

10

Journal of Applied Technology and Innovation
vol. 1, no. 1, (2017), pp. 10-27

Essential Functions for Localization
in Wireless Sensor Networks Using

Geographic Coordinates

Thomas O’Daniel
Faculty of Computing, Engineering, & Technology

Asia Pacific University of Technology & Innovation
 57000 Kuala Lumpur, Malaysia
dr.thomas.odaniel@apu.edu.my

Abstract- A variety of localization protocols have been proposed in the literature which

allow Wireless Sensor Network (WSN) nodes to interpolate their location from their

neighbors as an alternative to deploying more expensive WSN nodes with GPS receivers

or other dedicated localization hardware. This paper presents a set of efficient

functions applied to three base cases where a WSN node calculates an initial estimate of

its location and a finite set of alternate points that could be its actual location, given the

GPS coordinates and nominal transmission radius of two or three neighbors. The

process of narrowing the set of possible actual locations through iterative refinement as

more nodes join the network is discussed, along with the limits on the accuracy of the

overall network map.

Index Terms- Wireless sensor network (WSN), global positioning system (GPS);

localization protocols

1. Introduction

ireless Sensor Networks (WSNs) are a fundamental aspect of ubiquitous systems

and the Internet of Things (IoT). WSNs are composed of tiny devices with

constrained processing and memory resources that are typically battery powered.

Networks of these devices are characterized by small packet payload size, minimum

bandwidth, unreliable radio connectivity, ad hoc deployment, dynamic topology

changes, and nodes running in a power conservation mode to prolong battery lifetime.

Many industrial applications consist of a large number of randomly distributed

nodes, so it is advantageous if the network is able to autonomously build the

communication links and control the communication between nodes [1]. WSN

deployments for environmental surveillance and disaster management in particular

could benefit from constant reporting of the location where data was sensed. Nodes can

be equipped with Global Positioning System (GPS), but this is a costly solution in terms

W

11

Journal of Applied Technology and Innovation
vol. 1, no. 1, (2017), pp. 10-27

of both money and energy consumption [2] [3], and GPS typically fails inside buildings

and under heavy vegetative cover [4].

This paper describes the fundamental calculations necessary for a node to

estimate its position given the GPS coordinates of some neighbors and an indication of

their transmission radius. The most basic principle of triangulation is that given two

points and the distance between them, a third point can be found. Ancient texts record

the use of triangulation to estimate distances. Two common examples: to measure the

distance from shore to a remote ship, mark two points on the shore with a known

distance between them and calculate the angles between this baseline and the location

of the ship; to measure the height of a mountain or lighthouse, use the distance between

two ground points and the angles to the top.

In surveying trilateration is the process of determining absolute or relative

locations of points purely by measurement of distances, while the term triangulation is

reserved for the process that involves only angle measurements, The use of both angle

and distance measurements is referred to as triangulateration by those who find these

distinctions meaningful. Multilateration is a technique based on measuring power levels

and antenna patterns, commonly used with radio navigation systems. Unlike

measurements of absolute distance or angle, using a radio signal to measure the

distance between two stations at known locations emitting broadcast signals at known

times results in an infinite number of locations that satisfy the “time difference of

arrival” metric. Multilateration requires at least three synchronized emitters for

determining location in two dimensions, and at least four for three dimensions.

Many WSN localization techniques reported in the literature use various

combinations of metrics to develop measures of link quality, but inferring relative

location from these measures is subject to assumptions about decrease in signal

strength due to the distance between transmitter and receiver, type and height of

antennas, and the presence of obstacles that disrupt the line-of-sight path [1] [5] [6].

The techniques presented here simply require each node to have the ability to transmit

its actual or presumed location, and its nominal transmission radius. Exactly how this is

achieved (through beaconing, addressing, or some type of protocol for example) is not

important for the calculations. The calculations are done with locations expressed as

decimal GPS coordinates and distances in kilometers; other coordinate systems and

distance measurements could be used.

The first section of this paper reviews the basic terms and concepts related to

solving triangles and geolocation. The second section presents the essential formulae

expressed as functions in the C programming language, which can be easily ported to

another. The third section shows how the essential functions can be used by a WSN

node to establish an initial estimate of its location given minimal information, along

with a finite set of alternate points that could be its actual location. This is followed by

an examination of the process for refining the initial estimate using several of the sets of

alternate points, and consideration of the limits on overall accuracy.

12

Journal of Applied Technology and Innovation
vol. 1, no. 1, (2017), pp. 10-27

2. Materials and Methods

2.1 Basic Principles of Triangulation

2.1.1 Characteristics of Triangles
Triangles have several interesting properties:

The shortest side is always opposite the smallest interior angle

o The longest side is always opposite the largest interior angle

o The interior angles of a triangle always add up to 180°

o The exterior angles of a triangle always add up to 360° - thus given three
points, it is possible to draw a circle that passes through all three (the
circumcircle of the triangle)

o Any side of a triangle is always shorter than the sum of the other two sides; in
other words, a triangle cannot be constructed from three line segments if any
of them is longer than the sum of the other two. This is known as the Triangle
Inequality Theorem.

