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Abstract- A variety of localization protocols have been proposed in the literature which 

allow Wireless Sensor Network (WSN) nodes to interpolate their location from their 

neighbors as an alternative to deploying more expensive WSN nodes with GPS receivers 

or other dedicated localization hardware. This paper presents a set of efficient 

functions applied to three base cases where a WSN node calculates an initial estimate of 

its location and a finite set of alternate points that could be its actual location, given the 

GPS coordinates and nominal transmission radius of two or three neighbors. The 

process of narrowing the set of possible actual locations through iterative refinement as 

more nodes join the network is discussed, along with the limits on the accuracy of the 

overall network map.  

 

Index Terms- Wireless sensor network (WSN), global positioning system (GPS); 

localization protocols 

 

1. Introduction 
 

ireless Sensor Networks (WSNs) are a fundamental aspect of ubiquitous systems 

and the Internet of Things (IoT). WSNs are composed of tiny devices with 

constrained processing and memory resources that are typically battery powered. 

Networks of these devices are characterized by small packet payload size, minimum 

bandwidth, unreliable radio connectivity, ad hoc deployment, dynamic topology 

changes, and nodes running in a power conservation mode to prolong battery lifetime.  

Many industrial applications consist of a large number of randomly distributed 

nodes, so it is advantageous if the network is able to autonomously build the 

communication links and control the communication between nodes [1]. WSN 

deployments for environmental surveillance and disaster management in particular 

could benefit from constant reporting of the location where data was sensed. Nodes can 

be equipped with Global Positioning System (GPS), but this is a costly solution in terms 
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of both money and energy consumption [2] [3], and GPS typically fails inside buildings 

and under heavy vegetative cover [4].  

This paper describes the fundamental calculations necessary for a node to 

estimate its position given the GPS coordinates of some neighbors and an indication of 

their transmission radius. The most basic principle of triangulation is that given two 

points and the distance between them, a third point can be found.  Ancient texts record 

the use of triangulation to estimate distances. Two common examples: to measure the 

distance from shore to a remote ship, mark two points on the shore with a known 

distance between them and calculate the angles between this baseline and the location 

of the ship; to measure the height of a mountain or lighthouse, use the distance between 

two ground points and the angles to the top. 

In surveying trilateration is the process of determining absolute or relative 

locations of points purely by measurement of distances, while the term triangulation is 

reserved for the process that involves only angle measurements, The use of both angle 

and distance measurements is referred to as triangulateration by those who find these 

distinctions meaningful. Multilateration is a technique based on measuring power levels 

and antenna patterns, commonly used with radio navigation systems. Unlike 

measurements of absolute distance or angle, using a radio signal to measure the 

distance between two stations at known locations emitting broadcast signals at known 

times results in an infinite number of locations that satisfy the “time difference of 

arrival” metric. Multilateration requires at least three synchronized emitters for 

determining location in two dimensions, and at least four for three dimensions. 

Many WSN localization techniques reported in the literature use various 

combinations of metrics to develop measures of link quality, but inferring relative 

location from these measures is subject to assumptions about decrease in signal 

strength due to the distance between transmitter and receiver, type and height of 

antennas, and the presence of obstacles that disrupt the line-of-sight path [1] [5] [6]. 

The techniques presented here simply require each node to have the ability to transmit 

its actual or presumed location, and its nominal transmission radius. Exactly how this is 

achieved (through beaconing, addressing, or some type of protocol for example) is not 

important for the calculations. The calculations are done with locations expressed as 

decimal GPS coordinates and distances in kilometers; other coordinate systems and 

distance measurements could be used.  

The first section of this paper reviews the basic terms and concepts related to 

solving triangles and geolocation. The second section presents the essential formulae 

expressed as functions in the C programming language, which can be easily ported to 

another. The third section shows how the essential functions can be used by a WSN 

node to establish an initial estimate of its location given minimal information, along 

with a finite set of alternate points that could be its actual location. This is followed by 

an examination of the process for refining the initial estimate using several of the sets of 

alternate points, and consideration of the limits on overall accuracy.  
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2. Materials and Methods 
 

2.1  Basic Principles of Triangulation  
 

2.1.1  Characteristics of Triangles 
Triangles have several interesting properties:  

The shortest side is always opposite the smallest interior angle 

o The longest side is always opposite the largest interior angle 

o The interior angles of a triangle always add up to 180° 

o The exterior angles of a triangle always add up to 360° - thus given three 
points, it is possible to draw a circle that passes through all three (the 
circumcircle of the triangle) 

o Any side of a triangle is always shorter than the sum of the other two sides; in 
other words, a triangle cannot be constructed from three line segments if any 
of them is longer than the sum of the other two. This is known as the Triangle 
Inequality Theorem. 

