I‘ Journal of Applied Technology and Innovation

|
JATI vol. 1, no. 1, (2017), pp. 37-57

An Insight into Programming Paradigms and
Their Programming Languages

M. Selvakumar Samuel
Faculty of Computing, Engineering & Technology
Asia Pacific University of Technology & Innovation
57000 Kuala Lumpur, Malaysia
dr.selvakumar@apu.edu.my

Abstract - A Programming Paradigm is the silent intelligence in any software design.
Although many Programming Paradigms have evolved, only a few programming
paradigms are actively used by the software industry. In addition, many hundreds of
programming languages have been developed, but only a few are established and
beneficial. The main aim of this paper is to provide an in-depth view into this area in order
to give an opportunity for the Academia, Researchers, and the Software Industry to
understand this domain in a different way. Basically, in this paper, a lot of relevant
literatures have been reviewed and some useful facts, such as mainstream programming
paradigms, suitable programming languages for the current software development
scenario, weaknesses in the current research works in this domain, etc., have been
derived as conclusions. The deduced facts would be beneficial for the education sector to
decide the programming paradigms and programming languages to teach at this juncture,
and as for the researchers, this paper would provide an alternative road map to conduct
further research in this domain. Eventually, this work would benefit the software
designers to choose appropriate programming paradigm concepts and their respective
programming languages based on the deduced facts as the result of this study.

Index Terms - Programming paradigm; programming language design; software
development

1. Introduction

A programming paradigm is the core and basis for any software and programming
language design. There are many accepted definitions for the term “Programming
Paradigm”. According to Daniel [1], a programming paradigm is “a style of programming
expressing the programmer’s intent”. Linda [2] said that, “it is an approach to solving
programming problems” and Pamela [3] said that, “it is a way of thinking about computer
systems”.

In software development, there are many paradigms [4] that have been suggested
and these paradigms keep evolving in order to suit the requirements of the software
development of the respective times. However, only a few programming paradigms, such

37

I‘ Journal of Applied Technology and Innovation

|
JATI vol. 1, no. 1, (2017), pp. 37-57

as Imperative, Object-Oriented, Functional, Event Driven with Graphical User Interface
(GUI), Logic, and Concurrent, are widely accepted or being used by the software industry.
Amongst these few programming paradigms, the Object-Oriented programming
paradigm can be considered as the dominant programming paradigm.

Each programming paradigm exclusively has its own approach, purpose, merits
and demerits. Similarly, each programming paradigm has its own set of programming
concepts. When designing software with the chosen programming paradigm
environment, the respective programming paradigm concepts will be used. For example,
when designing our solutions purely in the imperative way, Imperative programming
paradigm concepts, such as control structures, input/output statements, assighment

statements, etc., will be used.

A programming language is actually a collection of libraries or API’s, which are
based on a core programming paradigm and supports some other programming
paradigms as well. For example, C++ is basically an Imperative programming language,
but it supports Object-Oriented and others.

The main objective of this paper is to critically evaluate the programming
paradigms adopted in programming languages with respect to the current software
development context. The outcome of this paper is basically to provide an idea to the
academicians to decide on the appropriate programming paradigms and programming
languages to be covered based on the recent trends and current requirements. This work
also attempts to provide a roadmap to the researchers working in this area and also to
provide support for the software industry, especially in the stage of the software design
phase of the software development life cycle.

The following contents evaluate the Programming Paradigms in terms of various
works in literature whereby enabling the deduction of the relevant facts in order to
achieve the above said objectives.

2. Most Influenced (Mainstream) Programming Paradigms

Every single programming language is based on one or more programming paradigms.
Each programming paradigm consists of a set of programming concepts [5]. There are a
huge number of programming languages, but only 27 different programming paradigms
are being used [6]. Amongst these 27 programming paradigms, only a few are actively
being used by the software designers.

The IEEE Spectrum [7] has ranked the programming languages based on 12
metrics across 10 reliable sources. Over 48 programming languages were analysed with
a number of different dimensions. The results are summarised in Fig. 1 and Fig. 2.

Table 1 shows the list of the top programming languages and their respective
programming paradigms. In this list, most of the languages are mainly realised from the
programming paradigms, such as Object-Oriented, Imperative, Event-Driven with GUI,
and Functional.

38

JATI

Journal of Applied Technology and Innovation
vol. 1, no. 1, (2017), pp. 37-57

Language Rank

1.
2.
3.
4.

10.

Java

PHP
JavaScript

Ruby
Matlab

Types ‘ Spectrum Ranking (2015) Spectrum Ranking (2014)
&0 ~ 100.0
Do® 8B ses

0=

@® w0 [Eesl - e3s
&0 924

- 84.8
D 84.5
@0 78.9
(<53 74.3

) —— 728

Fig. 1: Top 10 Programming Languages in 2014 and 2015 [7]

Language Rank

1.

10.

C

Java

Python
C++
R

c#

PHP
JavaScript

Ruby
Go

Spectrum Ranking

Types
0=
&0
& =
mm=g
=
S0
2

@0
e
@

{] 4l

Fig. 2: Top 10 Programming Languages in 2016 [8]

Table 1: Top programming languages in 2016 and their respective programming

paradigms
Number | Programming Main Programming Paradigm(s)
Language

1 Java Object-Oriented, Imperative, Event-driven with GUI, Concurrent,
Functional, Generic, & Reflection

2 C Imperative (Procedural and Structural)

3 C++ Imperative, Object-Oriented

4 Python Imperative, Object-Oriented, Functional, Event-Driven with GUI,
Concurrent, Reflection, & Meta programming

5 C# Object-Oriented, Imperative, Event-Driven with GUI, Functional,
Concurrent, Generic, & Reflection

6 R Functional, Object-Oriented, Event-Driven with GUI, Imperative,
Reflective, & Array

7 PHP Imperative, Object-Oriented, Event-Driven with GUI, Functional, &
Reflection

8 Java Script Scripting

39

Journal of Applied Technology and Innovation

[]
JATI vol. 1, no. 1, (2017), pp. 37-57

9 Ruby Functional, Object-Oriented, Imperative, Event-Driven with GUI, &
Reflection
10 Go Concurrent, Logic, Functional, & Object-Oriented.

Zuhud et al. [9] state the main programming paradigms as Functional, Imperative,
Object-Oriented (00), and Logic. Souza et al. [10] assert that, in today’s current software
development, the most widely used programming paradigms are Object-Oriented and
Procedural. Similar to these researchers, many other researchers, academicians, books
[11,12,13,14,15,16,17,18,19,20,21, &22], & literature works mainly discuss Imperative,
Object-oriented, Functional, and Event-Driven with GUI programming. Event Driven with
GUI is common in every current software. Particularly, every current software’s
interactive input and output designs are based on Event Driven with GUI approaches.
Apart from this, many industrial, open source and academic software projects have been
investigated. It is found that, these four mainstream programming paradigms are
dominant in all software projects.

