
Journal of Applied Technology and Innovation (e -ISSN: 2600-7304)   vol. 5, no. 2, (2021)                             73   

Securing e-commerce against SQL injection, 
cross site scripting and broken authentication  

 
Ng Yi Xuan 

School of Technology  
Asia Pacific University of Technology 

and Innovation (APU) 
Kuala Lumpur, Malaysia 

TP042037@mail.apu.edu.my 

 

Julia Juremi 
School of Technology 

Asia Pacific University of Technology 
 and Innovation (APU) 

Kuala Lumpur, Malaysia  
julia.juremi@staffemail.apu.edu.my 

 
 

Nurul Husna Mohd Saad 
School of Technology 

Asia Pacific University of Technology 
and Innovation (APU) 

Kuala Lumpur, Malaysia 
nurul.husna@apu.edu.my 

 

Abstract— World Wide Web (WWW) has been introduced 
in 1980s and is widely been used until today. With WWW 
service, publisher able to host a website in form of hypertext 
using Hypertext Mark-up Language (HTML). In addition, 
Cascading Stylesheet (CSS) is always used with HTML to 
manage the layout of the webpage. Over the years, the capability 
of HTML and CSS is getting enhanced to create a more 
responsive webpage. However, all these webpages creation is 
more towards information sharing and does not really handle 
user inputs. Hence, in this project, the security measures are 
proposed to counter these threats will be compiled as a library 
to be usable in any PHP-based web application. A basic but fully 
functional e-commerce application is developed for the testing 
of the proposed security features to countermeasures the 
mentioned vulnerabilities.  

Keywords—SQLi, e-commerce, XSS, authentication, man-in-
the-middle attack 

I. INTRODUCTION 

As the capability of web application in boosting the 
development of business, web application has become the 
main trend of business to provide services to customers. 
However, more and more sensitive data is involved during the 
interaction of users and web application. Bank information 
during payment process, living address and geographical 
information are the examples of data involved in some web 
applications. These data are transmitted between the users and 
servers over internet. The most critical part is internet opens 
for everyone. Hence, web application draws the attention of 
attackers to steal the data from the web application. 

A familiar example of web application in business is e-
commerce. E-commerce, a term to describe the business 
process carried out via electronic medium. This business 
mode has first emerged in 1960s, using network to transfer 
business data. Nowadays, e-commerce becomes more 
prevalent. As discussed, a business takes big advantages of 
web application in selling the products and services in a 
convenient way. The users and the business do not require to 
have physical contact to buy or sell a product or service. 
However, as e-commerce is using web application, it tends to 
face the similar web application threats as discussed in last 
paragraph. E-commerce needs a rapid way to build their web 
applications to compete with others in current trend. 
Templates become the solution for e-commerce to build their 
web applications. However, these templates used may not 
have enough security consideration. Therefore, the final 
product build from the templates may easily become the 
victim in a cyberattack. 

 
Fig. 1. Vulnerabilities in WordPress. Source: WPScan 

According to a recent report by Symantec, a rise of 56% 
in web attacks has been observed in the year 2019. Among all 
the web application threats, this project will focus on SQL 
injection, Cross-site scripting and broken authentication. Fig.1 
shows the latest detected vulnerabilities in WordPress. 
WordPress is a famous system used by SMEs, including e-
commerce web application. It also provides template for 
SMEs to ease the web applications development. However, 
web application build with the templates is targeting by tons 
of web vulnerabilities. SQLi and XSS are ranked top among 
these vulnerabilities. This is because the template may not be 
reconfigured to suit the structure of developed web 
applications.  

Hence, leading the structure of web application to 
vulnerable to many types of web attacks. For example, if an e-
commerce web application is using template without 
implementing the proper security features, the product may 
easily suffer from the mentioned vulnerabilities. In short, 
weak security implementation usually happens in any other 
template generates web application. 

II. DOMAIN RESEARCH 

A. Injection 

Injection is a type of attack that done by providing any 
malicious statement in the input fields provided in a web 
application. SQL (Structured Query Language) injection is 
one example of the injection attack. This attack as illustrated 
in Fig.2 is targeting the database to obtain the desire 
information from the database or performs some harmful 
actions to the database. 

SQL injection was first promoted in an article titled “NT Web 
Technology Vulnerabilities” written by [2]. In this articles, 
Microsoft SQL and ASP injection are discussed as an 
example. However, Microsoft claims that the finding of 



Journal of Applied Technology and Innovation (e -ISSN: 2600-7304)   vol. 5, no. 2, (2021)                                    74 

 
Rainforest Puppy is incorrect, as it is a feature of SQL. The 
demonstration of the exploitation in the subsequence 
publication of the author has verified the argument of 
Microsoft is false. Hence, this is also the first successful SQL 
injection known by public. 