Solving a triangle means finding the unknown lengths and/or angles. The classic 

problem is to specify three of the six characteristics (3 sides, 3 angles) and determine 

the other three. Any combination except 3 angles allows determination of the other side 

lengths and angles - three angles alone determines the shape of the triangle, but not the 

size. The actual solution depends on the specific problem, but the same tools are always 

used: 

o The knowledge that the sum of the angles of a triangle is 180º. 

o The Pythagorean theorem, the essence of which is that for any triangle a line 
can be drawn that divides it into two right triangles, and the relationship 
between the sides of a right triangle is such that the square of the length of the 
longest side equals the sum of the squares of the lengths of the other two sides 
(c2 = a2 + b2 in the notation explained below). 

o The trigonometric functions that relate a given angle measure to a given side 
length. 

Essential Terminology 
It is usual to name each vertex (angle) of a triangle with a single 

upper-case letter, and name the sides with the lower-case letter 

corresponding to the opposite angle, as illustrated in Fig. 1. 

Alternatively, the sides of a triangle can be labeled for the vertices they 

join, so side b would be called line segment AC.  

The height or altitude of a triangle depends upon which side is 

selected as the base. An altitude of a triangle is a line through a vertex 

of a triangle that meets the opposite side at right angles. This point will be inside the 

triangle when the longest side is the base; if one of the angles opposite the chosen 

 

Fig. 1 



   
 

13 
 

Journal of Applied Technology and Innovation 
vol. 1, no. 1, (2017), pp. 10-27 

vertex is obtuse (greater than 90°), then this point will lie outside the triangle. The area 

of a triangle is one-half the product of its base and its perpendicular height; in the case 

of a right triangle, this is the product of the sides that form the right angle.  

A special set of terms is used to describe right triangles: the hypotenuse is the 

longest side, an "opposite" side is the one across from a given angle, and an "adjacent" 

side is next to a given angle. There are six trigonometric functions that take an angle 

argument and return the ratio of two of the sides of a right triangle that contain that 

angle. For any given angle L 

1. Sine:   sin(L) = Opposite / Hypotenuse 

2. Cosine:  cos(L) = Adjacent / Hypotenuse 

3. Tangent: tan(L) = Opposite / Adjacent 

atan(), asin(), and acos() are the respective inverses of tan(), sin(), and cos(). 

In C, C++, Java, python, and other programming 

languages the trigonometric functions take a parameter and 

return a value expressed in radians. The radian is the standard 

unit of angular measure, used in many areas of mathematics. 

One radian is the angle at the center of a circle where the arc is 

equal in length to the radius, as illustrated in Fig. 2 (a). More 

generally, the magnitude in radians of an angle is the arc length 

divided by the radius of the circle. As the ratio of two lengths, 

the radian is a "pure number" that needs no unit symbol.  

The number pi is a mathematical constant, the 

circumference divided by the diameter of any circle. One radian 

is equivalent to 180 / pi (57.29578) degrees; Fig. 2 (b) 

illustrates this relationship. 

The trigonometric functions actually work with a “unit 

circle” centered at (0,0) with a radius of one unit, so it 

intersects the X and Y axes at (1,0), (0,1), (-1,0), and (0,-1). They 

return a value between 1 and -1, and multiplying this number 

by the length of the vector yields the exact Cartesian coordinates of the vector. 

Solving Triangles 
As noted above, solving a triangle means finding the unknown lengths and/or angles. 

Given any three of the six parameters (except 3 angles without a side length), any 

triangle can be solved using three equations:  

4. A + B + C = 180°    [Angles sum to 180] 

5. c2 = a2 + b2 - 2*a*b*cos(C)   [The Law of Cosines] 

6. a / sin(A)  =  b / sin(B)  = c / sin(C) [The Law of Sines] 

Points worthy of mention are (a) the Law of Cosines reduces to the Pythagorean 

Theorem in the case of right triangles, and (b) determination of an angle or side directly 

 

(a) 

 

(b) 

Fig. 2 [7] [8] 
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from its sine will lead to ambiguities since sin(x) = sin(pi - x), while determination from 

cosine or tangent will be unambiguous. Many formulae have been derived to avoid the 

sine ambiguity, but the simplest is to use the half angle formula which yields an 

unambiguous positive or negative result (by symmetry there are similar expressions for 

angles B and C). 

7.  sin(A / 2) = √(1 - cos(A) ) / 2)   

For geolocation, plane triangles are adequate under 

certain circumstances (explained below) but the general case 

involves solving “spherical triangles”.  A spherical triangle is 

fully determined by three of its six characteristics (3 sides and 3 

angles), and the basic relations used to solve a problem are 

similar to those above. However, the key differences are that the 

sides of a spherical triangle are measured in angular units 

(radians) rather than linear units, and the sum of the interior 

angles of a spherical triangle is greater than 180°.  