These findings fairly conclude that, these four programming paradigms are the
most popular or mainstream programming paradigms in the industry, as well as in the
academic domain. Amongst these, the Object-Oriented programming paradigm can be
considered as the dominating paradigm; whilst the Functional programming paradigm is
the emerging programming paradigm. Hence, in this research, Imperative, Object-
Oriented, Functional, and Event Driven with GUI have been considered, and the research
works which are related to these four programming paradigms and their concepts have
been examined in the following sections.

As these four programming styles mainly dominate the software industry and the
academic domain, the ideologies and the programming concepts behind these
programming paradigms are obvious and very familiar. Hence, only a brief introduction
of these four mainstream programming paradigms are stated as follows:

e Philip Roberts [23] states that in Imperative programming, the user instructs the
computer as to what the user wants, and also instructs the computer as to how to
get what the user wants. In other words, the user needs to define the details, step by
step, for the computer in order to reach the goal. This type of programming is also
known as algorithmic programming [24]. Procedural and Structural are the
common Imperative style programming paradigms [25]. The Procedural
programming paradigm is a traditional programming approach and it is the basis
for the CPU’s fetch-decode-execute cycle, as well. To produce the desired results,
this programming paradigm has programs defined as a sequence of instructions
which manipulates data to output the desired results [26].

e Object-Oriented programming is an engineering approach for building software
systems which are based on concepts of classes and objects that are used for
modelling the real-world entities, which changes the focus of attention from code to
data. The general idea of object technology must be represented in the Object-
Oriented programming languages so that complex problems can be solved in the
same way as real-world situations.

40

k- o

Journal of Applied Technology and Innovation

|
JATI vol. 1, no. 1, (2017), pp. 37-57

The idea of Functional programming was initially influenced by Alonzo Church'’s
lambda calculus, which uses mathematical functions as the basic building blocks of
the system [27]. Just as the name implies, a functional program is made up of
functions which comprise the definition of the expressions and these expressions
will be evaluated during program execution to yield the final results [28]. Hence, the
main program itself is just like a single function which contains several operational
computations. Programmers do not need to worry about its computational
complexity as all of the complex operations will be laid in the back-end of the
machine [29]. This makes functional languages more expressive.

Event-Driven programming and graphical user interfaces (GUIs) are all interrelated
[30]. The graphical interface objects or components on the forms, windows, or
containers make up the view and control of an application, according to the Model-
view-controller (MVC) framework [31]. Unarguably, GUI systems are Event-Driven
oriented and connote that the system program does not flow sequentially from the
start to the finish. “Event-Driven” literally means to be interrupted by an event or
driven by an event; hence, waiting for something or an event to happen before the
appointed response to that event occurs. GUI programming is among the trickiest
programming paradigm shift [30].

Some other programming paradigms, such as Reflection, Concurrent, Generic,

Array, Data Flow, Meta, and Constraint are also supported by these programming
languages, but they do not have as rich a set as the programming concepts as the
mainstream programming paradigms. Generally, these non-mainstream programming

paradigms are either a technique to improve the program behaviour or a programming
ability or a method to solve a specific problem, and they are always working very
compatible with the mainstream programming paradigms.

In order to understand the nature of these non-mainstream programming

paradigms, a brief introduction is stated as follows:

DataFlow programming (DFP) internally represents applications as a directed
graph, similar to a Dataflow diagram [32].

Array programming mainly helps programmers in designing complex data analysis
procedures [33].

Reflection is the ability of a program to manipulate data as something representing
the state of the program during its own execution.

The kind of change that can be performed in the meta-programming approach is to
modify the meta-interpreter prior to the execution of the program. Reflection, on
the other hand, allows the program to change its behaviour whilst running,
depending upon its current execution (such as the inputs and intermediate results)
[34].

Generic Programming is based on the principle that software can be decomposed
into components which make only minimal assumptions about other components,
allowing the maximum flexibility in the composition [35].

41

I‘ Journal of Applied Technology and Innovation

|
JATI vol. 1, no. 1, (2017), pp. 37-57

e The basic idea in constraint programming is that the user states the constraints,
and a general-purpose constraint solver is used to solve them [36].

e A Concurrent program is the one defining actions that may be performed,
simultaneously [37].
Amongst these non-mainstream programming paradigms, concurrent
programming has relatively vast application areas.

3. Programming Paradigm Notions / Concepts

A programming paradigm is a generic way to design a program. Each programming
paradigm has its own set of programming concepts. Class, Object, Inheritance, Data
Hiding, etc. are called the programming notions or concepts of the Object-Oriented
Programming Paradigm. In order to design a programming solution in the Object-
Oriented way, the object-oriented programming concepts will be used.

Most of the concepts have their equivalents, and they produce the same results.
For instance, Imperative programming iterative control structures are: for...loop,
while...loop, and do...while...loop. These three control structures are alternatives to each
other and they produce, generally, the same results.

Event-Driven with GUI programming is different from other programming
paradigm concepts. As for the Event-Driven with GUI programming, GUI
controls/elements are the key notions of event handling mechanisms in each
development platform. Different elements of a graphical user interface exist on different
platforms, including on modern day smartphone platforms, such as Android, 10S, and
Windows. However, there is also a large overlap amongst the GUI elements that are
common to all mobile operating systems (and even desktop operating systems) [38]. On
a given User Interface (UI), some of these elements, generally or under certain
circumstances, can be replaced with other similar elements. For example, the day of the
week can be selected using a dropdown menu or radio buttons.

Application developers often apply these concepts without paying much attention
to the impact they might have on the output of an application [39]. The concepts are the
basic primitive elements used to construct the paradigms [40] and programming
languages. In this section, some of the studies which predominantly evaluated the
efficiency of the Programming Paradigms and their concepts are explored. Other related
studies are discussed in the later sections.

3.1 Imperative Programming and its Concepts

The core concepts of the Imperative programming paradigm are Control Structures
(looping constructs and iterations), Input /Output concepts, Error and exception
handling, Procedural Abstraction, Expressions and assignment statements, and Library
support for data structures [41]. Some relevant works have been identified in this area.

Oracle has studied String Builder with String Buffer as both are performing the

same operations, but utilizing different volumes of resources. The result of this study
42

Journal of Applied Technology and Innovation

[]
JATI vol. 1, no. 1, (2017), pp. 37-57

proved that String Builder consumed less resources than String Buffer [42, 43]. Likewise,
they have studied ArrayList with VectorArray. They have found that the ArrayList
performed better than VectorArray [44,45].

