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Abstract— Using the MNIST dataset, a standard in 

computer vision, this study tries to improve neural networks' 

digit recognition ability. Focusing on elements such as neural 

network architecture, hyperparameters (dropout rate and 

training epochs), and their effect on digit identification, it 

examines a variety of methodologies and strategies. The study 

identifies hyperparameter settings that significantly increase 

accuracy. Results indicate that the model with the highest 

accuracy, ranging from 80.96% to 98.67%, used the Adam 

optimizer, four hidden layers with Dropout, 0.1 learning rate, 

and 23 epochs. These discoveries improve MNIST digit 

recognition and have wider ramifications, including those for 

document analysis and financial transactions.  

 

Keywords— Multilayer Perceptron, Training Epochs, 

Dropout Rate. Overfitting, Underfitting  

I. INTRODUCTION  

Recognizing handwritten digits remains a canonical 
difficulty and a crucial milestone in the constantly changing 
fields of deep learning and machine vision. The MNIST 
dataset, an extended collection of 28x28 pixel grayscale 
photographs showing handwritten numbers, has been used to 
test the effectiveness of different machine-learning patterns. 
This journal paper's main goal is to explore, innovate, and 
improve the performance of neural network models for 
MNIST digit recognition by utilizing a comprehensive 
combination of methods and methodologies. 

The MNIST dataset—often referred to as the "Hello 
World" of deep learning—represents digit recognition 
problems in the field of machine vision symbolically. This 
dataset, which consists of 70,000 compiled samples of 
handwritten digits from 0 to 9, has evolved into the 
benchmark of choice for assessing the performance of 
different machine learning techniques, particularly neural 
networks. 

The following factors merit careful consideration in the 
pursuit of this goal: the architectural complexities, which 
include the fine-grained control over learning dynamics 
through the wise selection of dropout rates and training 
epochs. The Multilayer Perceptron (MLP) and feedforward 
neural network with numerous hidden layers, serves as the 
fundamental tenet of this research. Based on the complexity 
of its architecture, this decision enables us to tap into neural 
networks' latent representational power for improved 
discriminative ability. 
Through algorithmic implementation, the expedition taken 

in this research has travelled through the landscape of several 
learning rules in hyperparameters guiding the neural network. 
While holding constant parameters across all trials, such as 
learning rate and number of hidden layer, we methodically 
modified the dropout rate and number of training epochs to 
investigate their effect on the neural network's performance. 

Furthermore, the journal article is, in essence, a 
comprehensive investigation of the MNIST digit recognition 
challenge with an uncompromising dedication to excellence. 
The delicate coordination of hyperparameter optimization, 
advanced training techniques, and neural network 
architecture form the core of our methodology. With 
implications across a wide range of areas, from automated 
document analysis to the precision-driven world of financial 
transactions, our findings, which have been hard documented 
and analytically tested, are poised to redefine the state of the 
art in MNIST digit recognition. 
 

II. LITERATURE REVIEW 

In the context of digit recognition, the first paper proposes 
the study of using a Random Forest Classifier (RFC) for digit 
classification, it focuses on elevating the accuracy of results 
with different hyperparameters based on the performance 
criteria of stratified-k fold cross-validation. The study was 
conducted from three key aspects which are the selection of 
materials, implementation of algorithms and parameter 
modification. 