Fig. 3 (a) shows how the intersection of three planes 

through a sphere forms two spherical triangles, one from the 

solid lines (foreground) and one from the dotted lines 

(background). The triangle degenerates into three points with 

the sum of the angles equal to 3*pi and the sum of the sides 

equal to 2*pi on the unit sphere. Euclid (300BC) Book 11, 

Proposition 21 provides a rigorous proof, with a corollary that 

the sum of the angles of a spherical triangle is greater than pi [9, 

pp.184]. The amount by which the sum of the three angles exceeds pi is referred to as 

the “spherical excess”.  

Labeling points and angles on a spherical triangle follows the normal 

conventions, as shown in Fig. 3 (b). The basic relations used to solve a spherical triangle 

are similar to those for a planar triangle: modifications to account for the curvature of 

the sides and the spherical excess lead to analogous formulae for side lengths and area, 

a Spherical Law of Cosines, and a “Spherical Pythagorean Theorem” (amongst Napier’s 

Rules). Relevant examples are provided in section III. 

GPS and Geolocation 
The Earth is only approximately spherical, so no single value serves as its natural 

radius. However, the Earth deviates from a perfect sphere by only a third of a percent, 

making the sphere model adequate in many contexts.  Using the polar minimum of 

6,357.75 km and the equatorial maximum of 6,378.14 km, several different ways of 

modeling the Earth as a sphere yield a mean radius of 6,371 km [10]. 

GPS coordinates are based on dividing this perfect sphere of the world into 360 

degrees of horizontal longitude and 180 degrees of vertical latitude. Each degree of 

latitude and longitude is divided into sixty minutes, and each minute is divided into 

 

(a) 

 

(b) 

Fig. 3 

[9, pp.183,196] 
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sixty seconds, with fractions of a second offering finer-grained specification of a 

location. There are 3 common and equivalent formats for expressing location, 

ddd°mm'ss.ss", ddd°mm.mmm', and ddd.ddddd°, where d, m, and s stand for degrees, 

minutes, and seconds. 

Degrees are expressed as a number between -180 and +180 for longitude, and a 

number between -90 and +90 for latitude. Zero degrees longitude is an arbitrary line, 

locations to the west of which are negative, and locations to the east are positive. Zero 

degrees latitude is the equator, with locations to the north as a positive number, and to 

the south as a negative number. 

On the sphere of the world the longitude lines, also known as meridians, are the 

same distance apart at the equator and converge at the poles. The meter was originally 

defined such that ten million of them would span the distance from the equator to a 

pole, so at the equator each degree of both latitude and longitude represents 

approximately 111.32 km. Because the meridians get closer together moving from the 

equator toward either pole, one degree of longitude is multiplied by the cosine of the 

latitude, decreasing the indicative physical distance as illustrated in Table 1 for 

coordinates expressed as decimal degrees. 

 

Table 1: Precision of GPS decimal places and indicative locations at particular 

latitudes [11] 

Deci
mals 

0 1 2 3 4 5 6 7 

Equat
or 

111 
km 

11 km 1 km 111 m 11 m 1 m 11 cm 1 cm 

Quito, Ecuador; Maqcapa, Brazil; Kampala, Uganda; Thinadhoo, Maldives; 
Pontianak, Borneo  

23 N 
// S 

102. 5 
km 

10.25 
km 

1 km 102.5 
m 

10.25 
m 

1 m 10.25 
cm 

1 cm 

Havana, Cuba; Muscat, Oman;  Shantou, China // Sao Paulo, Brazil; Windhoek, 
Namibia; Alice Springs, Australia 

45 N 
// S 

78.7 
km 

7. 9 km 787 m 78.7 m 7. 9 m 78.7 
cm 

7. 9 cm 7. 9 
mm 

Portland OR USA; Limoges, France; Harbin, China // Rio Mayo, Argentina; 
Dunedin, New Zealand  

67 N 
// S 

43. 5 
km 

4.35 
km 

435 m 43.5 m 4.35 m 43.5 
cm 

4.35 
cm 

4.35 
mm 

Coldfoot, AK USA; Repulse Bay, Canada; Inari Finland; Tomtor, Siberia // 
Adelaide, Casey Station, Antarctica 

 

It is worth noting that the fourth decimal place is comparable to the typical 

accuracy of an uncorrected GPS unit with no interference, while accuracy to the fifth 



   
 

16 
 

Journal of Applied Technology and Innovation 
vol. 1, no. 1, (2017), pp. 10-27 

decimal place requires differential correction with commercial GPS units. The seventh 

decimal place is near the limit of what GPS-based techniques can achieve with 

painstaking measures [12]. 