Most Imperative Programming languages support both recursion and iterations.
Rubio-Sanchez [46] has said that, recursion is a key concept in computer science and
mathematics, and it is a powerful problem-solving tool, which constitutes an attractive
alternative to iteration, especially when problems can be solved using a divide and
conquer approach. Imperative programming uses Ad-hoc recursion whilst functional
programming has introduced the tail recursive approach. In languages that favour
iterative looping constructs, there is usually significant time and space cost associated
with the recursive programs due to the overhead required to manage the stack and the
relative slowness of the function calls. Recursion and iteration are used to solve a task
one at a time and finally, combine the results. Iteration emphasises repeating a task until
itreaches its counter limit. Recursion emphasises breaking a larger problem into smaller
pieces until the problem is solved. Looking at the efficiency point of view, recursion calls
the same function over and over; whereas, iteration jumps to the beginning of the loop.
The function call is normally more expensive than the jump.

Er [47] has evaluated the performance of recursive and iterative algorithms in
terms of their time and space requirements. The evaluation was performed on the
programs written for the famous game Towers of Hanoi. The result showed that the
iterative approach outperformed the recursive one in both time and space performance.
In a popular study, Schaeckeler & Shang [48] suggested that if a formal parameter or local
variable is dead at all recursive calls, then it can be declared globally, so that only one
instance exists independent of the call depth. The research also found that in 70% of
popular recursive algorithms and in all our real-world benchmarks, it is possible to
reduce the stack size by declaring formal parameters and local variables, globally. The
stack size reduction starts to materialise for their benchmarks no later than in the fifth
recursion on a 32-bit Intel Architecture.

Venkat Subramaniam [49] has conducted an experiment to perform a Factorial
calculation on Java VM using Iteration, Recursion, and Tail Recursion with the Scala
language. When computing the Factorial value of 10000 using Recursion, he got a Stack
Overflow Error, but the Factorial value of 5 computed just fine. Furthermore, the iterative
version of Factorial value of 10000 was able to be computed without any problem. He
pointed out that the iterative version made use of a mutable local variable that the

recursive solution nicely avoided. The best of both worlds could be achieved, if a
recursive code using a compilation technique could transform the code and run as an
iterative process.

In another study, Liu & Stoller [50] explain that transforming recursion into
iteration eliminates the use of stack frames during the program execution. In a study by
Schaeckeler & Shang [51], it was shown that compilers tried to reduce the code segment
and neglected the stack segment; although, the stack can significantly grow during the
execution of recursive functions.

43

Journal of Applied Technology and Innovation

[]
JATI vol. 1, no. 1, (2017), pp. 37-57

Likewise, the study conducted by Chandran [52] to test the implementation of the
Cyclomatic Complexity analysis feature in Coverlipse(an open-source coverage analysis
tool), the researcher examined the program written in a switch statement and three other
programs written in different constructs of if statements, namely, if-else statements, if
statements, and an un-indented if-else statement. His research showed that these
alternative styles of implementing a control flow program had resulted in different
numbers of cyclomatic complexities, which meant that they had different levels of
software complexity. This result further proves that both conceptual and syntactic level
evaluations are feasible for performance evaluations.

Most of the researchers in the Imperative programming area are mainly focussing
on the efficiency of the control structures and the recursive function call features.

3.2 Object-Oriented Programming (OOP) and its Concepts

The benefits of Object-Oriented programming include reduced complexity, object re-use,
enhanced modularity, encapsulation, design benefits, and software maintenance.
However, the OOP paradigm can increase power consumption and execution time,
thereby hindering performance. Mattos, C.B. and Carro, L., [53] highlighted that Object-
Oriented programming significantly increases dynamic memory use, thereby developing
overhead in terms of memory, performance, and power. Due to various reasons, there
are only a handful of documented bad experiences with object technology.

Boasson, M. [54] stated that companies are not very forthcoming with details of
failed projects and secondly, it is difficult to get anything published that questions the
usefulness of OOP. Researchers, such as [55, 56, 57, & 58], have demonstrated the
consequences on the object-oriented system performance, in terms of execution time and
memory overhead.

Kayun, C. and Chonawat, S. [59] have carried out a research which aims to find
appropriate methods and recommendations of using some OOP concepts that consume
less power by using real quantitative results. This research has focussed only on power
consumption, but this is the only work targeted to identify the optimised concepts of
Object-Oriented programming paradigms.

Several researchers have reported the issues and other concerns on the Object-
Oriented programming paradigms, but very few works have been found related to the
Object-Oriented programming notions. Some of the OOP concepts have alternative
choices which can be used instead of the others, in some cases. Due to the differences in
these concepts, some are lighter than others in terms of energy consumption. As such,
developers need to choose the lightest and most appropriate concepts in a power
conscious software development when there is an alternative.

3.3 Functional Programming and its Concepts

Some notable research works have been undertaken on Functional Programming and its
concepts in terms of resource utilisation. Albert et al. [60] presented a framework to

44

I‘ Journal of Applied Technology and Innovation

|
JATI vol. 1, no. 1, (2017), pp. 37-57

define the upper boundary of the application’s memory requirements so that the
execution would not exceed the predefined memory limit. Their work was targeted at
garbage collected languages which use mutable data, such as the Imperative and Object-
Oriented programming languages. Meanwhile, Simoes et al. [61] have introduced a
dynamic memory allocation framework that is able to determine the upper bounds of the
memory requirements for lazily-evaluated higher-order functional programs.

Another resource utilisation approach was presented by Antoy & Jost [62], which
is known as the target implementation design that aims at functional logic programs,
such as Curry. These researchers implemented this design on a prototype known as
Sprite that can perform functional computation in an effective manner. They,
subsequently, compared the execution of this prototype with the Glasgow Haskell
Compiler (GHC), and the results have indicated that this design is comparatively more
efficient than GHC in terms of memory management and execution time.

Minutolo et al. [63] have proposed a lazy-evaluated pattern-matching algorithm
to handle computational resources. They tested the algorithm in mobile devices, and the
result proved that it is able to shorten the response time. This implies that the idea of
applying Functional programming concepts to utilise resources is feasible, and the
application can be further investigated by widening the scope to other available concepts
so that more functional concepts will be useful for saving resources.

3.4 Event-Driven with Graphical User Interface (GUI) Programming

The GUIs that are used in any software design, currently, emerged as a result of the field
of HCI (Human Computer Interaction) and ID (Interaction Design) going through
incremental and revolutionary changes coming from a myriad of different disciplines
[64]. The user interfaces designed and employed in the major smartphone operating
systems of today follow certain official guidelines developed by their vendors. These
guidelines [65], [66], & [67] are a result of the HCI journey that has taken several years.
But, the road of this evolution has always left performance considerations out of the
interface development. Hence, these guidelines do not consider the design time
performance consideration at the GUI level; although, this background has broadly
described HCI, UX (User Experience), ID, and so forth.

The graphical user interface (GUI) of a piece of software is composed of a set of
GUI elements, such as buttons, text boxes, etc., arranged in a meaningful manner that
allows the user to interact with an electronic device [68]. Different elements of a
graphical user interface exist on different software development platforms, including on
the modern-day smartphone platforms, such as Andriod, i0S, and Windows Phone.
However, there is also a large overlap amongst the GUI elements that is common to all
mobile operating systems (and even desktop platforms) [69]. For example, the button is
a common GUI element available in all smartphone operating systems and graphical
desktop operating systems.