The random forest classifier was implemented using 
Python programming on a device which uses Windows 11 
pro with 12th Gen Intel Core i5-12600 processor and 16gb of 
RAM. Testing was performed by using a handwritten digit 
images dataset that contains 1797 images with 8x8 pixels 
grayscale digit. Two algorithms were employed in these 
papers which are decision tree and random forest. Decision 
trees act as a foundation of building blocks in more complex 
classification, while random forest used the majority voting 
of decision trees to make predictions and addressed 
overfitting effectively compared to a single decision tree. The 
study by (Ngan et al., 2023) used one fixed parameter of 
random_state and three hyperparameters of n_estimators, 
max_depth, max_features by modifying four different values 
on each to optimize the random forest classifier’s 
performance in digit classification. While random_state 
affects the producibility of the model, which is useful for 
comparing the effects of other attributes, n_estimators affects 
the diversity and accuracy of the model, which in charge of 
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capture more patterns in the data, however might also leads 
to overfitting if the value is set to be too high, max_depth 
affects its generalization of the model as higher value brings 
more accuracy and creates deeper decision tree but also 
leading to the risk of overfitting at the same time, 
max_features provides more features to choose when 
building decision tree as lower value of this can reduce 
overfitting but reduces accuracy at the same time. Stratified 
K-folds cross-validation that divides the dataset into a more 
balanced subsets is being used as its performance criteria to 
ensure a fair evaluation of the model, addressing potential 
class imbalance issues. 

The result of testing the three parameters with different 
values resulting the importance of hyperparameter 
adjustment, especially the sole setting of each 
hyperparameters as 125 in n_estimators, max_dept to 
‘None’ and max_features to 4 got the higher accuracy. It is 
worth noting that these parameters weren’t the highest nor 
lowest value that were used for testing, highlighting that 
simply using higher or lower value doesn’t guarantee 
improved accuracy. Interestingly, even when these 
parameters that achieved the highest accuracy individually 
were combined, they did not yield the highest overall 
accuracy, showcasing that each attribute has a unique impact 
on the model’s performance. In summary, hyperparameter 
adjustment significantly enhances digit recognition accuracy 
using Random Forest Classification. This approach 
contributes to making a model to achieve the best result 
without being too time-consuming or costly, making it a 
suitable approach for newcomers in machine learning 
practitioners.   

In parallel, the literature review by Lead et al. (2021) 
focuses on finding the most accurate architecture for the task 
by investigating the handwritten digit recognition based on 
various pre-trained deep learning models. Five pre-trained 
models from PyTorch were being applied to the study which 
are from GoogLeNet, MobileNet v2, ResNet-50, ResNeXt-50 
and Wide ResNet-50 using a MINST dataset.  

After pre-processed with the data, Lead et.al (Lead et al., 
2021) applied 70000 28x28 pixels of grayscales images 
dataset that contained labelled images from 0 to 9 in the 
testing part. The dataset was split into two datasets, 60000 for 
training and 10000 for testing images on digit classification. 
During the training process, CNN Resnet-18 was used for its 
training architecture and algorithm, it processes input images, 
predicts the outcomes, and then learns to improve from the 
feedback by comparing the result with the actual one. The 
evaluation involved using confusion matrices to analyze the 
top 9 loss images and found that the confusion patterns are 
quite similar with other digits. The result of accuracy and 
training time is being considered while evaluating these 
models and it returned that the Wide ResNet-50 achieved the 
least error percentage on Top-1 error (0.5278%) and Top-5 
error (0.0079%). To be noted, MobileNet v2 also achieved a 
commendable top-1 error rate of 0.5754% and top-5 error 
(0.0079%) in just 498 seconds. The transition to CIFAR-10 
dataset with same configuration revealed that ResNeXt-50 
achieved the least error rate on Top-1 error(14.0460%) and 
Top-5 error(0.5300%). To be noted, MobileNet v2 performed 
its versatility by achieving a top-1 error rate of 15.2780% and 
top-5 rate of 0.5380% with a smaller model size and faster 
training. 

Based on the outcome, it emphasizes how neural 
network architecture for digit identification is always 
evolving. The objective of study which is to enhance the 
neural network for MNIST digit recognition was aligned with 
Mobile v2's consistent performance across datasets which 

demonstrated its potential for further investigation of digit 
recognition. 

