®

J AT' Journal of Applied Technology and Innovation (e -ISSN: 2600-7304) vol. 5, no. 2, (2021) 73

Securing e-commerce against SQL injection,
cross site scripting and broken authentication

Ng Yi Xuan
School of Technology
Asia Pacific University of Technology
and Innovation (APU)
Kuala Lumpur, Malaysia
TP042037@mail.apu.edu.my

Abstract— World Wide Web (WWW) has been introduced
in 1980s and is widely been used until today. With WWW
service, publisher able to host a website in form of hypertext
using Hypertext Mark-up Language (HTML). In addition,
Cascading Stylesheet (CSS) is always used with HTML to
manage the layout of the webpage. Over the years, the capability
of HTML and CSS is getting enhanced to create a more
responsive webpage. However, all these webpages creation is
more towards information sharing and does not really handle
user inputs. Hence, in this project, the security measures are
proposed to counter these threats will be compiled as a library
to be usable in any PHP-based web application. A basic but fully
functional e-commerce application is developed for the testing
of the proposed security features to countermeasures the
mentioned vulnerabilities.

Keywords—SQLi, e-commerce, XSS, authentication, man-in-
the-middle attack

I. INTRODUCTION

As the capability of web application in boosting the
development of business, web application has become the
main trend of business to provide services to customers.
However, more and more sensitive data is involved during the
interaction of users and web application. Bank information
during payment process, living address and geographical
information are the examples of data involved in some web
applications. These data are transmitted between the users and
servers over internet. The most critical part is internet opens
for everyone. Hence, web application draws the attention of
attackers to steal the data from the web application.

A familiar example of web application in business is e-
commerce. E-commerce, a term to describe the business
process carried out via electronic medium. This business
mode has first emerged in 1960s, using network to transfer
business data. Nowadays, e-commerce becomes more
prevalent. As discussed, a business takes big advantages of
web application in selling the products and services in a
convenient way. The users and the business do not require to
have physical contact to buy or sell a product or service.
However, as e-commerce is using web application, it tends to
face the similar web application threats as discussed in last
paragraph. E-commerce needs a rapid way to build their web
applications to compete with others in current trend.
Templates become the solution for e-commerce to build their
web applications. However, these templates used may not
have enough security consideration. Therefore, the final
product build from the templates may easily become the
victim in a cyberattack.

Julia Juremi
School of Technology
Asia Pacific University of Technology
and Innovation (APU)
Kuala Lumpur, Malaysia
julia.juremi@staffemail.apu.edu.my

Nurul Husna Mohd Saad
School of Technology
Asia Pacific University of Technology
and Innovation (APU)
Kuala Lumpur, Malaysia
nurul.husna@apu.edu.my

A

Fig. 1. Vulnerabilities in WordPress. Source: WPScan

According to a recent report by Symantec, a rise of 56%
in web attacks has been observed in the year 2019. Among all
the web application threats, this project will focus on SQL
injection, Cross-site scripting and broken authentication. Fig.1
shows the latest detected vulnerabilities in WordPress.
WordPress is a famous system used by SMEs, including e-
commerce web application. It also provides template for
SMEs to ease the web applications development. However,
web application build with the templates is targeting by tons
of web vulnerabilities. SQLi and XSS are ranked top among
these vulnerabilities. This is because the template may not be
reconfigured to suit the structure of developed web
applications.

Hence, leading the structure of web application to
vulnerable to many types of web attacks. For example, if an e-
commerce web application is using template without
implementing the proper security features, the product may
easily suffer from the mentioned vulnerabilities. In short,
weak security implementation usually happens in any other
template generates web application.

II. DOMAIN RESEARCH

A. Injection

Injection is a type of attack that done by providing any
malicious statement in the input fields provided in a web
application. SQL (Structured Query Language) injection is
one example of the injection attack. This attack as illustrated
in Fig.2 is targeting the database to obtain the desire
information from the database or performs some harmful
actions to the database.

SQL injection was first promoted in an article titled “NT Web
Technology Vulnerabilities” written by [2]. In this articles,
Microsoft SQL and ASP injection are discussed as an
example. However, Microsoft claims that the finding of

®
J AQﬂ Journal of Applied Technology and Innovation (e -ISSN: 2600-7304) vol. 5, no. 2, (2021) 74

Rainforest Puppy is incorrect, as it is a feature of SQL. The
demonstration of the exploitation in the subsequence
publication of the author has verified the argument of
Microsoft is false. Hence, this is also the first successful SQL
injection known by public.