On a given UI, some of these elements, generally or under certain circumstances,
can be replaced with other similar elements. For example, the day of the week can be

45

Journal of Applied Technology and Innovation

[]
JATI vol. 1, no. 1, (2017), pp. 37-57

selected using a dropdown menu or radio buttons. This means that these GUI elements
can be arranged in a myriad of ways to accomplish the same task, albeit some
arrangements are more meaningful and easier to understand [70]. That is why user
design guidelines have existed since the late 1980s, and are frequently used in software
development to maximise the ease of use of a given GUI [71]. However, for a given screen
of a software, the developer can come up with several arrangements of the GUI
components, and all of those arrangements can completely abide by the usability
guidelines. These screens can even make use of different GUI components from each
other [72].

Given such circumstances, the selection of one meaningful arrangement of GUI out
of many others has always either been irrational or just random. But, what if certain GUI
elements, say a text box or label, etc., are faster than some other GUI elements, like a
dropdown list? With such information at hand, a developer can make a more informed
decision on which GUI elements can be swapped for others, when usability is not
compromised, to make gains on performance. This is what this research aims to do.

It aims to create certain comparisons amongst the GUI elements that can be
referred to by user interface developers or application developers concerned with
system resources. In that, this research aims to open up the pathway for further
explorations in incorporating performance factors in user interface designs.

4. An Evaluation of some key research works

Research in Programming Paradigms can be divided into four categories: They are the
study of Programming Paradigm concepts in terms of efficiency (resource consumption),
comparative analysis of the Programming Paradigms with the other Programming
Paradigms, Evaluation of Programming Paradigms in view of certain types of software
development (application domains), and the study of Multi Paradigm Programming. In
the following sections, relevant literature to these four research categories is reviewed.

4.1 Basicinherentissues in Programming Paradigms

All programming paradigms have their own merits and demerits. In general, we can
classify the Programming Paradigm issues into two major categories. The first category
is the inappropriateness of the programming paradigms for certain types of software
developments; in section 4.2 the relevant literature is reviewed. And, the second category
is the resource consumption overhead; in section 4.3 the relevant literature is reviewed.
As a solution for these inherent faults, researchers have recommended alternative
programming paradigms and have also come up with new programming paradigms [73,
74, 75, 76, 77, 78, 79, 80, 81, & 82]. Apart from these solutions, the researchers can
suggest ways to use the currently popular programming paradigm concepts, effectively,
as these concepts are widely accepted by the software industry to produce the software,
magnificently.

46

Journal of Applied Technology and Innovation

[]
JATI vol. 1, no. 1, (2017), pp. 37-57

4.2 Evaluating programming paradigms in terms of an application
domain

In this section, the research studies which have evaluated programming paradigms in
terms of a particular application domain are explored. No programming paradigm is
suitable for all types of application development, but many of the current applications
have not been developed using the appropriate programming paradigms. Hence, those
applications are not reliable and are facing performance issues and other overhead.
Software Engineering Researchers have confirmed, the inability of programming
paradigms to be used for certain types of development with their research results, some
of those research studies are discussed briefly in this section.

Kim et al. [83] has stated that ubiquitous environments manage various types of
data and dynamic changes of situations in the real world. Traditional programming
paradigms have a lack of straightforward features for such management and are not
suitable for ubiquitous applications. Wei et al. [84] has described that traditional
programming paradigms can only support the design time environment, but for
ubiquitous computing, it needs to support the mobility and dynamically changing
environment; so, the programming paradigms should support both the design and
running time environments. The traditional programming paradigms cannot adapt to the
adversity, complexity, dynamics, and levity of ubiquitous computing environments.

The Object-Oriented paradigm also has many shortcomings when applied to
pervasive systems [85]. Weis, Braker, & Brandle [85] have mentioned that a set of objects
are deeply involved with each other because an object can hold the references of many
other objects, and they also perform synchronous method invocation on each other. Due
to this dependency, if an object vanishes for some reason, such as weak connectivity or
power off, the whole system’s behaviour will get unpredictable. Security related issues
also arise for this kind of dependency in the Object-Oriented paradigm. As pervasive
applications depend on changing environments, so it is very hard for the Object-Oriented
program developers to automatically adopt the pervasive applications and maintain
security mechanisms with the changing environment. In pervasive applications, devices
are small and resource restricted, so traditional programming paradigms are not suitable
for the efficiency of mobile devices in terms of bandwidth, memory, CPU usage, and
resource optimisation.

Mattos, C.B. and Carro, L. [86] have studied the memory and power consumption
of OOP in embedded system applications. Whilst developing embedded applications,
performance, power, memory consumption, and other requirements must be considered.
OOP tends to cause overhead in terms of these requirements and, unfortunately, the
software industry has had to accept it due to the other benefits.

In general, researchers are targeting Object-Oriented programming paradigms in
terms of various application domains. This might be due to its dominance in the software
industry market. Most of the successfully running Object-Oriented software systems are
large enterprise-level systems. Some of the other programming paradigms are
significantly contributing to the software industry, but are mostly tied with the Object-

47

I‘ Journal of Applied Technology and Innovation

|
JATI vol. 1, no. 1, (2017), pp. 37-57

Oriented programming paradigms in multi-paradigm software systems. Therefore, the
other paradigms are also the reason for this incompatibility issue. Hence, research in this
area should cover all of the programming paradigms which are involved in designing a
software solution that would improve the accuracy of the research results. The benefits
of this multi-paradigm approach are briefly stated in Section 4.4.

4.3 Comparative analysis of the Programming Paradigms

In the Programming Paradigms area, some of the researchers comparatively analyse the
efficiency of mainstream programming paradigms with each other. Generally,
researchers have evaluated the Object-Oriented programming against other mainstream
programming paradigms. In some of the studies, performance was measured in terms of
processor time or CPU time, and in other research performance was measured in terms
of memory usage or energy consumption.

Apart from this, some other researchers measured the efficiency of the
programming paradigms based on how easy it was to implement a particular system
using two different programming paradigms.

Dingle, A. [87] has stated that, Object-Oriented programming is inefficient
compared to Procedural (Imperative) programming. The overhead caused by OOP is the
major factor which is unacceptable in embedded programming. Alexander, C. [88] aimed
to evaluate the effect of OOP in comparison to the traditional Procedural programming
style, on both power and performance in embedded processors. The research concluded
that the memory consumption for both programming styles where almost the same, but
OOP consumed more power and as such, OOP may not be suitable for adoption in power
critical environments, such as embedded systems.

In line with the research of Alexander, C. [88], Sumil, D.; Jamwal, S. S.; and
Devanand [89] also compared OOP against Procedural programming in embedded
systems, and the research concluded that the speed of execution in Procedural
programming is higher than in OOP by 8%.