                 III. MATERIALS AND METHODS 

A. Selection of Materials 

1) Source code: The Python programming language, 
renowned for deep learning research, has been used for the 
study. Besides, Python has a large selection of tools and 
frameworks made particularly for developing neural 
networks and machine learning algorithms. The Pandas 
library handled data manipulation, which was used to load 
and handle datasets, rendering it simpler to deal with the 
MNIST dataset and carry out data preprocessing while 
NumPy enabled numerical computations to carry out 
normalization. Keras, which has TensorFlow as its backend 
and benefits from the fast calculation capabilities of 
TensorFlow, allowed for the flexible development of neural 
network models to evaluate architectural alternatives for digit 
classification. 

2) Machine: A computer with Windows 11 (Version 22H2) 
operating system equipped with AMD Ryzen 7 Pro 3700U w 
processor and 16 GB of installed RAM was used to carry out 
this study. 

3) Dataset: The MNIST dataset has been used in this study 
because this dataset serves as a model for several image 
classification schemes, especially handwritten digit 
recognition. According to Daniel (2022), MNIST was created 
from an even bigger dataset, the NIST Special Database 19, 
that comprises handwritten uppercase and lowercase 
characters in addition to numbers. Besides, MNIST 
comprises 60000 handwritten digits for training the machine 
learning model, and 10000 handwritten digits for model 
testing. Each digit in the MNIST is retained as a 28x28 pixel 
grayscale image, and each data has 784 features. 

B. Selection of Methods 

1) Data Loading: The training and testing datasets (train.csv 
and test.csv) are loaded using Pandas. 

2) Data Preprocessing and Transformation: The label will be 
separated from the feature data in the training dataset. 20% 
of the data in the training dataset will be randomly selected 
to implement cross-validation to avoid overfitting. The 
remaining 80% of the data will be the training sets to train 
the neural network model. 

3) Neural Network Architecture Implementation: The neural 
network's input layer includes 784 units (pixel units in a 
28x28 image). For multi-class classification, the output layer 
has ten units, which are digits 0-9. 

4) Model Training: Several parameters will be modified to 
train the Neural Network model and improve the 
performance of the model. To reduce an identified loss 
function, the internal model parameters which is weights and 
biases must be adjusted repeatedly during the training phase. 
The training data will be tested, and the validation data will 
be fitted into the model constructed. 

5) Model Evaluation: The accuracy, loss, validation loss, 
validation accuracy and times per epoch will be observed. 

Accuracy: The percentage of accurately predicted labels in 
the test dataset. 

Loss: The percentage difference between the predicted label 
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and the actual label in the test dataset. 

Validation Accuracy: The percentage of accurately 
predicted labels with the target label in the validation 
dataset. 

Validation Loss: The percentage difference between the 
predicted label and the target label in the validation dataset. 

Times per Epoch: Amount of time that is required to 
complete each Epoch in seconds. 

6) Prediction: On the test dataset, predictions are made using 
the model that performs the best. The trained neural network 
is used to make predictions on a different test dataset, and 
the predicted labels and image IDs will be saved. 

 

C. Algorithm Implementation 

Neural networks are systems of interlinked neurons that 
resemble the layers of the human brain. Computers may use 
this to build an adaptive framework that constantly learns 
from errors. 

1) Feedforward Neural Network: A Feedforward Neural 
Network is an Artificial Neural Network that does not have 
looping nodes. Input data is fed into the network during the 
forward pass, and computations pass via the hidden layers 
to produce an output in output nodes. The network's 
prediction or categorization is represented in the output. 
Feedforward neural networks are trained by employing 
supervised learning. There are several processes the neural 
network performs to compute the data. Firstly, input is 
multiplied by the given weight values. For example, x1*w1 
= 2*3 = 6. The demands for the signal intensity of the 
neuron are established by weights. The impact of input data 
on the result will be determined by weight value. Secondly, 
add the bias value to the product value in the prior phase. 
For example, 6+b1 = 6+1 = 7. Thirdly, the weighted sum 
will be calculated. Fourthly, by passing the weighted sum 
to an activation function, the corresponding weighted sum 
is converted into an output stream (Vihar, 2022). Fig.1 
illustrates how the Feedforward Neural Network can learn 
to categorize the handwritten digits in the MNIST dataset 
by following these steps. 