Webh Scrver
o
D¢ L S| |
- v TITIITITINT
.SQ]. oe,ﬂ\' ks for
. \ Correct
Injection pC Passwoed
_ N

Attacker gets

loggedin to the
SQIL Server using
the SQL

Injections

T
Fig. 2. SQL Injection flow

Normally, web application always provides input fields to
receive request from users. Hence, these input fields become
the “door” for attackers to gain access to the database. In its
tenure, these input fields are expecting the correct data from
users. However, attackers will input some malicious codes in
these fields and send to the server to retrieve some private data
in the database or perform some actions to the database. These
malicious codes aim to change the condition to always true
and allow the request to execute. At the end, database returns
what the attackers is desire. There are 3 common types of SQL
injection: tautologies, union query and blind injection [1].

B. Cross-Site Scripting (XSS)

Generally, XSS is also one type of injection attacks, but
works in a different way with SQL and PHP injection. XSS
occurs when a website is injected with malicious scripts to
pretend it is genuine and trusty. The process of XSS starts
when a web application is using by attackers to send harmful
scripts to its end users. In contrast to other injection attacks,
XSS is targeting the users of the web application while SQL
and PHP injection is targeting the web application itself [3].

At early stage, XSS is divided into 3 categories: Stored
XSS, Reflected XSS and DOM Based XSS [4].

* Stored XSS happens when the storing process occurs at
the server. During the process of storing data, the malicious
scripts may redirect the data to save on another location
defined by attacker. If the payload is eternally stored in user’s
browser, the user’s data can never reach the true server.

» Reflected XSS happens when the feedbacks from the
server is invoked. In this kind of XSS, user data is not stored
in the server, but server response to these data or requests.

* DOM Based XSS happens within the browser itself, does
not interact with server at all. The flow of data is absolutely
controlled by DOM (Document Object Model), from data
source to the data sink.

C. Broken Authentication

Broken authentication is a term that covers all improper
configurations for authentication process. In web application,
broken authentication more likely to indicates the improper

way in handling authentication data such as session, user
credentials and sensitive data in URL. Generally, a session is
created by server once the user logged in. The purpose of
creating session is to handle the communication between the
specific user and server. In simple word, the session holds the
user data for communication purpose such as user ID.

There are few vulnerabilities to exploits broken
authentication. One good example of it is the insecure way to
store the user credential. As per sign up, the user data should
be inserted into database. However, if the password is not
hashed and salted, it can be easily leaked once the password
improperly shown in any page of the web site. For instance,
the developer with less knowledge in security may pass the
user credential using “GET” method. “GET” method will
leave history in browser and whoever manage to access the
browser history may obtain this password. The worse is the
password are shown in clear text without any encryption.

In addition, the session is another way for attacker to
access the system without creating legit credential on his own.
Therefore, this creates a chance for attacker to steal the legit
user session if the session is not configured and managed in
well manner. For instance, if session timeout is not set, the
session of user left valid forever. Attacker may use this session
to access the system as the user because the session remains
valid and true for authentication purpose. Another possible
vulnerability to obtain the session from a user is via URL.
Some insecure websites may pass the session in the URL itself
when using the web application. For example, a user logged
in and sends URL contains session to his friend to share an
information from the website. This leak the user’s session to
his friend and the URL actually allows his friend to access the
web application with the user’s session. Attacker may user
phishing email or Man-In-The-Middle attack to obtain the
URL contains session. Hence, a secure way should be
practiced in creating and passing the session.

III. PROPOSED COUNTERMEASURES

A. Input Sanitization

To prevent SQL injection, [5] has proposed an algorithm
to check for SQL statement inputs from users. For the first
phase in the proposed algorithm, DROP keyword is detected
to prevent any table is deleted by the users. Next, structure of
the statement should be start with SELECT, INSERT etc. to
check for validity. In 3rd steps, common SQL injection, ‘1’ =
‘1> or similar syntax is scanned. On rest of the phase, any
query to detect the table structure or to know the tables in the
database is also the malicious target to avoid in this algorithm.
The results of implementing this algorithm is excellent and
able to prevent simple SQL injections.

Similar to previous SQL injection prevention method, [6].
First, all the SQL injection keywords are filtered from the
inputs. These keywords are SELECT, UPDATE, DELETE,
INSERT, TRUNCATE, DROP, logical operators and special
symbols. Next, the type or length of input data is determined
to match the data in database. Authors also implement the
methodology to avoid SQL command stitching and SQL
Injection with Apache Server’s Rewrite Module.

[7] has proposed the pattern filtering methods to detect a
cross-site attacks. All the possible malicious contents are
scanned using the XSS filters in this implementation. After
scanning, the malicious content is replaced with null

®
J AQﬂ Journal of Applied Technology and Innovation (e -ISSN: 2600-7304) vol. 5, no. 2, (2021) 75

characters to prevent the execution of the code. All the results
of filtration are stores in database to improve the accuracy of
the proposed application in future scanning. Any similar
pattern detected in next scanning will be blocked immediately.
All the tested XSS are blocked successful except for the new
pattern of XSS performed to the prototyped website.