Other related studies, such as Barnes and Hopkins [90], Da Penha et al. [91],
Chatzigeorgiou [92], and Harrison et al. [93] have discussed the relationship between the
programming paradigm and resource utilisation. Barnes and Hopkins [90] found that,
Object-Oriented implementation took more memory and processor time compared to the
implementation with the Imperative (structured) programming paradigm, but the
Object-Oriented programming paradigm was easier to program and implement the
system compared to implementing the system with the Imperative (Structured)
programming paradigm.

Besides that, studies by Shin and Cury [94] and Ahearn et al. [95] cited in Barnes
and Hopkins [90] also support this argument by claiming that, with the adoption of the
Object-Oriented approach, the ease of modelling was achieved where pragmatic
implementations were considered.

An experiment was conducted by Da Penha et al [91] to investigate the
performance of programming paradigms and languages using multi-threading on digital

48

I‘ Journal of Applied Technology and Innovation

|
JATI vol. 1, no. 1, (2017), pp. 37-57

image processing. The comparisons amongst the programming paradigms, such as the
Object-Oriented and Procedural programming paradigms, were conducted with
sequential and parallel image convolution implementation. Java and C++ programming
languages were utilised to develop the programs. They found that the Object-Oriented
programming paradigm took more time to respond than the Imperative (Procedural)
programming paradigm.

According to Chatzigeorgiou [92], the performance of the Procedural
programming paradigm was better as compared to the Object-Oriented programming
paradigm, and Harrison et al. [93] have found that Object-Oriented yielded faster
execution time and compilation time, and was easier to implement as compared to the
Functional programming paradigm. The application domain used in this experiment was
an image analysis algorithm. However, in a similar research by Pankratius et al. [26], they
refuted the claim that the Functional style was bad in performance. The average run time
of Scala was proved to be comparable to Java, and for the run-times with smaller values,
Scala had actually performed better than in Java. At this point in time, these kinds of
viewpoints may not be appropriate as the current development scenario is based on
multi-paradigm programming languages. Pankratius et al.’s [96] research result against
Chatzigeorgiou [92] was one of the valid supports for this argument.

4.4 Multi-Programming Paradigms

Contemporary software developments and development platforms support multi-
paradigms. Basically, all mainstream programming languages support multi-paradigm
development, although each language design is based on a specific programming
paradigm as a core. For example, Java is an Object-Oriented Programming Language but
it supports Imperative, Event-Driven with GUI programming, Functional programming
and others as specified in Table 1.

Multi-paradigm programming, allows the programmer to design a system with a
number of different paradigm principles. The efficiency of multi-paradigm based
software system solutions is always better than the single-paradigm software systems.
The use of multi-paradigm programming techniques, could lower implementation costs,
and result in more reliable and efficient applications [97].

All the current software project designs use the programming concepts from
various programming paradigms. In Fig. 3, a sample scenario is depicted. Likewise, all
current operating systems support multi-paradigms by providing a wide set of tools and
frameworks. With that, any research on programming paradigms should cover all of the
mainstream programming paradigms which are used in the software design. However,
previous research in this field had only addressed a particular programming paradigm
or a programming concept [96, 98, 99, 100, 101, & 102].

49

Journal of Applied Technology and Innovation

[]
JATI vol. 1, no. 1, (2017), pp. 37-57

[USER INTERFACE

Event Driven with GUI Programming

N
CONTROLLER AND _ _ . .
FUNCTIONALITIES —P» | Object Oriented, Imperative, Functional,

J

Declarative (Functional) E.g. SQL

[DATA BASE

Fig. 3: Three-tier architecture with the application of Programming Paradigms

Researchers in this area, mainly focus on the multi- paradigm software design and
the interaction between the different programming paradigms. In the following
paragraphs, the related work of a few PhD theses are briefly summarised.

Coplien [103] has demonstrated in his research work that each multi-paradigm
approach to software development has to deal with the issue of selecting an appropriate
paradigm for a given application domain concept, at least to some extent. According to
him, this process is seen as a mapping between the application (problem) and the
solution domain. In line with this research, Valentino [104] proposed a new method of
multi-paradigm software development with feature modelling in his PhD thesis, which
improves the paradigm selection process to model both the application and solution
domain. Its output is a set of paradigm instances annotated with the information about
the corresponding application domain concepts and features.

Diomidis and Spinellis [105] have proposed the use of object-oriented design
techniques as a method for encapsulating programming paradigms within multi-
paradigm applications, and for abstracting common characteristics across paradigms. In
another research, Coplien [103] has presented a broad design method called the multi-
paradigm design. The main aim of this research [103] was to understand how to build
systems that capture the structure of their domains in ways that support intentionality,
software comprehension at the system level, and greater ease of evolution.

Basically, researchers in this area disregarded the resource utilisation
perspectives of the multi-paradigm software design and developments. A rigorous
research on the resource consumption aspects of programming paradigms, when they
collaborate with other programming paradigms to achieve programming solutions,
would help to achieve resource efficient software solutions.

5. Conclusion

The Programming Paradigm domain is the kernel in any software design. The
Programming Languages and any software design cannot be developed without the role
of Programming Paradigms. According to Campbell-Kelly [106], software possesses a
great opportunity for innovation and increased efficiency. As such, further research in
programming paradigms can be deemed a good way to mine this opportunity. Basically,

50

I‘ Journal of Applied Technology and Innovation

|
JATI vol. 1, no. 1, (2017), pp. 37-57

not much effort is being given to making software more efficient as the developers mainly
concentrate on the achievement of the required solution.

Based on the above literature’s knowledge at hand, the following thoughts can be
deduced, whereby achieving the objectives of this paper. As per the objectives of this
paper, the following content provides the concluding remarks for the academic and
research community in this domain.

As for the computing education at this point of time, principally, the mainstream
programming paradigms, such as Imperative (Structural and or Procedural), Object-
Oriented, Functional, and Event-Driven with GUI programming, should be covered in the
curriculum. Additionally, Logic Programming and Concurrent Programming could be
covered as they have a notable application base in the current development scenario.

In another article, Selvakumar [107] has discussed a teaching method of the
Programming Paradigms and their relevant programming languages. This article would
help to teach the programming paradigms together with the respective programming
languages for an application development domain. In general, the current curriculums
focus on a single programming paradigm, actually, teaching multi-paradigms is
appropriate for the computing education as current software designs cannot be
accomplished with a single programming paradigm. For example, Imperative, Object-
Oriented, and Event Driven with GUI programming can be covered in a single module
and, in this case, web application development can be considered as an application

domain.

In the case of Programming Languages, with the aid of one or two Programming
Languages, all of these Programming Paradigm approaches can be delivered. However,
in the application point of view, a Programming Language can be used for each
application development, such as web application development, desktop application
development, mobile application development, and the embedded application
developments.