 

2.2  Essential Functions  
 

To calculate the relative location of a point on the globe, we consider a spherical 

triangle given point A as longitude xA, latitude yA and point B as longitude xB, latitude 

yB, and derived point xC, yC. The distance between points A and B is easily calculated 

from their coordinates, so we need either the distance or the angles between point C 

and these points to determine its coordinates. Since we know the radius of the earth 

sphere, the characteristics of the triangle can be expressed as radians and the 

calculations done on the unit sphere.  

The essential formulae are below as functions in the C programming language, 

which can be easily ported to another. One “peculiarity” of C is its lack of a built-in 

operator for exponentiation, because exponentiation not a primitive operation for most 

CPUs. Thus a function or a preprocessor macro such as #define SQ(v) ((v)*(v)) 

is necessary to improve clarity. It is also convenient to have a static constant or 

preprocessor macro such as #define D2R 0.017453293 for converting decimal 

degrees to radians (this is a library function in Java and python). Similarly, useful 

constants are #define K2R 0.00015696 for converting kilometers to radians and 

#define R_KM 6371 for the earth radius. 

Indispensable references for the spherical earth formulae are Williams [13] 

where they are presented in a manner that facilitates practical calculation, and Osborn 

[9] which has the full proofs. For those who are interested, Veness [14] has 

implemented them in Javascript, along with additional calculations based on an 

elliptical earth model. 

 
2.2.1  Distance Between Points 
 
The planar linear distance between points A and B given their longitude (x) and latitude 

(y) is calculated as  

double lenplnr(double xA, double yA, double xB, double yB)  { 

   return sqrt( (SQ(xB - xA)) + (SQ(yB - yA)) );   } 

The Haversine formula returns the geodistance between the points in radians, accurate 

to around 0.3% because it is based on a spherical earth model. It is preferred to the 

spherical law of cosines because it maintains its accuracy at very small earth distances.  

double lenhsine(double xA, double yA, double xB, double yB)  { 

    double sinlon = sin( ( (xB - xA) * D2R )/2 ); 

    double sinlat = sin( ( (yB - yA) * D2R )/2 ); 

    return 2 * asin(sqrt( 
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         (SQ(sinlon)) + cos(xB*D2R) * cos(xA*D2R) * (SQ(sinlat))       ));  } 

 

2.2.2  Area of a Triangle Given Side Lengths 
 
Heron’s (aka Hero’s) formula is used for the planar triangle 

 double areapt(double lenA, double lenB, double lenC) { 

   double s = (a + b + c) /2; 

   return sqrt( s * (s-a) * (s-b) * (s-c) );   } 

l'Huiller's formula for a spherical triangle is analogous to Heron's for a plane triangle, 

and maintains its accuracy with small triangles. Argument and return values are in 

radians, multiply the returned value by SQ(R_KM) for the surface area enclosed by the 

triangle. 

double areast(double lenA, double lenB, double lenC) { 

   double s = (lenA + lenB + lenC) / 2; 

   return 4 * atan(sqrt( 

          tan(s/2) * tan((s-lenA)/2) * tan((s-lenB)/2) * tan((s-lenC)/2))   ));   } 

 

2.2.3  Side Length of a Right Triangle  
 
For the planar right triangle in Fig. 1 above, given the length of sides a and c the 

Pythagorean Theorem yields the length of the hypotenuse (side b) as 

 double lenrpthyp(double lenA, double lenC)  { 

   return sqrt( (SQ(lenA)) + (SQ(lenC)) );   } 

Alternatively, given the length of the hypotenuse and one other side, the length of the 

third side is 

double lenrptside(double lenB, double lenC) { 

   return sqrt( fabs( (SQ(lenB)) – (SQ(lenC)) ) );   } 

For a spherical triangle with one right angle, there are ten relations (Napier's rules) that 

allow computing any unknown side or angle in terms of any two of the others. One of 

these uses the lengths of the sides that form the right angle: a Spherical Pythagorean 

Theorem.  

 double lenrsthyp(double lenA, double lenC)  { 

   return cos(lenA) * cos(lenC);    } 

or given the length of the hypotenuse and one other side, the length of the third side is 

double lenrstside(double lenB, double lenC) { 

   return cos(lenB) / cos(lenC);    } 
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2.2.4  The Special Case of Small Spherical Triangles  
 
Spherical triangles with side lengths much less than the radius have a spherical excess 

so small they may be treated as planar. Legendre's theorem shows the angles of the 

spherical triangle exceed the corresponding angles of the planar triangle by 

approximately one third of the spherical excess when the side lengths of the spherical 

triangle are much less than 1 radian. For those who want to check, an intermediate 

point in the proof of Legendre's theorem presented in [9, equation D48, pp.201] is 

calculation of the area of the counterpart triangle using the side lengths. 