 

 
Fig. 1. Recognizing Digits using Feedforward Neural Network.   

(Rubentak,2023). 

 

A feedforward neural network's mean square error cost 
function shown in Fig. 2 is a smooth metric used to adjust 
weights and biases, allowing for incremental improvements 
for better performance with minimal effect on classified 
data points. 

   
  Fig. 2. Mean Square Error Cost Function (Turing,2023). 

 

 

Cross Entropy Loss shown in Fig. 3 and Fig. 4 is used to 

compute the loss function in neural networks, which 

determines whether learning process adjustments are 

necessary. 

    

   Fig. 3. Cross Entropy Loss (Turing,2023). 

 

2) Multilayer Perceptron: A multilayer perceptron refers to an 

Artificial Neural Network that comprises input, output, and 

multiple hidden layers with numerous neurons to learn more 

complex patterns. “Perceptron” means the capacity to see and 

comprehend images, which mimics human perception 

(Carolina, 2021). However, the single-neuron perceptron 

cannot analyze non-linear data. Hence, this issue was resolved 

upon the introduction of the Multilayer Perceptron. Multilayer 

perceptron neurons can employ any activation function, as 

opposed to Perceptron neurons, which demand an activation 

function that imposes a threshold. The Multilayer Perceptron 

continually adjusts the network weights and lowers the cost 

function using backpropagation as its learning approach. The 

Multilayer Perceptron determines the Mean Squared Error 

gradient as seen in Fig. 5 for every input and output set 

throughout every cycle after computing the weighted sums 

and applying them through all layers. The weights of the first 

hidden layer are subsequently modified using this gradient 

result, thereby propagating it back to the neural network's 

starting point. 

 

Fig. 4. Cross Entropy Loss (Carolina, 2021). 

   

   Fig. 5. Gradient of Mean Squared Error (Carolina, 2021). 

 

3) Optimizer Algorithm: Adam Optimizer 

Adam is an approach for calculating adaptive learning rates 

that applies individual learning rates to different parameters. 

This is accomplished by gauging the gradient's first and 

second moments, which are then used to modify the learning 

rate for each weight. 

 

Fig. 6. Formula to estimate the moments adjust for bias (Vitaly, 2018). 
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D. Purpose 

The main purpose of this study is to improve the Neural 
Network Model to accurately identify handwritten digits. 
Several neural network models are trained using various 
modified parameters in the Neural Network algorithm to 
evaluate the effectiveness of various models and determine 
which parameter values are best in digit recognition. 

 

E. Parameters 

The following parameters should be kept constant 
throughout the study to provide a fair evaluation of each 
hyperparameter, listed in Fig.7: 

 

Constant Parameter 

Parameter Value 

Activation Function 
SoftMax– output layer 

ReLU (Rectified Linear Unit)– 
hidden layers 

Hidden layer 4 

Learning rate 0.1 

Batch size 100 

Optimizer Adam Optimizer 

   Fig. 7. Table of Constant Parameters. 

The following parameters will be examined and modified 
within this study. 

1) Number of Training Epochs: The training epochs 
represent the training iterations in the entire training 
dataset. It is important to strike a balance between enabling 
the model to converge to an accurate solution and avoiding 
underfitting or overfitting. Cross-validation and tracking 
validation accuracy processes should be performed to 
determine the optimal value of training. 

2) Dropout Rate: Dropout is an approach applied to 
minimize overfitting during the training process for a 
neural network. It drives the network to acquire more 
enhanced features instead of solely being dependent on a 
particular group of neurons. The dropout rate is the 
hyperparameter specifying the probability that a neuron 
may be deactivated during training. The dropout rate has a 
value range between 0 and 1, with 0 denoting no dropout, 
indicating every neuron is active, and 1 denoting entirely 
dropout, indicating all neurons are deactivated. 