 
Fig. 2. SQL Injection flow 

Normally, web application always provides input fields to 
receive request from users. Hence, these input fields become 
the “door” for attackers to gain access to the database. In its 
tenure, these input fields are expecting the correct data from 
users. However, attackers will input some malicious codes in 
these fields and send to the server to retrieve some private data 
in the database or perform some actions to the database. These 
malicious codes aim to change the condition to always true 
and allow the request to execute. At the end, database returns 
what the attackers is desire. There are 3 common types of SQL 
injection: tautologies, union query and blind injection [1]. 

B. Cross-Site Scripting (XSS) 

Generally, XSS is also one type of injection attacks, but 
works in a different way with SQL and PHP injection. XSS 
occurs when a website is injected with malicious scripts to 
pretend it is genuine and trusty. The process of XSS starts 
when a web application is using by attackers to send harmful 
scripts to its end users. In contrast to other injection attacks, 
XSS is targeting the users of the web application while SQL 
and PHP injection is targeting the web application itself [3].  

At early stage, XSS is divided into 3 categories: Stored 
XSS, Reflected XSS and DOM Based XSS [4]. 

• Stored XSS happens when the storing process occurs at 
the server. During the process of storing data, the malicious 
scripts may redirect the data to save on another location 
defined by attacker. If the payload is eternally stored in user’s 
browser, the user’s data can never reach the true server. 

• Reflected XSS happens when the feedbacks from the 
server is invoked. In this kind of XSS, user data is not stored 
in the server, but server response to these data or requests. 

• DOM Based XSS happens within the browser itself, does 
not interact with server at all. The flow of data is absolutely 
controlled by DOM (Document Object Model), from data 
source to the data sink. 

C. Broken Authentication 

Broken authentication is a term that covers all improper 
configurations for authentication process. In web application, 
broken authentication more likely to indicates the improper 

way in handling authentication data such as session, user 
credentials and sensitive data in URL. Generally, a session is 
created by server once the user logged in. The purpose of 
creating session is to handle the communication between the 
specific user and server. In simple word, the session holds the 
user data for communication purpose such as user ID. 

There are few vulnerabilities to exploits broken 
authentication. One good example of it is the insecure way to 
store the user credential. As per sign up, the user data should 
be inserted into database. However, if the password is not 
hashed and salted, it can be easily leaked once the password 
improperly shown in any page of the web site. For instance, 
the developer with less knowledge in security may pass the 
user credential using “GET” method. “GET” method will 
leave history in browser and whoever manage to access the 
browser history may obtain this password. The worse is the 
password are shown in clear text without any encryption. 

In addition, the session is another way for attacker to 
access the system without creating legit credential on his own. 
Therefore, this creates a chance for attacker to steal the legit 
user session if the session is not configured and managed in 
well manner. For instance, if session timeout is not set, the 
session of user left valid forever. Attacker may use this session 
to access the system as the user because the session remains 
valid and true for authentication purpose. Another possible 
vulnerability to obtain the session from a user is via URL. 
Some insecure websites may pass the session in the URL itself 
when using the web application. For example, a user logged 
in and sends URL contains session to his friend to share an 
information from the website. This leak the user’s session to 
his friend and the URL actually allows his friend to access the 
web application with the user’s session. Attacker may user 
phishing email or Man-In-The-Middle attack to obtain the 
URL contains session. Hence, a secure way should be 
practiced in creating and passing the session. 

III. PROPOSED COUNTERMEASURES 

A. Input Sanitization 

To prevent SQL injection, [5] has proposed an algorithm 
to check for SQL statement inputs from users. For the first 
phase in the proposed algorithm, DROP keyword is detected 
to prevent any table is deleted by the users. Next, structure of 
the statement should be start with SELECT, INSERT etc. to 
check for validity. In 3rd steps, common SQL injection, ‘1’ = 
‘1’ or similar syntax is scanned. On rest of the phase, any 
query to detect the table structure or to know the tables in the 
database is also the malicious target to avoid in this algorithm. 
The results of implementing this algorithm is excellent and 
able to prevent simple SQL injections. 

Similar to previous SQL injection prevention method, [6]. 
First, all the SQL injection keywords are filtered from the 
inputs. These keywords are SELECT, UPDATE, DELETE, 
INSERT, TRUNCATE, DROP, logical operators and special 
symbols. Next, the type or length of input data is determined 
to match the data in database. Authors also implement the 
methodology to avoid SQL command stitching and SQL 
Injection with Apache Server’s Rewrite Module. 