/* Legendre’s theorem - convert the area of a spherical triangle   

   to the area of a planar triangle with sides of the same length */ 

double areaptst(double starea, double lenA, double lenB, double lenC) {   

   return (starea / (1 + (( (SQ(lenA)) + (SQ(lenB)) + (SQ(lenC)) )/24)));    } 

 

/* Legendre’s theorem - planar to spherical */ 

double areastpt(double ptarea, double lenA, double lenB, double lenC) {   

   return (ptarea * (1 + (( (SQ(lenA)) + (SQ(lenB)) + (SQ(lenC)) )/24)));    } 

2.2.5  Additional Formulae: Intersection of Circles 
 
This calculation [15] saves a lot of work for these scenarios relative to using the triangle 

formulae above, which could be used to get the same result. Arguments are the radius 

of the two circles and the distance between their center points, the coordinates of the 

center points, and two-point (x,y) data structures passed by reference. The function 

effectively returns the two points where the circles intersect. It is presumed that the 

length of line PQ is less than the sum of the radius of the circles, so they actually do 

intersect (recall the Triangle Inequality Theorem).  

/* calculate intersection points of two circles with center points P Q */ 
void circpts(double trnP, double trnQ, double lenPQ, 
             double xP, double yP, double xQ, double yQ, 
             struct RETpoint* nxy, struct RETpoint* vxy)  { 
/* distance along line PQ equal to the radius of P */ 
   double lenPH = ((SQ(trnP)) - (SQ(trnQ)) + (SQ(lenPQ))) / (2*lenPQ); 
/* length of a line to an intersection point perpendicular to line PQ */ 
   double lenHN = sqrt((SQ(trnP)) - (SQ(lenPH))); 
/* vertical and horizontal distances between the circle center points */ 
   double difxPQ = xQ - xP; 
   double difyPQ = yQ - yP; 
/* point where the perpendicular line HN meets line PQ (xH,yH) */ 
   double xH = xP + (difxPQ * lenPH/lenPQ); 
   double yH = yP + (difyPQ * lenPH/lenPQ); 
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/* offsets of the intersection points from (xH,yH) */ 
   double xVN = -difyPQ * (lenHN/lenPQ); 
   double yVN =  difxPQ * (lenHN/lenPQ); 
/* the actual intersection points */ 
   nxy->xcoord = xH + xVN; 
   nxy->ycoord = yH + yVN; 
   vxy->xcoord = xH - xVN; 
   vxy->ycoord = yH - yVN;   } 
 
2.2.6  Additional Formulae: Points on a Line 
 
These useful functions take an argument of a point (x,y) data structure passed by 

reference; they could just as easily return this data structure.  

/* point J on line I--J--K using lenIJ */ 

void ptada(double xI, double yI, double xK, double yK, 

           double lenIJ, double lenIK, struct RETpoint* retxy)  { 

   retxy->xcoord = xI + ( (lenIJ / lenIK) * (xK - xI) ); 

   retxy->ycoord = yI + ( (lenIJ / lenIK) * (yK - yI) );   } 

/* point J on line I--J--K using lenKJ */ 

void ptaba(double xI, double yI, double xK, double yK, 

           double lenIJ, double lenIK, struct RETpoint* retxy)  { 

   retxy->xcoord = xI + ( (lenIJ / lenIK) * (xI - xK) ); 

   retxy->ycoord = yI + ( (lenIJ / lenIK) * (yI - yK) );   } 

/* point K on line I--J--K using lenIK */ 

void ptbdab(double xI, double yI, double xJ, double yJ, 

   double lenIK, struct RETpoint* retxy)  { 

   double ikx = xJ - xI; 

   double iky = yJ - yI; 

   double bb = sqrt( (SQ(lenIK)) / ( (SQ(ikx)) + (SQ(iky)) ) ); 

   retxy->xcoord = xI + (ikx * bb); 

   retxy->ycoord = yI + (iky * bb);    }  

  

3. WSN Node Geolocation 
 

On the Earth the excess of an equilateral spherical triangle with sides 21.3km (and area 

393km2) is approximately 1 arc second (1/3600th of a degree). Taking account of both 

the convergence of the meridians and the curvature of the parallels, if the distance 

between points is around 20 km the planar distance formula will result in a maximum 
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error of 30 meters (0.0015%) at 70 degrees latitude, 20 meters at 50 degrees latitude, 9 

meters at 30 degrees latitude, and be precise at the equator [16].  From another 

perspective, at a height of two meters the clear line of sight is around 5 km due to the 

curvature of the earth, so the planar and spherical calculations would return the same 

result at any latitude. These are microdistances relative to the earth radius, so the 

choice of using spherical or planar triangle calculations is open, as long as the absolute 

necessity of using radians for functions that require then is kept firmly in mind.  