Solving a triangle means finding the unknown lengths and/or angles. The classic

problem is to specify three of the six characteristics (3 sides, 3 angles) and determine

the other three. Any combination except 3 angles allows determination of the other side

lengths and angles - three angles alone determines the shape of the triangle, but not the

size. The actual solution depends on the specific problem, but the same tools are always

used:

o The knowledge that the sum of the angles of a triangle is 180º.

o The Pythagorean theorem, the essence of which is that for any triangle a line
can be drawn that divides it into two right triangles, and the relationship
between the sides of a right triangle is such that the square of the length of the
longest side equals the sum of the squares of the lengths of the other two sides
(c2 = a2 + b2 in the notation explained below).

o The trigonometric functions that relate a given angle measure to a given side
length.

Essential Terminology
It is usual to name each vertex (angle) of a triangle with a single

upper-case letter, and name the sides with the lower-case letter

corresponding to the opposite angle, as illustrated in Fig. 1.

Alternatively, the sides of a triangle can be labeled for the vertices they

join, so side b would be called line segment AC.

The height or altitude of a triangle depends upon which side is

selected as the base. An altitude of a triangle is a line through a vertex

of a triangle that meets the opposite side at right angles. This point will be inside the

triangle when the longest side is the base; if one of the angles opposite the chosen

Fig. 1

13

Journal of Applied Technology and Innovation
vol. 1, no. 1, (2017), pp. 10-27

vertex is obtuse (greater than 90°), then this point will lie outside the triangle. The area

of a triangle is one-half the product of its base and its perpendicular height; in the case

of a right triangle, this is the product of the sides that form the right angle.

A special set of terms is used to describe right triangles: the hypotenuse is the

longest side, an "opposite" side is the one across from a given angle, and an "adjacent"

side is next to a given angle. There are six trigonometric functions that take an angle

argument and return the ratio of two of the sides of a right triangle that contain that

angle. For any given angle L

1. Sine: sin(L) = Opposite / Hypotenuse

2. Cosine: cos(L) = Adjacent / Hypotenuse

3. Tangent: tan(L) = Opposite / Adjacent

atan(), asin(), and acos() are the respective inverses of tan(), sin(), and cos().

In C, C++, Java, python, and other programming

languages the trigonometric functions take a parameter and

return a value expressed in radians. The radian is the standard

unit of angular measure, used in many areas of mathematics.

One radian is the angle at the center of a circle where the arc is

equal in length to the radius, as illustrated in Fig. 2 (a). More

generally, the magnitude in radians of an angle is the arc length

divided by the radius of the circle. As the ratio of two lengths,

the radian is a "pure number" that needs no unit symbol.

The number pi is a mathematical constant, the

circumference divided by the diameter of any circle. One radian

is equivalent to 180 / pi (57.29578) degrees; Fig. 2 (b)

illustrates this relationship.

The trigonometric functions actually work with a “unit

circle” centered at (0,0) with a radius of one unit, so it

intersects the X and Y axes at (1,0), (0,1), (-1,0), and (0,-1). They

return a value between 1 and -1, and multiplying this number

by the length of the vector yields the exact Cartesian coordinates of the vector.

Solving Triangles
As noted above, solving a triangle means finding the unknown lengths and/or angles.

Given any three of the six parameters (except 3 angles without a side length), any

triangle can be solved using three equations:

4. A + B + C = 180° [Angles sum to 180]

5. c2 = a2 + b2 - 2*a*b*cos(C) [The Law of Cosines]

6. a / sin(A) = b / sin(B) = c / sin(C) [The Law of Sines]

Points worthy of mention are (a) the Law of Cosines reduces to the Pythagorean

Theorem in the case of right triangles, and (b) determination of an angle or side directly

(a)

(b)

Fig. 2 [7] [8]

14

Journal of Applied Technology and Innovation
vol. 1, no. 1, (2017), pp. 10-27

from its sine will lead to ambiguities since sin(x) = sin(pi - x), while determination from

cosine or tangent will be unambiguous. Many formulae have been derived to avoid the

sine ambiguity, but the simplest is to use the half angle formula which yields an

unambiguous positive or negative result (by symmetry there are similar expressions for

angles B and C).

7. sin(A / 2) = √(1 - cos(A)) / 2)

For geolocation, plane triangles are adequate under

certain circumstances (explained below) but the general case

involves solving “spherical triangles”. A spherical triangle is

fully determined by three of its six characteristics (3 sides and 3

angles), and the basic relations used to solve a problem are

similar to those above. However, the key differences are that the

sides of a spherical triangle are measured in angular units

(radians) rather than linear units, and the sum of the interior

angles of a spherical triangle is greater than 180°.

Fig. 3 (a) shows how the intersection of three planes

through a sphere forms two spherical triangles, one from the

solid lines (foreground) and one from the dotted lines

(background). The triangle degenerates into three points with

the sum of the angles equal to 3*pi and the sum of the sides

equal to 2*pi on the unit sphere. Euclid (300BC) Book 11,

Proposition 21 provides a rigorous proof, with a corollary that

the sum of the angles of a spherical triangle is greater than pi [9,

pp.184]. The amount by which the sum of the three angles exceeds pi is referred to as

the “spherical excess”.