B. Content Security Policy

According to [8], cross-site scripting (XSS) can be
avoided using content security policy (CSP) (2016). CSP
determines the interaction method between the content and
the website to tell the browser either it can be executed and
displayed. CSP prevents the XSS attacks by forcing the use
of CSP’s directives only. CSP’s directives is a set of rules to
tell compiler how the inputs should be processes. In CSP’s
directives, inline scripts such as JavaScripts are forbidden.
The authors able to achieve a good result by mitigating all
XSS attack types on a prototype website in 4 popular web
browsers.

C. Secure Authentication Configuration

In the journal written by [9], session hijacking can be
prevented by implementing a strong and complex session ID.
To generate a strong and complex session ID, it must be
always random, without any distinct logic. Despite of random
generation, the session ID should be long enough. Fulfilling
these two points help to increase the difficulty of brute forcing
the session ID by attackers. This is because brute force tries
every possibility to reach the correct answer, which may take
very long time to brute force a long and complex ID.

The prevention of session hijacking can be simple by
implementing logout functionality and timing out session.
Logout functionality is one of the fundamental procedures in
complete authentication process. Logout ends the session
between the user and server, thus prevent a valid session to be
stolen. Timing out session is also essential to ensure a session
will automatically expired if leaving for a period of time. This
is to evade reuse of session by attacker if users forget to logout
themselves.

IV. IMPLEMENTATION

A. Prepared Statement

Prepared statement as shown in Fig. 3 is implemented in
every part of code that required communication with database.
A class is designed to manage all these communications to
reduce redundancy of codes in the e-commerce web
applications. A function is created in the class to conduct the
full process of using prepared statements. Any other
functionalities that communicate with database will rely on
this function to use prepare statement.

A static function get() is created to retrieve the data from
the Global variable configuration in the e-commerce web
application. Below line shows example of using the function:

Config::get(‘myql/host’)

Above command will returns the host address of the
MySql database which is set in Global configuration. Once an
instance of DB is created, the PDO will be created by the
following command and put into private variable $ pdo:

new PDO(host; dbname, username, password)

Config {

Fig. 3. Config class and PDO initiation

The construction of DB coordinator can be done by the
static function getlnstance().A query is then created using the
PDO prepare function with the input of SQL statement and
stored in private variable $_query. If the preparing process
produces error, the rest of the code will not be executed. If it
is success, the number of parameters passed is counted.
Variable $X is auto incremented for each parameter. $X is
used to bind value for prepared statement. For instance, if

8sql = ‘SELECT * FROM user WHERE id = ?,
username =?’

Sparams = array (1, ‘admin’)

The below lines illustrate the output of the binding
process:

bindValue (83X, $param) => bindValue (1, 1) =>
bindValue (2, ‘admin’)

Notes that $param represents each value in the $params
array. $X variable will determine the position of “?” to bind
the value for. After binding value, the query is then executed.
If the execution success, the results retrieved from database
with the function fetchObject(). This function retrieves each
row of data as an object. The results are stored into private
variable $ results. Function rowCount() is used to count the
total number of row of data retrieved.

®
J AQﬂ Journal of Applied Technology and Innovation (e -ISSN: 2600-7304) vol. 5, no. 2, (2021) 76

There are specific functions created to retrieve private
variable from the DB class. The query function becomes the
fundamental to conduct communication to database. Any
other functions that require database communication will call
this function.

B. Entities Encoding

All the inputs from user that going be shown in the browser
is passed into a function to replace any HTML entities
equivalent characters. The malicious input passed can be
sanitized and input as HTML entities in source code. The
identical input will be shown in the browser with no action
trigger by the malicious input.

C. Hashing and Salting

The user password is added a random set of characters that
is 32-bit length. After the salting process completed, the
output is hashed with SHA256 algorithm. The hashed output
is then stored in the database with the correspond salt value
used. In other words, the proposed e-commerce web
application strengthens the authentication process with
enhanced hashing with salt and never store the plain text of
user password.

(Input
(Input
Input

Redirect: :t

(Exception

Fig. 4. Hash Usage

Fig.4 shows the usage of hashing and salting in the e-
commerce web application. The function is used when
registering a new user. A random salt is first generated, then
passed into make() function together with password input by
user. At the end, the password is hashed before passing into
database. The database will only store the hashed password
and correspond salt value used.