Like the spherical earth model, an acceptable simplification for the initial 

calculations is to show the transmission radius of the wireless sensor network node as a 

circle. In actuality the transmission radius is irregular as it is subject to various types of 

interference and dependent on antenna characteristics, but these variables can be left 

for refinement suitable to specific deployments.  

The scenarios presented here are base cases, working with minimal information. The 
goal is for a node to establish an initial estimate of its location, with a finite set of 
alternate points that could be its actual location. As more nodes join the network and go 
through this process more information becomes available, and the nodes can narrow 
their set of possible actual locations through a process of iterative refinement 
(discussed below). Ultimately the nodes in the network will be able to converge on a 
stable network map within a quantifiable margin of error for each node.  

The base cases take advantage of the fact that wireless networks are inherently 
broadcast networks, so every node within range of a given node can hear all 
transmissions. This leads to the concept of “audible” and “inaudible” neighbors: nodes 
that can send to and receive from each other are audible neighbors, while a node that 
can hear its neighbor send to another node but cannot hear the response (i.e., eavesdrop 
on one side of the conversation) has an inaudible neighbor.   

The base cases are also predicated upon the ability of a node to transmit its 

actual or presumed location, and its nominal transmission radius. Optimally the method 

will provide a way for a node to communicate the location and transmission radius of 

its audible and inaudible neighbors as well. Exactly how this is achieved (through 

beaconing, addressing, or some type of protocol for example) is not important for the 

calculations. The calculations are done with locations expressed as decimal GPS 

coordinates and distances in kilometers; other coordinate systems and distance 

measurements could be used.  

All of the radios in the scenarios have an equal transmission radius, to avoid a 

situation where a radio has a transmission radius that can be completely contained 

within another – this situation has too high a degree of ambiguity to consider here. The 

diagrams are all drawn in a manner that would make it easy to superimpose a xy axis 

for easier comprehension; two-dimensional rotation would only affect the absolute 

values of the coordinates. 
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3.1  Base Case: Two Audible Neighbors 
 

In this scenario, radio “dot” can communicate with (send to and 

receive from) radios P and Q, but P and Q cannot communicate 

with each other. In other words, P and Q are audible neighbors of 

“dot” and “dot” is their audible neighbor, while P and Q are 

inaudible neighbors of each other. Figure 4 shows three 

variations. 

Radio “dot” can interpolate its location from the location 

coordinates of P and Q and their transmission radius. If “dot” 

positions itself at an intersection point of the two circles (N or 

M), it could not move farther away without losing contact but it 

could move closer, within the area of intersection of the two 

circles.  

Points N and M are returned by the circpts() function, 

which in fact calculates these points using the height of a triangle 

with a base side length equal to the distance between P and Q, 

and the other two sides equal to their transmission radius. The 

area defined by the spherical triangle NEF or MEF defines the set 

of possible alternative locations for radio “dot”. However, 

without more information, “dot” cannot know which of N or M it 

should choose as its location. Nonetheless, a finite set of 

possibilities has been defined and an arbitrary choice between N 

and M (Fig. 4 (a) or (b)) must be made until further information 

is available. 

The set of possible locations is inversely proportional to the distance between P 

and Q: the shorter the distance between them, the greater the area of the triangle 

becomes. As illustrated in Fig. 4 (c), the calculations are the same when P and Q are 

audible neighbors, the set of alternative locations just gets larger. 

 

3.2  Base Case: One Audible Neighbor with Two Neighbors 
 

This case is built on the previous one, after radio “dot” has arbitrarily chosen its 

position as N. In the first variant, Fig. 5 (a), 

radio N is the audible neighbor of the new 

radio “dot”, which positions itself at point 

R; in the other variant (Fig. 5 (b)) radio Q 

is the audible neighbor of the new radio 

“dot”, which positions itself at point S.  

The new radio “dot” uses the 

intersections of the inaudible neighbor 

 

(a) 

 

(b) 

 

(c) 

Fig.  4 

 

                 (a) 

 

                 (b) 

                 Fig.  5 
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circles (P and Q in the first case, P and N in the second) to obtain two points, and 

extends the line from one of these points through the coordinates to a point that is its 

transmission radius away from the audible neighbor.  

The variants are only distinguished by the location of the point returned by the 

circpts() function that is closest to the audible neighbor: as illustrated in Fig. 5 (a), 

in the NR variant this point is exactly N, in the QS variant (Fig. 5 (b)) it is not quite 

exactly Q. Thus it is important to recognize that for this scenario only one of the points 

returned is useful – the point farther away from the audible neighbor. 