Labeling points and angles on a spherical triangle follows the normal

conventions, as shown in Fig. 3 (b). The basic relations used to solve a spherical triangle

are similar to those for a planar triangle: modifications to account for the curvature of

the sides and the spherical excess lead to analogous formulae for side lengths and area,

a Spherical Law of Cosines, and a “Spherical Pythagorean Theorem” (amongst Napier’s

Rules). Relevant examples are provided in section III.

GPS and Geolocation
The Earth is only approximately spherical, so no single value serves as its natural

radius. However, the Earth deviates from a perfect sphere by only a third of a percent,

making the sphere model adequate in many contexts. Using the polar minimum of

6,357.75 km and the equatorial maximum of 6,378.14 km, several different ways of

modeling the Earth as a sphere yield a mean radius of 6,371 km [10].

GPS coordinates are based on dividing this perfect sphere of the world into 360

degrees of horizontal longitude and 180 degrees of vertical latitude. Each degree of

latitude and longitude is divided into sixty minutes, and each minute is divided into

(a)

(b)

Fig. 3

[9, pp.183,196]

15

Journal of Applied Technology and Innovation
vol. 1, no. 1, (2017), pp. 10-27

sixty seconds, with fractions of a second offering finer-grained specification of a

location. There are 3 common and equivalent formats for expressing location,

ddd°mm'ss.ss", ddd°mm.mmm', and ddd.ddddd°, where d, m, and s stand for degrees,

minutes, and seconds.

Degrees are expressed as a number between -180 and +180 for longitude, and a

number between -90 and +90 for latitude. Zero degrees longitude is an arbitrary line,

locations to the west of which are negative, and locations to the east are positive. Zero

degrees latitude is the equator, with locations to the north as a positive number, and to

the south as a negative number.

On the sphere of the world the longitude lines, also known as meridians, are the

same distance apart at the equator and converge at the poles. The meter was originally

defined such that ten million of them would span the distance from the equator to a

pole, so at the equator each degree of both latitude and longitude represents

approximately 111.32 km. Because the meridians get closer together moving from the

equator toward either pole, one degree of longitude is multiplied by the cosine of the

latitude, decreasing the indicative physical distance as illustrated in Table 1 for

coordinates expressed as decimal degrees.

Table 1: Precision of GPS decimal places and indicative locations at particular

latitudes [11]

Deci
mals

0 1 2 3 4 5 6 7

Equat
or

111
km

11 km 1 km 111 m 11 m 1 m 11 cm 1 cm

Quito, Ecuador; Maqcapa, Brazil; Kampala, Uganda; Thinadhoo, Maldives;
Pontianak, Borneo

23 N
// S

102. 5
km

10.25
km

1 km 102.5
m

10.25
m

1 m 10.25
cm

1 cm

Havana, Cuba; Muscat, Oman; Shantou, China // Sao Paulo, Brazil; Windhoek,
Namibia; Alice Springs, Australia

45 N
// S

78.7
km

7. 9 km 787 m 78.7 m 7. 9 m 78.7
cm

7. 9 cm 7. 9
mm

Portland OR USA; Limoges, France; Harbin, China // Rio Mayo, Argentina;
Dunedin, New Zealand

67 N
// S

43. 5
km

4.35
km

435 m 43.5 m 4.35 m 43.5
cm

4.35
cm

4.35
mm

Coldfoot, AK USA; Repulse Bay, Canada; Inari Finland; Tomtor, Siberia //
Adelaide, Casey Station, Antarctica

It is worth noting that the fourth decimal place is comparable to the typical

accuracy of an uncorrected GPS unit with no interference, while accuracy to the fifth

16

Journal of Applied Technology and Innovation
vol. 1, no. 1, (2017), pp. 10-27

decimal place requires differential correction with commercial GPS units. The seventh

decimal place is near the limit of what GPS-based techniques can achieve with

painstaking measures [12].

2.2 Essential Functions

To calculate the relative location of a point on the globe, we consider a spherical

triangle given point A as longitude xA, latitude yA and point B as longitude xB, latitude

yB, and derived point xC, yC. The distance between points A and B is easily calculated

from their coordinates, so we need either the distance or the angles between point C

and these points to determine its coordinates. Since we know the radius of the earth

sphere, the characteristics of the triangle can be expressed as radians and the

calculations done on the unit sphere.

The essential formulae are below as functions in the C programming language,

which can be easily ported to another. One “peculiarity” of C is its lack of a built-in

operator for exponentiation, because exponentiation not a primitive operation for most

CPUs. Thus a function or a preprocessor macro such as #define SQ(v) ((v)*(v))

is necessary to improve clarity. It is also convenient to have a static constant or

preprocessor macro such as #define D2R 0.017453293 for converting decimal

degrees to radians (this is a library function in Java and python). Similarly, useful

constants are #define K2R 0.00015696 for converting kilometers to radians and

#define R_KM 6371 for the earth radius.

Indispensable references for the spherical earth formulae are Williams [13]

where they are presented in a manner that facilitates practical calculation, and Osborn

[9] which has the full proofs. For those who are interested, Veness [14] has

implemented them in Javascript, along with additional calculations based on an

elliptical earth model.