[7] has proposed the pattern filtering methods to detect a 
cross-site attacks. All the possible malicious contents are 
scanned using the XSS filters in this implementation. After 
scanning, the malicious content is replaced with null 



Journal of Applied Technology and Innovation (e -ISSN: 2600-7304)   vol. 5, no. 2, (2021)                                    75 

 
characters to prevent the execution of the code. All the results 
of filtration are stores in database to improve the accuracy of 
the proposed application in future scanning. Any similar 
pattern detected in next scanning will be blocked immediately. 
All the tested XSS are blocked successful except for the new 
pattern of XSS performed to the prototyped website. 

B. Content Security Policy 

According to [8], cross-site scripting (XSS) can be 
avoided using content security policy (CSP) (2016). CSP 
determines the interaction method between the content and 
the website to tell the browser either it can be executed and 
displayed. CSP prevents the XSS attacks by forcing the use 
of CSP’s directives only. CSP’s directives is a set of rules to 
tell compiler how the inputs should be processes. In CSP’s 
directives, inline scripts such as JavaScripts are forbidden. 
The authors able to achieve a good result by mitigating all 
XSS attack types on a prototype website in 4 popular web 
browsers. 

C. Secure Authentication Configuration 

In the journal written by [9], session hijacking can be 
prevented by implementing a strong and complex session ID. 
To generate a strong and complex session ID, it must be 
always random, without any distinct logic. Despite of random 
generation, the session ID should be long enough. Fulfilling 
these two points help to increase the difficulty of brute forcing 
the session ID by attackers. This is because brute force tries 
every possibility to reach the correct answer, which may take 
very long time to brute force a long and complex ID. 

 The prevention of session hijacking can be simple by 
implementing logout functionality and timing out session. 
Logout functionality is one of the fundamental procedures in 
complete authentication process. Logout ends the session 
between the user and server, thus prevent a valid session to be 
stolen. Timing out session is also essential to ensure a session 
will automatically expired if leaving for a period of time. This 
is to evade reuse of session by attacker if users forget to logout 
themselves. 

IV. IMPLEMENTATION 

A.  Prepared Statement 

Prepared statement as shown in Fig. 3 is implemented in 
every part of code that required communication with database. 
A class is designed to manage all these communications to 
reduce redundancy of codes in the e-commerce web 
applications. A function is created in the class to conduct the 
full process of using prepared statements. Any other 
functionalities that communicate with database will rely on 
this function to use prepare statement. 

A static function get() is created to retrieve the data from 
the Global variable configuration in the e-commerce web 
application. Below line shows example of using the function: 

Config::get(‘myql/host’) 

Above command will returns the host address of the 
MySql database which is set in Global configuration. Once an 
instance of DB is created, the PDO will be created by the 
following command and put into private variable $_pdo: 

new PDO(host; dbname, username, password) 

 

 
Fig. 3. Config class and PDO initiation 

The construction of DB coordinator can be done by the 
static function getInstance().A query is then created using the 
PDO prepare function with the input of SQL statement and 
stored in private variable $_query. If the preparing process 
produces error, the rest of the code will not be executed. If it 
is success, the number of parameters passed is counted. 
Variable $X is auto incremented for each parameter. $X is 
used to bind value for prepared statement. For instance, if 

$sql = ‘SELECT * FROM user WHERE id = ?, 
username =?’ 

$params = array (1, ‘admin’) 

The below lines illustrate the output of the binding 
process: 

bindValue ($X, $param) => bindValue (1, 1) => 
bindValue (2, ‘admin’) 

Notes that $param represents each value in the $params 
array. $X variable will determine the position of “?” to bind 
the value for. After binding value, the query is then executed. 
If the execution success, the results retrieved from database 
with the function fetchObject(). This function retrieves each 
row of data as an object. The results are stored into private 
variable $_results. Function rowCount() is used to count the 
total number of row of data retrieved. 



Journal of Applied Technology and Innovation (e -ISSN: 2600-7304)   vol. 5, no. 2, (2021)                                    76 

 
There are specific functions created to retrieve private 

variable from the DB class. The query function becomes the 
fundamental to conduct communication to database. Any 
other functions that require database communication will call 
this function. 

B. Entities Encoding 

All the inputs from user that going be shown in the browser 
is passed into a function to replace any HTML entities 
equivalent characters. The malicious input passed can be 
sanitized and input as HTML entities in source code. The 
identical input will be shown in the browser with no action 
trigger by the malicious input. 

C. Hashing and Salting 

The user password is added a random set of characters that 
is 32-bit length. After the salting process completed, the 
output is hashed with SHA256 algorithm. The hashed output 
is then stored in the database with the correspond salt value 
used. In other words, the proposed e-commerce web 
application strengthens the authentication process with 
enhanced hashing with salt and never store the plain text of 
user password. 