In both variants the set of possible 

alternative points is calculated in the same 

manner: calculate the overlap of the circle of 

the audible neighbor with each inaudible 

neighbor (PN and QN in the first case, QP 

and QN in the second) and use the points 

that are farthest apart from each other. In 

the first case this yields a set of possible 

actual locations for R as the sum of the areas 

of triangles RNE and RNF as shown in Fig. 6 

(a), in the second it is the sum of the areas of SQE and SQF as shown in Fig. 6 (b). The 

area is relatively large, but finite for all practical purposes. 

 

3.3  Base Case: One Audible Neighbor with One Audible Neighbor 
 

This case, illustrated in Fig. 7, is likely to arise for edge 

nodes in particular. The new radio “dot” positions itself at 

point S by simply extending line PQ by its transmission 

radius. 

In this case triangle QEF defines the inverse of the 

set of points for the alternative locations: the actual 

location of S is any point at distance less than or equal to the transmission radius of S 

from Q, and outside triangle EFQ. 

 

4. Refining the Estimate 
 

Using the triangles that define the set of alternative locations to refine the initial 

location estimate is where this exercise gets interesting. In principle, the labeled points 

in Fig. 8 represent five iterations of the initial calculations using different pairs of 

audible neighbors, but the diagram is made to illustrate some key ideas rather than 

represent the outcome of a realistic application of the base case. 

 

(a) 

 

(b) 

Fig. 6 

 

Fig. 7 
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It is essential to keep in mind that the proximity of 

the calculated points offers no insight: any point inside 

the associated triangle is an equally valid (and equally 

probable) location for the node, since the calculated 

points simply represent limits on how far away the nodes 

can be from each other. Refining the estimate involves 

examining the overlapping areas of the triangles; ideally 

they would all overlap and yield a very small set of 

possible alternative locations, but an outcome like the 

one illustrated in Fig. 8 where no single point satisfies all of the constraints is 

theoretically possible. 

In any case, creating this mapping requires choosing a pair of triangles and 

either (a) checking to see if any of the points of one lie inside the area of the other, or 

(b) checking if the sides of one intersect sides of the other. The essential calculations 

are quite similar, and rely on checking the sign of the vector cross product. Put very 

simply, the cross product of two vectors is another vector that is at right angles to both. 

/* Vector Cross Product */ 

double vcp(double xP, double yP,  

           double xF, double yF, double xG, double yG) { 

   return ((xP - xG)*(yF - yG) - (xF - xG)*(yP - yG));   } 

/* point P is inside a triangle if it is on the same side of each line */ 

int ispint(double xP,double yP, double xA,double yA,  

           double xB,double yB, double xC,double yC) { 

   int vs = 0; 

   vs += ( vcp(xP,yP, xA,yA, xB,yB) < 0 ? 1:0 ); 

   vs += ( vcp(xP,yP, xB,yB, xC,yC) < 0 ? 1:0 ); 

   vs += ( vcp(xP,yP, xC,yC, xA,yA) < 0 ? 1:0 ); 

   return ( ((vs == 3) || (vs == 0)) ? 1:0 );    } 

/* segment PQ intersects AB when P and Q are on opposite sides of AB  

   bonus: if not, which side is PQ on, or is this effectively zero */ 

int segint(double xP,double yP, double xQ,double yQ,  

           double xA,double yA, double xB,double yB) { 

   double p = vcp(xP,yP, xA,yA, xB,yB); 

   double q = vcp(xQ,yQ, xA,yA, xB,yB); 

   if ( (p > 0) && (q > 0) ) {  

      if ( (EZERO(p)) && (EZERO(q)) )  return  2; 

 

Fig. 8 
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      else                             return  1; 

      } 

   if ( (p < 0) && (q < 0) ) {  

      if ((EZERO(-p)) && (EZERO(-q)))  return -2; 

      else                             return -1; 

      } 

   return 0;   } 

The segint() function uses what is commonly known as an “epsilon test” 

rather than testing if the value is zero because of the accuracy of the calculations. 

Calculations with a variable type of float give from 6 to 9 significant decimal digits while 

double gives 15–17 digit precision, because of the way binary translates to decimal. In 

this case seven decimal digit are adequate, so a function or a preprocessor macro such 

as #define EZERO(v) ((v)<(0.00000005)) is called for. 

Looking closely at Fig. 8 it is apparent that we may not necessarily need to check 

every point or line. Triangle D has two points inside triangle A, so the first one we find 

is sufficient to know they overlap. Similarly, all three sides of F intersect sides of A, so a 

single intersection test would be sufficient. B and E have no points inside A, so only the 

intersection test will offer insight, but C has no intersections with A so the point test 

would quickly confirm if it is completely inside or completely outside. There is no way 

to tell in advance if the point or intersection test will be more efficient, although with 

the intersection test it might be possible to increase the odds of not choosing the wrong 

line by checking closer line segments first. Depending on the power, processor and 

memory resources available, it could be possible to put the triangles or the line 

segments into a spatial tree structure of some type - a grid, quad-tree or kd-tree would 

allow testing multiple triangles or multiple line segments simultaneously. 