2.2.1 Distance Between Points

The planar linear distance between points A and B given their longitude (x) and latitude

(y) is calculated as

double lenplnr(double xA, double yA, double xB, double yB) {

 return sqrt((SQ(xB - xA)) + (SQ(yB - yA))); }

The Haversine formula returns the geodistance between the points in radians, accurate

to around 0.3% because it is based on a spherical earth model. It is preferred to the

spherical law of cosines because it maintains its accuracy at very small earth distances.

double lenhsine(double xA, double yA, double xB, double yB) {

 double sinlon = sin(((xB - xA) * D2R)/2);

 double sinlat = sin(((yB - yA) * D2R)/2);

 return 2 * asin(sqrt(

17

Journal of Applied Technology and Innovation
vol. 1, no. 1, (2017), pp. 10-27

 (SQ(sinlon)) + cos(xB*D2R) * cos(xA*D2R) * (SQ(sinlat)))); }

2.2.2 Area of a Triangle Given Side Lengths

Heron’s (aka Hero’s) formula is used for the planar triangle

 double areapt(double lenA, double lenB, double lenC) {

 double s = (a + b + c) /2;

 return sqrt(s * (s-a) * (s-b) * (s-c)); }

l'Huiller's formula for a spherical triangle is analogous to Heron's for a plane triangle,

and maintains its accuracy with small triangles. Argument and return values are in

radians, multiply the returned value by SQ(R_KM) for the surface area enclosed by the

triangle.

double areast(double lenA, double lenB, double lenC) {

 double s = (lenA + lenB + lenC) / 2;

 return 4 * atan(sqrt(

 tan(s/2) * tan((s-lenA)/2) * tan((s-lenB)/2) * tan((s-lenC)/2)))); }

2.2.3 Side Length of a Right Triangle

For the planar right triangle in Fig. 1 above, given the length of sides a and c the

Pythagorean Theorem yields the length of the hypotenuse (side b) as

 double lenrpthyp(double lenA, double lenC) {

 return sqrt((SQ(lenA)) + (SQ(lenC))); }

Alternatively, given the length of the hypotenuse and one other side, the length of the

third side is

double lenrptside(double lenB, double lenC) {

 return sqrt(fabs((SQ(lenB)) – (SQ(lenC)))); }

For a spherical triangle with one right angle, there are ten relations (Napier's rules) that

allow computing any unknown side or angle in terms of any two of the others. One of

these uses the lengths of the sides that form the right angle: a Spherical Pythagorean

Theorem.

 double lenrsthyp(double lenA, double lenC) {

 return cos(lenA) * cos(lenC); }

or given the length of the hypotenuse and one other side, the length of the third side is

double lenrstside(double lenB, double lenC) {

 return cos(lenB) / cos(lenC); }

18

Journal of Applied Technology and Innovation
vol. 1, no. 1, (2017), pp. 10-27

2.2.4 The Special Case of Small Spherical Triangles

Spherical triangles with side lengths much less than the radius have a spherical excess

so small they may be treated as planar. Legendre's theorem shows the angles of the

spherical triangle exceed the corresponding angles of the planar triangle by

approximately one third of the spherical excess when the side lengths of the spherical

triangle are much less than 1 radian. For those who want to check, an intermediate

point in the proof of Legendre's theorem presented in [9, equation D48, pp.201] is

calculation of the area of the counterpart triangle using the side lengths.

/* Legendre’s theorem - convert the area of a spherical triangle

 to the area of a planar triangle with sides of the same length */

double areaptst(double starea, double lenA, double lenB, double lenC) {

 return (starea / (1 + (((SQ(lenA)) + (SQ(lenB)) + (SQ(lenC)))/24))); }

/* Legendre’s theorem - planar to spherical */

double areastpt(double ptarea, double lenA, double lenB, double lenC) {

 return (ptarea * (1 + (((SQ(lenA)) + (SQ(lenB)) + (SQ(lenC)))/24))); }

2.2.5 Additional Formulae: Intersection of Circles

This calculation [15] saves a lot of work for these scenarios relative to using the triangle

formulae above, which could be used to get the same result. Arguments are the radius

of the two circles and the distance between their center points, the coordinates of the

center points, and two-point (x,y) data structures passed by reference. The function

effectively returns the two points where the circles intersect. It is presumed that the

length of line PQ is less than the sum of the radius of the circles, so they actually do

intersect (recall the Triangle Inequality Theorem).

/* calculate intersection points of two circles with center points P Q */
void circpts(double trnP, double trnQ, double lenPQ,
 double xP, double yP, double xQ, double yQ,
 struct RETpoint* nxy, struct RETpoint* vxy) {
/* distance along line PQ equal to the radius of P */
 double lenPH = ((SQ(trnP)) - (SQ(trnQ)) + (SQ(lenPQ))) / (2*lenPQ);
/* length of a line to an intersection point perpendicular to line PQ */
 double lenHN = sqrt((SQ(trnP)) - (SQ(lenPH)));
/* vertical and horizontal distances between the circle center points */
 double difxPQ = xQ - xP;
 double difyPQ = yQ - yP;
/* point where the perpendicular line HN meets line PQ (xH,yH) */
 double xH = xP + (difxPQ * lenPH/lenPQ);
 double yH = yP + (difyPQ * lenPH/lenPQ);

19

Journal of Applied Technology and Innovation
vol. 1, no. 1, (2017), pp. 10-27

/* offsets of the intersection points from (xH,yH) */
 double xVN = -difyPQ * (lenHN/lenPQ);
 double yVN = difxPQ * (lenHN/lenPQ);
/* the actual intersection points */
 nxy->xcoord = xH + xVN;
 nxy->ycoord = yH + yVN;
 vxy->xcoord = xH - xVN;
 vxy->ycoord = yH - yVN; }

2.2.6 Additional Formulae: Points on a Line

These useful functions take an argument of a point (x,y) data structure passed by

reference; they could just as easily return this data structure.