D. User Permission Checking

For restricted page, the e-commerce web application will
conduct a user permission checking to verify the user to have
permission accessing the particular page. If user is valid to
access the page, the user will be redirected to the home page
of the e-commerce web application. After checking the unit
test, the researcher noticed that any part of the secure online
attendance system functions without any problems. The
developer found that there were a few areas without operation,
so that a consistency so reliability check needed to allow
development. The developer has now implemented some
improvements to indicate signs of improvement and eliminate
deformities. The project has been collecting some consumer

feedback about what they would like to learn later by utilizing
product approval research. It will encourage the creator to
change the program to make the customer feel more
comfortable with the program and pleased.

IV. SECURITY TESTING

After conducting the basic functionalities testing and
security testing focuses on the three proposed security
features, the proposed e-commerce web application is
considered well-developed. The result in Fig.5 shown that
every test case is encouraging and very good. All the
components in the web application is functioning and
producing the expected output. The security features are also
functioning well in preventing the designed payloads for each
attack. In short, this chapter guarantees the functionality of
developed web application and the effectiveness of
implemented security features in tackling the SQLi, XSS and
broken authentication.

SQLi
Test ID Description Expected Actual Output | Result
Output
1 Insert “ or 1=1 - | System give System give Pass
-; at every mput | normal response | normal response
fields without without
unpredicted unpredicted
data showm data shown
2 Insert “ or 1=1 - | System give System give Pass
-;at URL normal response | normal response
passing data for | without without
communicating | unpredicted unpredicted
database data shown data shown
XSS
Test ID Description Expected Actual Output | Result
Output
1 Insert <body System give System give Pass|
onload=alert(test1’= | normal normal
at every input fields | response response
without without
unpredicted unpredicted
data shown data shown
Broken authentication
Test ID Deescription Expected Actual Output | Result
Qutput
1 Decrypt the hashed | No result No result Pass
password in obtained obtained
hashkiller.com
2 Access admin Redirect user to | Redirect user to | Pass
pages with normal | home page home page
USseT permission
Fig. 5. Unit testing on SQLi, XSS and broken authentication

V. CONCLUSION

The most critical issue in the proposed e-commerce web
application is it prioritizes SQLi, XSS and broken
authentication. The e-commerce web application developed
able to demonstrate the business flow of e-commerce in a
secure way. All the proposed countermeasures that tackle
SQLi, XSS and broken authentication is critically evaluated
from its effectiveness. Comparing to an e-commerce web
application without any security measures, the simple steps
taken to build the proposed e-commerce web application have
significantly increase the security level of it. The end result of
this project is securing e-commerce web application against
SQLi, XSS and broken authentication with simple steps taken.

®
J A'+| Journal of Applied Technology and Innovation (e -ISSN: 2600-7304) vol. 5, no. 2, (2021)

(1

(2]

(31

(4]

(5]

(6]

(7]

(8]

(9]

REFERENCES

Z. S. Alwan and M. F. Younis, ‘‘Detection and prevention of SQL
injection attack: A survey,’’ Int. J. Comput. Sci. Mobile Comput., vol.
6, no. 8, pp. 5-17, 2017. [Online]. Available: https:/www.ijcsmc.
com/docs/papers/August2017/V618201701.pdf

A. A. Sarhan, S. A. Farhan, and F. M. Al-Harby, ‘‘Understanding and
discovering SQL injection vulnerabilities,”” in Proc. Int. Conf. Appl.
Hum. Factors Ergonom., 2017, pp. 1063-1075.

OWASP, 2018. Cross-site Scripting (XSS). [Online] Available at:
https://www.owasp.org/index.php/Cross-site_Scripting (XSS)
[Accessed July 2019].

OWASP, 2017. Types of Cross-Site Scripting. [Online] Available at:
https://www.owasp.org/index.php/Types_of Cross-Site_Scripting
[Accessed July 2019].

A.Gupta. htmlentities() vs htmlspecialchars() Function in PHP.
[Online] Available at: https://www.geeksforgeeks.org/htmlentities-vs-
htmlspecialchars-function-in-php/ [Accessed December 2019].

H. Zhang and X. Zhang, “SQL Injection Attack Principles and
Preventive Techniques for PHP Site,” in Proceedings of the 2nd
International Conference on Computer Science and Application
Engineering, 2018.

S. Bongiri, M. A. Garcia, “Using Pattern Filtering to Detect Cross-Site
Attacks,” Las Vegas, International Conference on Security and
Management, 2017.

1. Yusofand A. K. Pathan, “Mitigating cross-site scripting attacks with
a content security policy,” IEEE Computer, vol. 49, no. 3, pp. 5663,
2016.

A. Gupta, Dr. S. K. Yadav, “An Approach for Preventing SQL
Injection Attack on Web Application”, International Journal of
Computer Science and Mobile Computing , vol.5, issue. 6, pp. 01-10,
June 2016.