 
Fig. 4. Hash Usage  

Fig.4 shows the usage of hashing and salting in the e-
commerce web application. The function is used when 
registering a new user. A random salt is first generated, then 
passed into make() function together with password input by 
user. At the end, the password is hashed before passing into 
database. The database will only store the hashed password 
and correspond salt value used. 

D. User Permission Checking 

For restricted page, the e-commerce web application will 
conduct a user permission checking to verify the user to have 
permission accessing the particular page. If user is valid to 
access the page, the user will be redirected to the home page 
of the e-commerce web application. After checking the unit 
test, the researcher noticed that any part of the secure online 
attendance system functions without any problems. The 
developer found that there were a few areas without operation, 
so that a consistency so reliability check needed to allow 
development. The developer has now implemented some 
improvements to indicate signs of improvement and eliminate 
deformities. The project has been collecting some consumer 

feedback about what they would like to learn later by utilizing 
product approval research. It will encourage the creator to 
change the program to make the customer feel more 
comfortable with the program and pleased. 

IV. SECURITY TESTING 

After conducting the basic functionalities testing and 
security testing focuses on the three proposed security 
features, the proposed e-commerce web application is 
considered well-developed. The result in Fig.5 shown that 
every test case is encouraging and very good. All the 
components in the web application is functioning and 
producing the expected output. The security features are also 
functioning well in preventing the designed payloads for each 
attack. In short, this chapter guarantees the functionality of 
developed web application and the effectiveness of 
implemented security features in tackling the SQLi, XSS and 
broken authentication. 

 

 

 
Fig. 5. Unit testing on SQLi, XSS and broken authentication 

V. CONCLUSION 

 The most critical issue in the proposed e-commerce web 
application is it prioritizes SQLi, XSS and broken 
authentication. The e-commerce web application developed 
able to demonstrate the business flow of e-commerce in a 
secure way. All the proposed countermeasures that tackle 
SQLi, XSS and broken authentication is critically evaluated 
from its effectiveness. Comparing to an e-commerce web 
application without any security measures, the simple steps 
taken to build the proposed e-commerce web application have 
significantly increase the security level of it. The end result of 
this project is securing e-commerce web application against 
SQLi, XSS and broken authentication with simple steps taken. 



Journal of Applied Technology and Innovation (e -ISSN: 2600-7304)   vol. 5, no. 2, (2021)                                    77 

 
REFERENCES 

[1] Z. S. Alwan and M. F. Younis, ‘‘Detection and prevention of SQL 
injection attack: A survey,’’ Int. J. Comput. Sci. Mobile Comput., vol. 
6, no. 8, pp. 5–17, 2017. [Online]. Available: https://www.ijcsmc. 
com/docs/papers/August2017/V6I8201701.pdf 

[2] A. A. Sarhan, S. A. Farhan, and F. M. Al-Harby, ‘‘Understanding and 
discovering SQL injection vulnerabilities,’’ in Proc. Int. Conf. Appl. 
Hum. Factors Ergonom., 2017, pp. 1063–1075. 

[3] OWASP, 2018. Cross-site Scripting (XSS). [Online] Available at: 
https://www.owasp.org/index.php/Cross-site_Scripting_(XSS) 
[Accessed July 2019]. 

[4] OWASP, 2017. Types of Cross-Site Scripting. [Online] Available at: 
https://www.owasp.org/index.php/Types_of_Cross-Site_Scripting 
[Accessed July 2019]. 

[5] A.Gupta. htmlentities() vs htmlspecialchars() Function in PHP. 
[Online] Available at: https://www.geeksforgeeks.org/htmlentities-vs-
htmlspecialchars-function-in-php/ [Accessed December 2019]. 

[6] H. Zhang and X. Zhang, “SQL Injection Attack Principles and 
Preventive Techniques for PHP Site,” in Proceedings of the 2nd 
International Conference on Computer Science and Application 
Engineering, 2018.  

[7] S. Bongiri, M. A. Garcia, “Using Pattern Filtering to Detect Cross-Site 
Attacks,” Las Vegas, International Conference on Security and 
Management, 2017. 

[8] I. Yusof and A. K. Pathan, “Mitigating cross-site scripting attacks with 
a content security policy,” IEEE Computer, vol. 49, no. 3, pp. 56–63, 
2016.  

[9] A. Gupta, Dr. S. K. Yadav, “An Approach for Preventing SQL 
Injection Attack on Web Application”, International Journal of 
Computer Science and Mobile Computing , vol.5, issue. 6, pp. 01-10, 
June 2016. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