/* point J on line I--J--K using lenIJ */

void ptada(double xI, double yI, double xK, double yK,

 double lenIJ, double lenIK, struct RETpoint* retxy) {

 retxy->xcoord = xI + ((lenIJ / lenIK) * (xK - xI));

 retxy->ycoord = yI + ((lenIJ / lenIK) * (yK - yI)); }

/* point J on line I--J--K using lenKJ */

void ptaba(double xI, double yI, double xK, double yK,

 double lenIJ, double lenIK, struct RETpoint* retxy) {

 retxy->xcoord = xI + ((lenIJ / lenIK) * (xI - xK));

 retxy->ycoord = yI + ((lenIJ / lenIK) * (yI - yK)); }

/* point K on line I--J--K using lenIK */

void ptbdab(double xI, double yI, double xJ, double yJ,

 double lenIK, struct RETpoint* retxy) {

 double ikx = xJ - xI;

 double iky = yJ - yI;

 double bb = sqrt((SQ(lenIK)) / ((SQ(ikx)) + (SQ(iky))));

 retxy->xcoord = xI + (ikx * bb);

 retxy->ycoord = yI + (iky * bb); }

3. WSN Node Geolocation

On the Earth the excess of an equilateral spherical triangle with sides 21.3km (and area

393km2) is approximately 1 arc second (1/3600th of a degree). Taking account of both

the convergence of the meridians and the curvature of the parallels, if the distance

between points is around 20 km the planar distance formula will result in a maximum

20

Journal of Applied Technology and Innovation
vol. 1, no. 1, (2017), pp. 10-27

error of 30 meters (0.0015%) at 70 degrees latitude, 20 meters at 50 degrees latitude, 9

meters at 30 degrees latitude, and be precise at the equator [16]. From another

perspective, at a height of two meters the clear line of sight is around 5 km due to the

curvature of the earth, so the planar and spherical calculations would return the same

result at any latitude. These are microdistances relative to the earth radius, so the

choice of using spherical or planar triangle calculations is open, as long as the absolute

necessity of using radians for functions that require then is kept firmly in mind.

Like the spherical earth model, an acceptable simplification for the initial

calculations is to show the transmission radius of the wireless sensor network node as a

circle. In actuality the transmission radius is irregular as it is subject to various types of

interference and dependent on antenna characteristics, but these variables can be left

for refinement suitable to specific deployments.

The scenarios presented here are base cases, working with minimal information. The
goal is for a node to establish an initial estimate of its location, with a finite set of
alternate points that could be its actual location. As more nodes join the network and go
through this process more information becomes available, and the nodes can narrow
their set of possible actual locations through a process of iterative refinement
(discussed below). Ultimately the nodes in the network will be able to converge on a
stable network map within a quantifiable margin of error for each node.

The base cases take advantage of the fact that wireless networks are inherently
broadcast networks, so every node within range of a given node can hear all
transmissions. This leads to the concept of “audible” and “inaudible” neighbors: nodes
that can send to and receive from each other are audible neighbors, while a node that
can hear its neighbor send to another node but cannot hear the response (i.e., eavesdrop
on one side of the conversation) has an inaudible neighbor.

The base cases are also predicated upon the ability of a node to transmit its

actual or presumed location, and its nominal transmission radius. Optimally the method

will provide a way for a node to communicate the location and transmission radius of

its audible and inaudible neighbors as well. Exactly how this is achieved (through

beaconing, addressing, or some type of protocol for example) is not important for the

calculations. The calculations are done with locations expressed as decimal GPS

coordinates and distances in kilometers; other coordinate systems and distance

measurements could be used.

All of the radios in the scenarios have an equal transmission radius, to avoid a

situation where a radio has a transmission radius that can be completely contained

within another – this situation has too high a degree of ambiguity to consider here. The

diagrams are all drawn in a manner that would make it easy to superimpose a xy axis

for easier comprehension; two-dimensional rotation would only affect the absolute

values of the coordinates.

21

Journal of Applied Technology and Innovation
vol. 1, no. 1, (2017), pp. 10-27

3.1 Base Case: Two Audible Neighbors

In this scenario, radio “dot” can communicate with (send to and

receive from) radios P and Q, but P and Q cannot communicate

with each other. In other words, P and Q are audible neighbors of

“dot” and “dot” is their audible neighbor, while P and Q are

inaudible neighbors of each other. Figure 4 shows three

variations.

Radio “dot” can interpolate its location from the location

coordinates of P and Q and their transmission radius. If “dot”

positions itself at an intersection point of the two circles (N or

M), it could not move farther away without losing contact but it

could move closer, within the area of intersection of the two

circles.

Points N and M are returned by the circpts() function,

which in fact calculates these points using the height of a triangle

with a base side length equal to the distance between P and Q,

and the other two sides equal to their transmission radius. The

area defined by the spherical triangle NEF or MEF defines the set

of possible alternative locations for radio “dot”. However,

without more information, “dot” cannot know which of N or M it

should choose as its location. Nonetheless, a finite set of

possibilities has been defined and an arbitrary choice between N

and M (Fig. 4 (a) or (b)) must be made until further information

is available.