 

5. Results and Discussion 
 

As noted above, the goal is for a node to establish an initial estimate of its location and a 

finite set of alternate points that could be its actual location, given minimal information. 

Given the coordinates and transmission radius of two or three neighbors, this can be 

done by passively listening to transmissions and doing some efficient calculations to 

determine the farthest a node can be from its neighbors and still receive transmissions. 

As more nodes join the network and go through this process more information becomes 

available, and the nodes can narrow their set of possible actual locations through a 

process of iterative refinement. Ultimately the nodes in the network will be able to 

converge on a stable network map within a quantifiable margin of error for each node. 
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The overall accuracy of this network map will depend upon several factors. First, 

the mathematical process of iterative refinement will require decision rules for 

choosing amongst several possible locations, and each choice will have a “ripple effect” 

as the data is used by other nodes. For there to be any relationship to reality at all, some 

nodes must know their coordinates with complete confidence (ground-truth) to seed 

the network map, e.g., having a GPS receiver or preprogrammed with accurate GPS 

coordinates. A node with more than one ground-truth neighbor should be able to 

interpolate its location with a high degree of confidence (possibly even accuracy), while 

nodes with no ground-truth neighbors will necessarily have lower confidence in their 

position estimates. However, as Table 1 shows, there would be an upper limit on 

accuracy of 8-10 meters using a typical GPS unit with no interference. 

The additional information of whether an audible or inaudible neighbor is a 

ground-truth node or has a ground-truth node as a neighbor would be useful for 

decisions about where to move within the set of alternative locations. These nodes are 

the best starting point for the process of determining the overlap of the triangles that 

define sets of alternative locations. Staying within the union of these sets will yield an 

estimate that can be considered more accurate than any potential location calculated 

with data from neighbors that do not have direct or indirect knowledge of ground-truth. 

A simple move to the middle strategy might be enough to provide acceptable accuracy 

when these circumstances apply.  

The transmission radius of a node is essential information required for 

determining relative location, but this is also a source of uncertainty. This information 

can be configured, but will always be a best guess because of the numerous factors that 

affect path loss. The terrain over which signals travel, the level of moisture in the air, 

the shape of obstacles and their location relative to the two antennas can all affect 

signal reception, individually or in concert. In practice, models based on empirical 

measurements over a given distance in a given frequency range for a particular 

geographical area or building are used to describe  signal propagation, recognizing that 

these represent an average and are less accurate in a more general environment. 

Further, empirical measurements have shown that the difference between the average 

and the actual path loss is random and log-normal distributed, which means that any 

receiver in range of the transmitter has a nonzero probability of receiving a signal that 

is too weak to use, and some nodes beyond the average range will receive a usable 

signal [6]. 

The practical implication is that the value chosen for the transmission radius 

when configuring the network nodes must be considered nominal. If the case depicted 

in Fig. 8 arises, where no single point satisfies all of the constraints, the overall accuracy 

of the network map should be improved by selecting a point that takes “reasonable” 

variation into account. It might also be useful to extend the capabilities of the nodes to 

communicate an indicator of the average quality of the signal received from each 



   
 

26 
 

Journal of Applied Technology and Innovation 
vol. 1, no. 1, (2017), pp. 10-27 

audible neighbor, so the decision rules could be tuned to prefer to move closer to 

stronger signals and not move farther away from weaker sources.  

 

6. Conclusion 
 

It is possible to create a system where a WSN node  can calculate an initial estimate of 

its location and a finite set of alternate points that could be its actual location, given the 

coordinates and transmission radius of two or three neighbors. The necessary 

information can be acquired by passively listening to transmissions, assuming a nodes 

in the network can transmit their actual or presumed location and nominal 

transmission radius; optimally the nodes would also be able to communicate the 

location and transmission radius of its audible and inaudible neighbors, and the average 

quality of the signal received from each audible neighbor. Exactly how this is achieved 

(e.g., through beaconing, addressing, or some type of protocol) is not important for the 

calculations. 

As with all WSN localization techniques, a primary goal is to derive a satisfactory 

degree of accuracy from inconsistent radio communication while minimizing power 

consumption. The set of functions presented here provide efficient calculations to 

determine the farthest a node can be from its neighbors and still receive transmissions. 

Three base cases (two audible neighbors, one audible and two other neighbors, one 

audible neighbor that has only one audible neighbor) are sufficient for the initial 

calculations. The process of narrowing the set of possible actual locations through 

iterative refinement as more nodes join the network is where the decision rules will 

have to be tuned for specific characteristics of the deployment, in order to determine a 

quantifiable margin of error for each node. The result is a unique low-cost way to 

address limitations on determining directionality in broadcast networks. 
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