.
Hence, test and
validation for
these systems is
trending.

Future
researches can
be conducted to
assess the
neural network
model, and
compare it with
other models,
to get the best
robustness
model.

N/A

Nirali Honest
(2019)

Emphasizing
how testing can
improve
software
quality using
various types of
tests and
methods,
throughout the
software
development
lifecycle.

What are the
good testing
strategies for
quality
improvement?

Using existing
literature to
clarify levels of
tests.

Software testing
and its levels can
improve the
overall quality of
the produced
software.

To have good
software
quality among
other
competitors
and sustain in
the market,
testing must be
well performed.

N/A Using tests
to improve
software
quality.

Mohammad
Daud
Haiderzai,
Mohammad
Ismail Khattab
(2019)

The impact of
software testing
on quality.

What are the
quality factors
for a quality
software
system?
What are the
suitable
development
methodologies
in software
testing?

Using a
systematic
literature
review to find
related
literature to the
research
questions.

Different factors
such as security,
interoperability,
portability,
testability,
usability, and
correctness are
considered
important for
improving quality.
Additionally,
testing
methodologies
such as functional,
security testing,
performance
testing can also
improve the
quality of the
software.

Software
testing can
improve
software
quality if well
conducted,
without
deviating from
customer’s
requirements.

N/A Using
different
testing
strategies
can cover
the
functional
and non-
functional
sides of
software
systems.

VII. CONCLUSION

Software quality and reliability got more attention from
developers after the technological evolution. Customers'
requirements were more sophisticated and more complicated.
Therefore, many international organizations introduced
standards for quality management systems and quality
assurance, to maintain software quality and satisfy customers.

 Software testing plays an important role in managing the
quality and reliability and a software, as many testing
strategies are available to cover and assess all software
functionalities. Different development methodologies are
available for developing projects. Yet, managing the time and
cost of a project can still be challenging.

As a result, this affects testing strategies, because this
phase can be costly in terms of time and budget. Future work
can focus on how choosing methodologies can give more
efficiency when performing different tests, to add more
improvement upon software quality.

REFERENCES
[1] N. Pavlov, G. Spasov, A. Rahnev, and N. Kyurkchiev, “A new class of

Gompertz–type software reliability models,” Int. Electron. J. Pure
Appl. Math., vol. 12, no. 1, pp. 43–57, 2018, doi:
10.12732/iejpam.v12i1.4.

[2] Y. Tamura and S. Yamada, “Software Reliability Model Selection
Based on Deep Learning with Application to the Optimal Release
Problem,” J. Ind. Eng. Manag. Sci., vol. 2016, no. 1, pp. 43–58, 2016,
doi: 10.13052/jiems2446-1822.2016.003.

[3] K. Y. Song, I. H. Chang, and H. Pham, “NHPP software reliability
model with inflection factor of the fault detection rate considering the
uncertainty of software operating environments and predictive
analysis,” Symmetry (Basel)., vol. 11, no. 4, 2019, doi:
10.3390/sym11040521.

[4] R. Pietrantuono, A. Bertolino, G. De Angelis, B. Miranda, and S.
Russo, “Towards continuous software reliability testing in DevOPs,”
in Proceedings - 2019 IEEE/ACM 14th International Workshop on
Automation of Software Test, AST 2019, 2019, pp. 21–27, doi:
10.1109/AST.2019.00009.

[5] V. Garousi, M. Felderer, and F. N. Kılıçaslan, “A survey on software
testability,” Inf. Softw. Technol., vol. 108, pp. 35–64, 2019, doi:
10.1016/j.infsof.2018.12.003.

[6] O. A. Lazzarini Lemos, F. Fagundes Silveira, F. Cutigi Ferrari, and A.
Garcia, “The impact of Software Testing education on code reliability:
An empirical assessment,” J. Syst. Softw., vol. 137, no. Issre 2015, pp.

Journal of Applied Technology and Innovation (e -ISSN: 2600-7304) vol. 5, no. 2, (2021) 46

497–511, 2018, doi: 10.1016/j.jss.2017.02.042.

[7] F. Pinciroli, “Improving Software Applications Quality by Considering
the Contribution Relationship among Quality Attributes,” Procedia
Comput. Sci., vol. 83, no. Antifragile, pp. 970–975, 2016, doi:
10.1016/j.procs.2016.04.194.

[8] M. Nabi, M. Toeroe, and F. Khendek, “Availability in the cloud: State
of the art,” J. Netw. Comput. Appl., vol. 60, pp. 54–67, 2016, doi:
10.1016/j.jnca.2015.11.014.

[9] A. Al-Said Ahmad and P. Andras, “Scalability analysis comparisons of
cloud-based software services,” J. Cloud Comput., vol. 8, no. 1, 2019,
doi: 10.1186/s13677-019-0134-y.

[10] S. Mangul et al., “Challenges and recommendations to improve the
installability and archival stability of omics computational tools,” PLoS
Biol., vol. 17, no. 6, pp. 1–16, 2019, doi:
10.1371/journal.pbio.3000333.

[11] M. Ahmadvand, A. Pretschner, and F. Kelbert, “A Taxonomy of
Software Integrity Protection Techniques,” Adv. Comput., vol. 112, pp.
413–486, 2019, doi: 10.1016/bs.adcom.2017.12.007.

[12] G. B. Ozturk, “Interoperability in building information modeling for
AECO/FM industry,” Autom. Constr., vol. 113, no. January, p. 103122,
2020, doi: 10.1016/j.autcon.2020.103122.

[13] M. Philip, N. Singhal, R. Ravi, and V. B., “A Quantitative Approach to
Analyze Modifiability in Software Architectural Design of Agile
Application Systems,” Inf. Technol. Control, vol. 49, no. 2, pp. 249–
259, 2020, doi: 10.5755/j01.itc.49.2.22893.

[14] H. Ha and H. Zhang, “DeepPerf: Performance Prediction for
Configurable Software with Deep Sparse Neural Network,” Proc. - Int.
Conf. Softw. Eng., vol. 2019-May, pp. 1095–1106, 2019, doi:
10.1109/ICSE.2019.00113.

[15] H. Ghandorh, A. Noorwali, A. B. Nassif, L. F. Capretz, and R.
Eagleson, “A Systematic Literature Review for Software Portability
Measurement,” pp. 152–157, 2020, doi: 10.1145/3384544.3384569.

[16] C. Hutchison et al., “Robustness testing of autonomy software,” Proc.
- Int. Conf. Softw. Eng., pp. 276–285, 2018, doi:
10.1145/3183519.3183534.

[17] J. Zhang and J. Li, “Testing and verification of neural-network-based
safety-critical control software: A systematic literature review,” Inf.
Softw. Technol., vol. 123, no. April 2019, 2020, doi:
10.1016/j.infsof.2020.106296.

[18] D. Galin, Software Quality Assurance: Concepts and Practice. Wiley-
IEEE Press, 2018.

[19] N. Honest, “Role of Testing in Software Development Life Cycle,” Int.
J. Comput. Sci. Eng., vol. 7, no. 5, pp. 886–889, May 2019, doi:
10.26438/ijcse/v7i5.886889.

[20] M. D. Haiderzai and M. I. Khattab, “How software testing impact the
quality of software systems ?,” Int. J. Eng. Comput. Sci., vol. 1, no. 2,
pp. 5–9, 2019.