The set of possible locations is inversely proportional to the distance between P

and Q: the shorter the distance between them, the greater the area of the triangle

becomes. As illustrated in Fig. 4 (c), the calculations are the same when P and Q are

audible neighbors, the set of alternative locations just gets larger.

3.2 Base Case: One Audible Neighbor with Two Neighbors

This case is built on the previous one, after radio “dot” has arbitrarily chosen its

position as N. In the first variant, Fig. 5 (a),

radio N is the audible neighbor of the new

radio “dot”, which positions itself at point

R; in the other variant (Fig. 5 (b)) radio Q

is the audible neighbor of the new radio

“dot”, which positions itself at point S.

The new radio “dot” uses the

intersections of the inaudible neighbor

(a)

(b)

(c)

Fig. 4

 (a)

 (b)

 Fig. 5

22

Journal of Applied Technology and Innovation
vol. 1, no. 1, (2017), pp. 10-27

circles (P and Q in the first case, P and N in the second) to obtain two points, and

extends the line from one of these points through the coordinates to a point that is its

transmission radius away from the audible neighbor.

The variants are only distinguished by the location of the point returned by the

circpts() function that is closest to the audible neighbor: as illustrated in Fig. 5 (a),

in the NR variant this point is exactly N, in the QS variant (Fig. 5 (b)) it is not quite

exactly Q. Thus it is important to recognize that for this scenario only one of the points

returned is useful – the point farther away from the audible neighbor.

In both variants the set of possible

alternative points is calculated in the same

manner: calculate the overlap of the circle of

the audible neighbor with each inaudible

neighbor (PN and QN in the first case, QP

and QN in the second) and use the points

that are farthest apart from each other. In

the first case this yields a set of possible

actual locations for R as the sum of the areas

of triangles RNE and RNF as shown in Fig. 6

(a), in the second it is the sum of the areas of SQE and SQF as shown in Fig. 6 (b). The

area is relatively large, but finite for all practical purposes.

3.3 Base Case: One Audible Neighbor with One Audible Neighbor

This case, illustrated in Fig. 7, is likely to arise for edge

nodes in particular. The new radio “dot” positions itself at

point S by simply extending line PQ by its transmission

radius.

In this case triangle QEF defines the inverse of the

set of points for the alternative locations: the actual

location of S is any point at distance less than or equal to the transmission radius of S

from Q, and outside triangle EFQ.

4. Refining the Estimate

Using the triangles that define the set of alternative locations to refine the initial

location estimate is where this exercise gets interesting. In principle, the labeled points

in Fig. 8 represent five iterations of the initial calculations using different pairs of

audible neighbors, but the diagram is made to illustrate some key ideas rather than

represent the outcome of a realistic application of the base case.

(a)

(b)

Fig. 6

Fig. 7

23

Journal of Applied Technology and Innovation
vol. 1, no. 1, (2017), pp. 10-27

It is essential to keep in mind that the proximity of

the calculated points offers no insight: any point inside

the associated triangle is an equally valid (and equally

probable) location for the node, since the calculated

points simply represent limits on how far away the nodes

can be from each other. Refining the estimate involves

examining the overlapping areas of the triangles; ideally

they would all overlap and yield a very small set of

possible alternative locations, but an outcome like the

one illustrated in Fig. 8 where no single point satisfies all of the constraints is

theoretically possible.

In any case, creating this mapping requires choosing a pair of triangles and

either (a) checking to see if any of the points of one lie inside the area of the other, or

(b) checking if the sides of one intersect sides of the other. The essential calculations

are quite similar, and rely on checking the sign of the vector cross product. Put very

simply, the cross product of two vectors is another vector that is at right angles to both.

/* Vector Cross Product */

double vcp(double xP, double yP,

 double xF, double yF, double xG, double yG) {

 return ((xP - xG)*(yF - yG) - (xF - xG)*(yP - yG)); }

/* point P is inside a triangle if it is on the same side of each line */

int ispint(double xP,double yP, double xA,double yA,

 double xB,double yB, double xC,double yC) {

 int vs = 0;

 vs += (vcp(xP,yP, xA,yA, xB,yB) < 0 ? 1:0);

 vs += (vcp(xP,yP, xB,yB, xC,yC) < 0 ? 1:0);

 vs += (vcp(xP,yP, xC,yC, xA,yA) < 0 ? 1:0);

 return (((vs == 3) || (vs == 0)) ? 1:0); }

/* segment PQ intersects AB when P and Q are on opposite sides of AB

 bonus: if not, which side is PQ on, or is this effectively zero */

int segint(double xP,double yP, double xQ,double yQ,

 double xA,double yA, double xB,double yB) {

 double p = vcp(xP,yP, xA,yA, xB,yB);

 double q = vcp(xQ,yQ, xA,yA, xB,yB);

 if ((p > 0) && (q > 0)) {

 if ((EZERO(p)) && (EZERO(q))) return 2;

Fig. 8

24

Journal of Applied Technology and Innovation
vol. 1, no. 1, (2017), pp. 10-27

 else return 1;

 }

 if ((p < 0) && (q < 0)) {

 if ((EZERO(-p)) && (EZERO(-q))) return -2;

 else return -1;

 }

 return 0; }

The segint() function uses what is commonly known as an “epsilon test”

rather than testing if the value is zero because of the accuracy of the calculations.