Fig. 1 and Fig. 2 can be referred to, in order to choose the appropriate
programming languages to cover all of these mainstream programming paradigms and
all types of application development domains. In some cases, software developers prefer
different languages basically due to their interest, experience, support from the vendors,
supporting tool availability, etc.; thus, the name of the programming languages are not
suggested here. Therefore, in the computing curriculums, a total of four modules/subjects
might be sufficient to cover the main-stream programming paradigms, their relevant
programming languages and all of the four application development domains: the web,
desktop, mobile, and embedded.

As for the research point of view, basically, all of the categories of research in this
domain, which were described in section 4, should focus on the multi-paradigm aspects.
Mostly, the previous similar research works had only addressed a particular
programming paradigm or a programming concept. In the case of a research study on the
efficiency of a programming design, not only should the study focus on the core
programming paradigm, all other associated programming paradigms and their concepts
should be considered in order to improve the accuracy of the research outcomes.

51

I‘ Journal of Applied Technology and Innovation

|
JATI vol. 1, no. 1, (2017), pp. 37-57

The researchers have suggested a new programming paradigm for the
programming paradigm inherent problems as a solution; but instead, researchers have
to identify a way to use the main-stream programming paradigms and their concepts,
effectively, as most of the successfully running current projects are based on these
programming paradigms.

Apart from this, researches on the resource utilisation aspects of programming
paradigms, have to consider all of the other programming concepts from other
programming paradigms which contribute to the software design. This would help to
achieve the optimal software solutions. Finally, the researchers need to look at every
possible aspect, layer, and architecture to get the software on par with the hardware in
terms of efficiency.

Acknowledgments
Thanks to God for making this paper successful. Sincere thanks to our university
management for the moral support and resources provided during the research.

References

[1] Daniel G. Bobrow, “If Prolog is the answer, what is the question”, in FGCS,Tokyo,
Japan, 1984, pp. 138-145.

[2] Linda Wieser Friedman, Comparative Programming Languages: Generalizing the
Programming Function. Prentice Hall, 1991.
[3] Pamela Zave, “A compositional approach to multiparadigm programming,” IEEE

Softw., vol. 6, no. 5, pp. 15-25, Sept. 1989.

[4] Peter Van Ray and Seif Haridi, Concepts, Techniques, and Models of Computer
Programming. MIT Press, 2004.

[5] P.Van Roy and H. Seif , Concepts, Techniques, and Models of Computer
Programming. MIT Press, Cambridge, MA, 2004.

[6] P.Van Roy, The Principal Programming Paradigms, Poster version 1.08. [Online]
Available from: www.info.ucl.ac.be/~pvr/paradigms.html, 2008.

[7] Stephen Cass, [Online] Available from: http://spectrum.ieee.org/computing/ soft
ware/the-2015-top-ten- programming-languages.

[8] Stephen Cass, [Online] Available from: http://spectrum.ieee.org/computing/soft
ware/the-2016-top-programming-languages

[9] Zuhud et al., “A preliminary analysis on the shift of programming paradigms,” in
ICT4M, Isesco Hay Rabat, Morocco, 2013, pp. 1-5.

[10] Souza et al, “An Experimental Study to Evaluate the Impact of the Programming
Paradigm in the Testing Activity,” Latin-american Center Informatics Stud. (CLEI)
Electron. J., vol. 15, no. 1, pp.1-13, April 2012.

[11] Peter Van Roy and Seif Haridi, Concepts, Techniques, and Models of Computer
programing. MIT press, 2004.

52

http://spectrum.ieee.org/author/cass-stephen
http://spectrum.ieee.org/computing/soft%20ware/the-2016-top-programming-languages
http://spectrum.ieee.org/computing/soft%20ware/the-2016-top-programming-languages

I‘ Journal of Applied Technology and Innovation

|
JATI vol. 1, no. 1, (2017), pp. 37-57

[12] Arvind Kumar Bansal, Introduction to Programming. CRC Press, 2013.

[13] Doris Appleby, Programming Languages: Paradigm and Practice. McGraw-Hill,
1991.

[14] David Watt, Programming Language Concepts Paradigms. Prentice Hall PTR,
1993.

[15] B.Allen Tucker and E. Robert Noonan, Programming Languages. 2nd ed. McGraw-
Hill Eductaion, 2006.

[16] Gabbrielli et al.,, Programming Languages: Principles and Paradigms. New York:
Springer-Verlag London, 2010.

[17] Peter Van-Roy and Seif Haridi, Concepts, Techniques, and Models of Computer
Programming. MIT Press, 2004.

[18] Doris Appleby and]. Julius Vandekopple, Programming Languages: Paradigm and
Practice. 2nd ed. New York: Mcgraw-Hill, 1997.

[19] B. Allen Tucker and E. Robert Noonan, Programming Languages: Principles and
Paradigms. 2nd ed. Boston: McGraw-Hill Education, 2007.

[20] Quintao Pereira et al, Programming Languages. Brazil: Springer-Maceio, 2014

[21] A. Raphael Finkel, Advanced Programming Language Design. Addison-Wesley,
1996.

[22] W.Robert Sebesta, Concepts of Programming Languages. 7th int. ed. Addison-
Wesley, 2006.

[23] Philip Roberts. (2013, April 2). Imperative vs. Declarative. [Online]. Available
:http://latentflip.com/imperative-vs-declarative/.

[24] Microsoft Developer Network. Functional Programming vs. Imperative
Programming. [Online]. Available: http://msdn.microsoft.com/en-
us/library/bb669144.aspx .

[25] Zuhud et al., “A preliminary analysis on the shift of programming paradigms,” in
ICT4M, Isesco Hay Rabat, Morocco, 2013, pp. 1-5.

[26] D. O. Da Penha et al, “Performance evaluation of programming paradigms and
languages using multithreading on digital image processing,” in Proc. 4th WSEAS
Int. Conf. Appl. Math. and Comput. Sci., 2005, pp.3-8.

[27] R.Machado, “An Introduction to Lambda Calculus and Functional Programming”
in IEEE Theoretical Comput. Sci. Conf., Rio Grande, 2013, pp. 26-33.

[28] P. Hudak, The Haskell School of Expression: Learning Functional Programming
through Multimedia. Cambridge: Cambridge University Press, 2000.

[29] M. Fenwick et al,, “An Open-Source Sandbox for Increasing the Accessibility of
Functional Programming to the Bioinformatics and Scientific Communities,” in
9th Int. Conf. Inform. Technology - New Generations, Las Vegas, 2012, pp. 89-
94.

[30] F. Stephen, “Event-Driven Programming:Introduction, Tutorial, History,” vol. II,
no. 1, pp. 1-59, Aug. 2006.

[31] M. M. ELssaedi, “Event-Driven Programming: A new approach to Event-Driven
Programming,” vol. I, no. I, pp. 1-157, Aug. 2008.