                                IV. RESULT AND DISCUSSION 

A. Discussion on Implementation 

Generalization describes a model's ability to adapt and 
appropriately respond to previously unobserved, new data. 
To avoid overfitting and underfitting, it is significant to 
achieve the ideal balance between the complexity of the 
model and adaptability (Evelyn,2023). The project aimed to 
configure a model that strikes the right balance between 
overfitting and underfitting. Thus, the model can be trained 
to identify handwritten digits more accurately using the 
MNIST dataset. The original code is from Kaggle. Blocks 
of code that adjust the parameters have been developed to 
experiment on while keeping the others constant to see the 
results of the specific parameter clearly. The use of Google 
Colab makes this process easier, where the code can be 
modified by multiple people at the same time. Any changes 
are easily saved and run in real time. 

 

Fig. 8. Code to modify parameters. 

Fig. 8 is a sample of the code used to modify the two 
parameters chosen. The first highlighted block is where the 
dropout rate is changed while the second highlighted block 
is where the number of epochs is changed. Although the 
dropout rate can be modified separately for each layer, the 
same dropout rate is applied for all layers in order to get 
more consistent results for comparison and optimization. 
The rest of the code contains set parameters such as the 
number of neurons in the input layer, hidden layers, and 
output layer. It also has the activation function used for each 
layer, the learning rate, batch size, and optimizer used. The 
purpose of listing out these set parameters line by line is to 
give a picture that defines everything clearly. 

 

B. Results 

To find the optimal solution, parameters such as the number 
of epochs and dropout rate have been experimented with in 
this project. The main results that have been compared based 
on the training of the models are the accuracy and validation 
accuracy after the entire training is over. Both these results 
are utilized to ensure that the data does not go wrong, and a 
more detailed analysis is obtained. The average time taken 
per epoch of the models is roughly the same, showing a very 
consistent time that is likely attributed to the performance of 
Google Colab. 

Number of Epochs 

 
Fig. 9. Table of Results for Model trained with different number of epochs. 

In training neural network models, the number of epochs is a 
crucial modified parameter. Research shows that when 
trained for 23 epochs, the model achieves its best average 
accuracy of 98.77%. Fig 9. Shows the outcome is better than 
the default value of 20 epochs and the other number of 
epochs, demonstrating that more training improves the 
model’s overall accuracy. Underfitting and overfitting 
principles are implemented here as the model doesn’t learn 
complicated patterns in the data when the number of epochs 
is too low (for example: 14 or 17 epochs). On the other 
hand, the model is more likely to overfit if the number of 
epochs is too high (for example: 26 epochs). When a model 
learns training data excessively or deficiently, it leads to 
poor accuracy and begins to pick up unimportant features 
that cause it to perform poor data in recognizing digit. 
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Dropout Rate 

 
Fig. 10. Table of Results for Model trained with different dropout rates. 

 
Fig. 11. Line Chart (Final Accuracy vs Dropout Rate). 

The dropout rate determines the likelihood of neurons 
becoming inactive during each training iteration. Fig 10 and 
11 shows higher accuracy and validation are generated by 
lower dropout rates, such as 0.1 and 0.2, while greater 
dropout rates, such as 0.4 and 0.5. Based on average 
accuracy, the ideal dropout rate is 0.1, which results in an 
average accuracy of 98.80%. Compared to the default rate 
of 0.3, which has an average accuracy of 98.25%. The 
lowest dropout rate of 0.1 results in a maximum validation 
accuracy of 98.15%. That represents a significant 
improvement, the same as the validation accuracy. 
Deactivation takes part in the deactivation of neurons 
during training. Lower dropout rates such as 0.1 and 0.2 
keep more neurons active, allowing the model to retain and 
utilize a broader range of learned features. In contrast, 
higher dropout rates (0.4 and 0.5) deactivate a significant 
portion of neurons. The dropout rates must be balanced 
properly for a model to be generalized. The best option is to 
set a dropout rate of 0.1. to avoid overfitting and enhance 
the network's capability to generalize new data. In 
comparison to the default rate of 0.3, this rate results in a 
significant improvement in both average accuracy and 
validation accuracy. 