Calculations with a variable type of float give from 6 to 9 significant decimal digits while

double gives 15–17 digit precision, because of the way binary translates to decimal. In

this case seven decimal digit are adequate, so a function or a preprocessor macro such

as #define EZERO(v) ((v)<(0.00000005)) is called for.

Looking closely at Fig. 8 it is apparent that we may not necessarily need to check

every point or line. Triangle D has two points inside triangle A, so the first one we find

is sufficient to know they overlap. Similarly, all three sides of F intersect sides of A, so a

single intersection test would be sufficient. B and E have no points inside A, so only the

intersection test will offer insight, but C has no intersections with A so the point test

would quickly confirm if it is completely inside or completely outside. There is no way

to tell in advance if the point or intersection test will be more efficient, although with

the intersection test it might be possible to increase the odds of not choosing the wrong

line by checking closer line segments first. Depending on the power, processor and

memory resources available, it could be possible to put the triangles or the line

segments into a spatial tree structure of some type - a grid, quad-tree or kd-tree would

allow testing multiple triangles or multiple line segments simultaneously.

5. Results and Discussion

As noted above, the goal is for a node to establish an initial estimate of its location and a

finite set of alternate points that could be its actual location, given minimal information.

Given the coordinates and transmission radius of two or three neighbors, this can be

done by passively listening to transmissions and doing some efficient calculations to

determine the farthest a node can be from its neighbors and still receive transmissions.

As more nodes join the network and go through this process more information becomes

available, and the nodes can narrow their set of possible actual locations through a

process of iterative refinement. Ultimately the nodes in the network will be able to

converge on a stable network map within a quantifiable margin of error for each node.

25

Journal of Applied Technology and Innovation
vol. 1, no. 1, (2017), pp. 10-27

The overall accuracy of this network map will depend upon several factors. First,

the mathematical process of iterative refinement will require decision rules for

choosing amongst several possible locations, and each choice will have a “ripple effect”

as the data is used by other nodes. For there to be any relationship to reality at all, some

nodes must know their coordinates with complete confidence (ground-truth) to seed

the network map, e.g., having a GPS receiver or preprogrammed with accurate GPS

coordinates. A node with more than one ground-truth neighbor should be able to

interpolate its location with a high degree of confidence (possibly even accuracy), while

nodes with no ground-truth neighbors will necessarily have lower confidence in their

position estimates. However, as Table 1 shows, there would be an upper limit on

accuracy of 8-10 meters using a typical GPS unit with no interference.

The additional information of whether an audible or inaudible neighbor is a

ground-truth node or has a ground-truth node as a neighbor would be useful for

decisions about where to move within the set of alternative locations. These nodes are

the best starting point for the process of determining the overlap of the triangles that

define sets of alternative locations. Staying within the union of these sets will yield an

estimate that can be considered more accurate than any potential location calculated

with data from neighbors that do not have direct or indirect knowledge of ground-truth.

A simple move to the middle strategy might be enough to provide acceptable accuracy

when these circumstances apply.

The transmission radius of a node is essential information required for

determining relative location, but this is also a source of uncertainty. This information

can be configured, but will always be a best guess because of the numerous factors that

affect path loss. The terrain over which signals travel, the level of moisture in the air,

the shape of obstacles and their location relative to the two antennas can all affect

signal reception, individually or in concert. In practice, models based on empirical

measurements over a given distance in a given frequency range for a particular

geographical area or building are used to describe signal propagation, recognizing that

these represent an average and are less accurate in a more general environment.

Further, empirical measurements have shown that the difference between the average

and the actual path loss is random and log-normal distributed, which means that any

receiver in range of the transmitter has a nonzero probability of receiving a signal that

is too weak to use, and some nodes beyond the average range will receive a usable

signal [6].

The practical implication is that the value chosen for the transmission radius

when configuring the network nodes must be considered nominal. If the case depicted

in Fig. 8 arises, where no single point satisfies all of the constraints, the overall accuracy

of the network map should be improved by selecting a point that takes “reasonable”

variation into account. It might also be useful to extend the capabilities of the nodes to

communicate an indicator of the average quality of the signal received from each

26

Journal of Applied Technology and Innovation
vol. 1, no. 1, (2017), pp. 10-27

audible neighbor, so the decision rules could be tuned to prefer to move closer to

stronger signals and not move farther away from weaker sources.

6. Conclusion

It is possible to create a system where a WSN node can calculate an initial estimate of

its location and a finite set of alternate points that could be its actual location, given the

coordinates and transmission radius of two or three neighbors. The necessary

information can be acquired by passively listening to transmissions, assuming a nodes

in the network can transmit their actual or presumed location and nominal

transmission radius; optimally the nodes would also be able to communicate the

location and transmission radius of its audible and inaudible neighbors, and the average

quality of the signal received from each audible neighbor. Exactly how this is achieved

(e.g., through beaconing, addressing, or some type of protocol) is not important for the

calculations.