53

I‘ Journal of Applied Technology and Innovation

|
JATI vol. 1, no. 1, (2017), pp. 37-57

[32] Dataflow Programming Concept, Languages and Applications Tiago Boldt
Sousal,2 tiago.boldt@fe.up.pt 1 INESC TEC (formerly INESC Porto) 2 Faculty of
Engineering, University of Porto Campus da FEUP Rua Dr. Roberto Frias, 378
4200 - 465 Porto, Portugal.

[33] Johan Montagnat et al., “A data-driven workflow language for grids based on
array programming principles”, ACM Proceedings of the 4th Workshop on
Workflows in Support of Large-Scale Science, New York, USA, 2009.

[34] Reflection in logic, functional and object-oriented programming: a Short
Comparative Study. Proc. of the IJCAI'95 Workshop on Reflection and Metalevel
Architectures and their Applications in Al pp. 29-38. August, Canada, 1995.

[35] M. H. Austern. Generic Programming and the STL Professional computing series.
Addison-Wesley, 1999.

[36] Francesca Rossi, Peter van Beek, Toby Walsh, “Constraint Programming”.
[Online] Available from:
https://cs.uwaterloo.ca/~vanbeek/Publications/kr_handbook06.pdf.

[37] David, W, “The concepts of concurrent programming”, [Online] Available from
ftp://ftp.sei.cmu.edu/pub/education/cm24.pdf.

[38] X. Meng, “Designing approach analysis on small-scale software performance
testing tools,” in Int. Conf. Electronic and Mechanical Engineering and
Information Technology, 2011 © IEEE. doi: 10.1109/EMEIT.2011.6023983.

[39] L. Richie et al,, “An object-oriented simulation-optimization interface,” Comput.
and Structures, vol. 81, no. 17, pp. 1689-1701.

[40] P.Van Roy and H. Seif , Concepts, Techniques, and Models of Computer
Programming. MIT Press, Cambridge, MA, 2004.

[41] A.B.Tucker andR. E. Noonan, Programming languages Principles and paradigms.
New York: McGraw-Hill, 2007.

[42] Case Study: Oracle, “Class StringBuilder”, Oracle, 2013.

[43] Case Study: Oracle, “Class StringBuffer”, Oracle, 2013.

[44] Case Study: Oracle, “Class Vector<E>", Oracle, 2013.

[

[

45] Case Study: Oracle, “Class ArrayList<E>”", Oracle, 2013.

46] M. Rubio-Sanchez, “Tail Recursive Programming by Applying Generalizatio,” in
Conf. Innovation and Technology Comput. Sci. Educ., 2010.

[47] M. C. ER, Performance Evaluations of Recursive and Iterative Algorithms for the
Towers of Hanoi Problem. Computing, 1986.

[48] S. Schaeckeler and W. Shang, “Stack Size Reduction of Recursive Programs,” in
Inter. Conf. Compilers, Architecture and Synthesis for Embedded Syst., 2007.

[49] Venkat Subramaniam, 2012. Scala for the Intrigued - Recursions and Tail Call
Optimization. Issue #35, May 2012. The Pragmatic Programmers.

[50] Y. A. Liu and S. D. Stoller, “From Recursion to Iteration: What are the
Optimizations?,” in Proc. ACM workshop on Partial Evaluation and Semantics-
Based Program Manipulation, 2000.

[51] S. Schaeckeler and W. Shang, “Stack Size Reduction of Recursive Programs,” in
Inter. Conf. Compilers, Architecture and Synthesis for Embedded Syst., 2007.

54

https://cs.uwaterloo.ca/~vanbeek/Publications/kr_handbook06.pdf

I‘ Journal of Applied Technology and Innovation

|
JATI vol. 1, no. 1, (2017), pp. 37-57

[52] P. Chandran, “Updating and Extending the Open Source Java Coverage Tool,
Coverlipse,” M.S. thesis, Uni. Edinburgh, 2009.

[53] C.B.Mattos and L. Carro, “Making Object Oriented Efficient for Embedded System
Applications,” ACM Integrated Circuits and Systems Design, Florianopolis, 2005,
pp. 104-109.

[54] M. Boasson, “Embedded Systems Unsuitable for Object Orientation,” Reliable
Software Technologies, vol. 2361, no. 1, 2002, pp. 1-12.

[55] S.W.Haney, “Is C++ Fast Enough for Scientific Computing?,” Comput. Physics, vol.
8, 1994, pp. 690-694.

[56] A.D.Robinson, “C++ Gets Faster for Scientific Computing,” Comput. Physics, vol.
10, 1996, pp. 458-462.

[57] B. Calder et al, “Quantifying Behavioral Differences Between C and C++
Programs,”]. Programming Languages, vol. 2, 1994, pp. 313-351.

[58] A. D. Robinson, “The abstraction penalty for small objects in C++,” in Parallel
Object-Oriented Methods and Applications Conf., Santa Fe, New Mexico, 1996.

[59] Kayun, C., Chonawat, S., (2007a). Object-Oriented Programming Strategies in C#
for Power Conscious System. World Academy of Science, Engineering and
Technology, 10 (10), p587-592.

[60] E. Albert et al. (2010). Parametric Inference of Memory Requirements for
Garbage Collected Languages. [Online] Available:
http://dl.acm.org/citation.cfm?id=1806671.

[61] H. Simoes et al., “Automatic Amortised Analysis of Dynamic Memory Allocation
for Lazy Functional Programs,” in Proc. 17th ACM Intern. Conf. Functional
programming, Copenhagen, NY, 2012, pp. 165-176.

[62] S. Antoy and A. Jost. (2013). A Target Implementation for High-Performance
Functional Programs [Online]. Available:
http://web.cecs.pdx.edu/~antoy/homepage/publications/tfp13/paper.pdf.

[63] A.Minutolo et al,, “A Lazy Evaluation Approach for Mobile Reasoning in DSSs,” in
12th IEEE Intern. Symp. Computational Intell. and Inform., Budapest, 2011.

[64]].Grudin, A Moving Target - The Evolution of Human-Computer Interaction. 2012.

[65] Microsoft Developers Network. (2015). Introduction to Universal Windows
Platform (UWP) apps for designers - Windows app development.

[66] Google design guidelines. (2015). Introduction - Material design - Google design
guidelines. [online] Available: http://www.google.com/design/spec/material-
design/introduction.html.

[67] AppleiOS HCI Guidelines. (2015). i0S Human Interface Guidelines: Designing for
iOS.

[68] C.Ghaoui, Encyclopedia of human computer interaction. Hershey PA: Idea Group,
2006.

[69] X. Meng, “Designing approach analysis on small-scale software performance
testing tools,” 2011 Intern. Conf. Electronic & Mechanical Eng. and Inform.
Technology.