 

Cross Tuning 

After obtaining the best value to use for the number of 
epochs and dropout rate separately, the best value of the 
number of epochs will be tested with multiple different 
values of dropout rate and vice versa to confirm the chosen 
values for both modified parameters match one another 
well. This is because certain over- or underfitting problems 
that might take place can be prevented when modified 
parameters are considered individually. 

 

23 epochs with a 0.1-0.5 dropout rate 

 
Fig. 12. Table of Results for Model trained with different dropout rates 
with 23 epochs. 

Fig. 12 shows a significant amount of fluctuation in 
average accuracy when the dropout rate is changed. This 
indicates that having the right dropout rate can greatly 
affect the effectiveness of the model and its results. Based 
on the average accuracy, it is confirmed that a 0.1 dropout 

rate is optimal when paired with 23 epochs, proving that the 
greatest generalization performance is achieved with this 
configuration and adequately adapting to the training 
dataset while avoiding overfitting. This optimal model is 
efficiently trained across a reasonable number of epochs, 
while preventing high dropout that may hinder learning. 

 

0.1 dropout rate with 14-26 epochs 

 
Fig. 13. Table of Results for Model trained with different number of epochs 
with 0.1 dropout rate. 

Fig. 13 shows that the average accuracy is consistent across 
the 5 different training epochs. All the epochs' accuracy and 
validation scores are high, showing that the model is 
effective overall. This is indicative of the robustness and 
efficiency of the model with a 0.1 dropout rate. However, 20 
epochs and 26 epochs both achieve slightly high accuracy, 
therefore 23 epochs are taken as the optimum solution due to 
it being the average of them. This is to strike a balance to 
prevent overfitting, which could happen with more epochs, 
while ensuring the model has enough training iterations to 
achieve a good result. 

From both results obtained from cross tuning, the second 
model shows that when a dropout rate of 0.1 is used, the 
model's performance is unaffected by the number of epochs. 
This indicates that the number of epochs does not affect the 
results of the model as significantly as the dropout rate. This 
remarkable observation has proved that dropout rates serve 
as a more significant modified parameter than the number of 
epochs impacting the performance or accuracy of the model. 
The extensiveness of the model is directly affected by the 
dropout rate. The model may be unable to retain the training 
data (which can cause the risk of overfitting if there is 
excessive training data) if there is a greater dropout rate, 
which establishes more randomness and regularization. On 
the other hand, a model can retain more data and complexity 
when the dropout rate is lower.  

All in all, overfitting or underfitting can be successfully 
regulated by the dropout rate, irrespective of how many 
numbers of epochs there are. 

Both tables have confirmed that a 0.1 dropout rate is the 
most optimal solution when paired with 23 epochs. With this 
in consideration, the model K will be chosen as it has the 
highest average accuracy. The Digit Recognizer will be able 
to recognize the handwritten digit more accurately and 
possibly faster too. 
 

        V. CONCLUSION 

In this paper, it is demonstrated how the performance of 

neural network models for digit recognition to MNIST 

datasets can be improved by utilizing a comprehensive 

combination of methods and methodologies. From 

experimental results, it is found that the model K uses Adam 

Optimizer, 4 hidden layers with Dropout Layer, 0.1 learning 

rate, and 23 epochs get an average accuracy of 0.98715 

compared with other results this is the highest accuracy. The 

average time taken per epoch for model K is 3.3 seconds, 

which is a very short time, indicating a model that can be 

trained very fast and has high performance. This is especially 

crucial as performance speed is highly valued in this 

technological era. Compared to the other results, the result of 
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model K shows that the performance of neural network 

models has been improved to recognize MNIST datasets by 

changing the parameters of the model. Finally, it is possible 

to implement training with different optimizers such as 

Adamax and SMORMS3 to further improve the accuracy of 

the digit recognition (Amananandrai,2023). 
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