As with all WSN localization techniques, a primary goal is to derive a satisfactory

degree of accuracy from inconsistent radio communication while minimizing power

consumption. The set of functions presented here provide efficient calculations to

determine the farthest a node can be from its neighbors and still receive transmissions.

Three base cases (two audible neighbors, one audible and two other neighbors, one

audible neighbor that has only one audible neighbor) are sufficient for the initial

calculations. The process of narrowing the set of possible actual locations through

iterative refinement as more nodes join the network is where the decision rules will

have to be tuned for specific characteristics of the deployment, in order to determine a

quantifiable margin of error for each node. The result is a unique low-cost way to

address limitations on determining directionality in broadcast networks.

Acknowledgments

Development of the functions presented here has benefitted immensely from

innumerable discussions and suggestions posted in various StackExchange fora

(http://stackexchange.com/).

References

[1] V. Gungor, and G. Hancke, “Industrial Wireless Sensor Networks: Challenges,

Design Principles and Technical Approaches”, IEEE Trans. Ind. Electron., vol. 56,

no.10, 2009.

[2] L. Cheng et al., “A Survey of Localization in Wireless Sensor Networks”, Int. J.

Distributed Sensor Networks, vol. 2012, Article ID 962523, Dec. 2012.

http://stackexchange.com/

27

Journal of Applied Technology and Innovation
vol. 1, no. 1, (2017), pp. 10-27

[3] M. Srbinovska, et al, "Localization Techniques in Wireless Sensor Networks using

Measurement of Received Signal Strength Indicator". Electronics, vol. 15 no. 1, 2011.

[4] H. Maheshwari, “Optimizing Range Aware Localization in Wireless Sensor

Networks”, PhD Dissertation, Fac. Eng., Univ. of Leeds, UK, 2011.

[5] Sandor Szilvasi, et al, “Interferometry in Wireless Sensor Networks”, in

Interferometry - Research and Applications in Science and Technology, Rijeka,

Croatia: InTech, 2012, ch.21, pp. 437-62.

[6] M. Tsai, (2011, Oct.20) "Path-loss and Shadowing (Large-scale Fading)." National

Taiwan University [Online]. Available:

https://www.csie.ntu.edu.tw/~hsinmu/courses/_media/wn_11fall/path_loss_and_shad

owing.pdf.

[7] CK-12 Foundation, (2017), 2.1 Radian Measure [Online]. Available:

http://www.ck12.org/book/CK-12-Trigonometry-

Concepts/section/2.1/?noindex=None

[8] Florida Center for Instructional Technology, (2017), Radians in Complete Circle,

[Online]. Available: http://etc.usf.edu/clipart/36600/36685/radians_36685.htm

[9] P. Osborn, The Mercator Projections, Zenodo, 2013. doi:10.5281/zenodo.35392

[10] D. Williams, (2016, Dec. 23) Earth Fact Sheet [Online]. Available:

https://nssdc.gsfc.nasa.gov/planetary/factsheet/earthfact.html

[11] T. O’Daniel et al., "Localization using GPS Coordinates in IPv6 Addresses of

Wireless Sensor Network Nodes", Indian J. Sci. & Technology, vol. 10, no. 8, Feb.

2017.

[12] W. Huber, (2011, Apr. 18) “How to measure the accuracy of latitude and longitude?”

[Online]. Available: http://gis.stackexchange.com/questions/8650/how-to-measure-

the-accuracy-of-latitude-and-longitude/8674#8674

[13] E. Williams, (2011, Apr.24) Aviation Formulary v1.46 [Online]. Available:

http://edwilliams.org/avform.htm

[14] C. Veness, (2015) Latitude/longitude spherical geodesy formulae & scripts [Online].

Available: http://www.movable-type.co.uk/scripts/latlong.html

[15] P. Bourke, (1997, Apr) “Intersection of Two Circles”, Circles and Spheres [Online].

Available: http://paulbourke.net/geometry/circlesphere/

[16] R.Chamberlin, (1996, Oct.) “Q5.1: What is the best way to calculate the great circle

distance (which deliberately ignores elevation differences) between 2 points?”,

Geographic Information Systems FAQ [Online]. Available:

http://www.faqs.org/faqs/geography/infosystems-faq/

https://www.csie.ntu.edu.tw/~hsinmu/courses/_media/wn_11fall/path_loss_and_shadowing.pdf
https://www.csie.ntu.edu.tw/~hsinmu/courses/_media/wn_11fall/path_loss_and_shadowing.pdf
http://www.ck12.org/book/CK-12-Trigonometry-Concepts/section/2.1/?noindex=None
http://www.ck12.org/book/CK-12-Trigonometry-Concepts/section/2.1/?noindex=None
http://etc.usf.edu/clipart/36600/36685/radians_36685.htm
https://nssdc.gsfc.nasa.gov/planetary/factsheet/earthfact.html
http://gis.stackexchange.com/questions/8650/how-to-measure-the-accuracy-of-latitude-and-longitude/8674#8674
http://gis.stackexchange.com/questions/8650/how-to-measure-the-accuracy-of-latitude-and-longitude/8674#8674
http://edwilliams.org/avform.htm
http://www.movable-type.co.uk/scripts/latlong.html
http://paulbourke.net/geometry/circlesphere/
http://www.faqs.org/faqs/geography/infosystems-faq/