55

I‘ Journal of Applied Technology and Innovation

|
JATI vol. 1, no. 1, (2017), pp. 37-57

[70] J. Grudin, “Three Faces of Human-Computer Interaction,” IEEE Annals Hist.
Comput., vol. 27, no. 4, pp.46-62, 2005.

[71] D.Norman, The psychology of everyday things. New York: Basic Books, 1988.

[72] Thompson and John, Developer's Guide to UI. Oracle, 2012, pp.16-18.

[73] Torben etal.,, Towards a Programming Paradigm for Pervasive Applications based
on the Ambient Calculus. Microsoft Research, Cambridge, 2011.

[74] Mbayashi, Y.; Ledgard, H.F.; Dept. of Comput. & Inf. Eng., Nippon Inst. of Technol,,
Saitama, Japan,An experiment on a new programming paradigm, IEEE, 2005.

[75] Jan Vitek, New Paradigms for Distributed Programming Jan Vitek ,Object Systems
Group, University of Geneva, Geneva, Switzerland, 1997.

[76] Dennis Gannon, Programming Paradigms for Scientific Problem Solving
Environments. Woco9, Prescott, 2006.

[77] L. Ling Shang, “Experiments on Programming paradigms for large scale scientific
computing, grids, desktop grids and private clouds,” M.S.thesis, 2010.

[78] Manuel Oriol, The Internet Programming Paradigm. CiteSeer 6M, 2011.

[79] M.Y.Kim etal, A New Programming Language for Ubiquitous Applications. 2013.

[80] S. A. Salustri and R. D. Venter, A new programming paradigm for engineering
design, engineering with Computers. Springer Verlag, London limited, 1994.

[81] Johan Glimming, Thorsten Altenkirch and Patrik Jansson, What is the next
Programming Paradigm?, Second International Software Technology Exchange
Workshop, Kista, Sweden, 2012.

[82] H. Jin et al, “Testing new programming paradigms with NAS Parallel
Benchmarks,” NASA Technical Report Server, 2000 © NASA Ames Research
Center; Moffett Field, CA United States. doi: 20000064623

[83] M. Y. Kim et al. A New Programming Language for Ubiquitous Applications
[online]. Available: http://www.ics.uci.edu/~lopes/bspc05/papers/kim.pdf.

[84] W. Wei et al, “Allotropy Programming Paradigm for Ubiquitous Computing
Environment,” in Int. Conf. Convergence Inform. Technology, pp. 514-521, 2007.

[85] T. Weis et al. (2013) Towards a Programming Paradigm for Pervasive
Applications based on the Ambient Calculus [online]. Available:
http://wenku.baidu.com/view/fOcfddc72cc58bd63186bdac.html.

[86] C.B.Mattos and L. Carro, “Making Object Oriented Efficient for Embedded System
Applications,” ACM Integrated Circuits and Syst. Design, pp. 104-109, 2005.

[87] A. Dingle, Improving C++ Performance in Temporaries. Seattle Univ., WA, USA,
1998.

[88] C. Alexander, “Performance and power evaluation of C++ object-oriented
programming in embedded processors,” Inform. and Softw. Technology, vol. 45,
no. 4, pp. 195-201, 2003.

[89] Sunil Dutt et al, “Object Oriented Vs Procedural Programming Embedded
Systems,” Intern.]. Comput. Sci. & Commun., vol. 1, no. 2, pp. 47-50, 2010.

[90] Barnes and Hopkins, The impact of programming paradigms on the efficiency of
an individual-based simulation model. UK, science direct, 2001.

56

http://www.ics.uci.edu/~lopes/bspc05/papers/kim.pdf
http://wenku.baidu.com/view/f0cfddc72cc58bd63186bdac.html

I‘ Journal of Applied Technology and Innovation

|
JATI vol. 1, no. 1, (2017), pp. 37-57

[91] D. O. Da Penha et al., “Performance evaluation of programming paradigms and
languages using multithreading on digital image processing,” in Proc. 4th WSEAS
Intern. Conf. Applied Math. and Comput. Sci., pp.3-8, 2005.

[92] A. Chatzigeorgiou, “Performance and power evaluation of C++ object-oriented
programming in embedded processors,” Inform. and Softw. Technology, vol. 45,
no. 4, pp.195-201, 2003.

[93] R. Harrison et al, “Comparing Programming Paradigms: an Evaluation of
Functional and Object-Oriented Programs,” Softw. Eng.]., vol. 11, no. 4, pp. 247-
254, 1996.

[94] Y.]. Shin and P. Cury, “Exploring community dynamics through size dependent
trophi interactions using a spatialized individual-based model,” Aquati Living
Resources, vol. 14, no. 2, 2001.

[95] S. C. Ahearn et al,, “TIGMOD: an individual-based spatially explicit model for
simulating tiger/human interaction in multiple use forests,” Ecological Modelling,
vol. 140, no. 81, 2001.

[96] V. Pankratius et al, “Combining Functional and Imperative Programming for
Multicore Software: An Empirical Study Evaluating Scala and Java,” in 34th Int.
Conf. Softw. Engineering, New York, 2012, pp. 123-133.

[97] D. Diomidis Spinellis, Programming paradigm as Object classes: A structuring
mechanism for Multi Paradigm Programming. 1993.

[98] NELSON, H.], MONARCH]I, D. E. & NELSON, K. M. Year. Evaluating emerging
programming paradigms: an artifact-oriented approach. In: System Sciences,
1998. Proceedings of the Thirty-First Hawaii International Conference on, 6-9 Jan
1998 1998. 446-454 vol.6.

[99] S. Antoy and A. Jost, A Target Implementation for High-Performance Functional
Programs. 2013.

[100] A.Minutolo et al., “A Lazy Evaluation Approach for Mobile Reasoning in DSSs,” in
12th [EEE Int. Symp. Computational Intell. and Informatics, 2011.

[101] Sunil Dutt et al, “Object Oriented Vs Procedural Programming Embedded
Systems,” Int.]. Comput. Sci. & Commun., vol. 1, no. 2, pp. 47-50, 2010.

[102] W. D. Clinger, “Proper Tail Recursion and Space Efficiency,” in Proc. ACM Conf.
Programming Language Design and Implementation, pp. 174 - 185, 1998.

[103] O.]James Coplien, Multi-Paradigm Design for C++. Addison-Wesley, 1999.

[104] Valentino Vranic, Multi Paradigm design with Feature modelling. 2004.

[105] D. Diomidis Spinellis, Programming paradigm as Object classes: A structuring
mechanism for Multi Paradigm Programming. 1993.

[106] M. Campbell-Kelly, “The History of the History of Software”, IEEE Annals Hist.
Comput., vol. 29, no. 99, pp. x4, 2007.

[107] S.Selvakumar,” Teaching Programming Subjects with Emphasis on Programming
Paradigms”, in icaet-14 © Atlantis Press. d0i:10.2991 /icaet-14.2014.22.

57

http://dx.doi.org/10.2991/icaet-14.2014.22

