Jg’TI Journal of Applied Technology and Innovation (e -ISSN: 2600-7304) vol. 8, no. 1, (2024) 15

Enhancing Neural Network Models for
MNIST Digit Recognition

Vinnie Teh
School of Computing
Asia Pacific University of
Technology & Innovation (APU)
Kuala Lumpur, Malaysia
tp064168@mail.apu.edu.my

Edward Ding Hong Wai
School of Computing
Asia Pacific University of
Technology & Innovation (APU)
Kuala Lumpur, Malaysia
tp065396@mail.apu.edu.my

Chew Jin Cheng
School of Computing
Asia Pacific University of
Technology & Innovation (APU)
Kuala Lumpur, Malaysia
tp068740@mail.apu.edu.my

Jason Chin Yun Loong
School of Computing
Asia Pacific University of
Technology & Innovation (APU)
Kuala Lumpur, Malaysia

Liew Jie Yang
School of Computing
Asia Pacific University of
Technology & Innovation (APU)
Kuala Lumpur, Malaysia
tp069300@mail.apu.edu.my

Zailan Arabee bin Abdul Salam
School of Computing
Asia Pacific University of
Technology & Innovation (APU)
Kuala Lumpur, Malaysia

tp064353@mail.apu.edu.my

Abstract— Using the MNIST dataset, a standard in
computer vision, this study tries to improve neural networks'
digit recognition ability. Focusing on elements such as neural
network architecture, hyperparameters (dropout rate and
training epochs), and their effect on digit identification, it
examines a variety of methodologies and strategies. The study
identifies hyperparameter settings that significantly increase
accuracy. Results indicate that the model with the highest
accuracy, ranging from 80.96% to 98.67%, used the Adam
optimizer, four hidden layers with Dropout, 0.1 learning rate,
and 23 epochs. These discoveries improve MNIST digit
recognition and have wider ramifications, including those for
document analysis and financial transactions.

Keywords— Multilayer Perceptron,
Dropout Rate. Overfitting, Underfitting

Training Epochs,

I. INTRODUCTION

Recognizing handwritten digits remains a canonical
difficulty and a crucial milestone in the constantly changing
fields of deep learning and machine vision. The MNIST
dataset, an extended collection of 28x28 pixel grayscale
photographs showing handwritten numbers, has been used to
test the effectiveness of different machine-learning patterns.
This journal paper's main goal is to explore, innovate, and
improve the performance of neural network models for
MNIST digit recognition by utilizing a comprehensive
combination of methods and methodologies.

The MNIST dataset—often referred to as the "Hello
World" of deep learning—represents digit recognition
problems in the field of machine vision symbolically. This
dataset, which consists of 70,000 compiled samples of
handwritten digits from 0 to 9, has evolved into the
benchmark of choice for assessing the performance of
different machine learning techniques, particularly neural
networks.

The following factors merit careful consideration in the
pursuit of this goal: the architectural complexities, which
include the fine-grained control over learning dynamics
through the wise selection of dropout rates and training
epochs. The Multilayer Perceptron (MLP) and feedforward
neural network with numerous hidden layers, serves as the
fundamental tenet of this research. Based on the complexity
of its architecture, this decision enables us to tap into neural
networks' latent representational power for improved
discriminative ability.

Through algorithmic implementation, the expedition taken

in this research has travelled through the landscape of several
learning rules in hyperparameters guiding the neural network.
While holding constant parameters across all trials, such as
learning rate and number of hidden layer, we methodically
modified the dropout rate and number of training epochs to
investigate their effect on the neural network’s performance.

Furthermore, the journal article is, in essence, a
comprehensive investigation of the MNIST digit recognition
challenge with an uncompromising dedication to excellence.
The delicate coordination of hyperparameter optimization,
advanced training techniques, and neural network
architecture form the core of our methodology. With
implications across a wide range of areas, from automated
document analysis to the precision-driven world of financial
transactions, our findings, which have been hard documented
and analytically tested, are poised to redefine the state of the
art in MNIST digit recognition.

Il. LITERATURE REVIEW

In the context of digit recognition, the first paper proposes
the study of using a Random Forest Classifier (RFC) for digit
classification, it focuses on elevating the accuracy of results
with different hyperparameters based on the performance
criteria of stratified-k fold cross-validation. The study was
conducted from three key aspects which are the selection of
materials, implementation of algorithms and parameter
modification.

The random forest classifier was implemented using
Python programming on a device which uses Windows 11
pro with 12th Gen Intel Core i5-12600 processor and 16gb of
RAM. Testing was performed by using a handwritten digit
images dataset that contains 1797 images with 8x8 pixels
grayscale digit. Two algorithms were employed in these
papers which are decision tree and random forest. Decision
trees act as a foundation of building blocks in more complex
classification, while random forest used the majority voting
of decision trees to make predictions and addressed
overfitting effectively compared to a single decision tree. The
study by (Ngan et al., 2023) used one fixed parameter of
random_state and three hyperparameters of n_estimators,
max_depth, max_features by modifying four different values
on each to optimize the random forest classifier’s
performance in digit classification. While random_state
affects the producibility of the model, which is useful for
comparing the effects of other attributes, n_estimators affects
the diversity and accuracy of the model, which in charge of

mailto:tp064168@mail.apu.edu.my
mailto:tp064353@mail.apu.edu.my
mailto:tp065396@mail.apu.edu.my
mailto:tp069300@mail.apu.edu.my
mailto:tp068740@mail.apu.edu.my
mailto:zailan@apu.edu.my

JETI Journal of Applied Technology and Innovation (e -ISSN: 2600-7304) vol. 8, no. 1, (2024) 16

capture more patterns in the data, however might also leads
to overfitting if the value is set to be too high, max_depth
affects its generalization of the model as higher value brings
more accuracy and creates deeper decision tree but also
leading to the risk of overfitting at the same time,
max_features provides more features to choose when
building decision tree as lower value of this can reduce
overfitting but reduces accuracy at the same time. Stratified
K-folds cross-validation that divides the dataset into a more
balanced subsets is being used as its performance criteria to
ensure a fair evaluation of the model, addressing potential
class imbalance issues.

The result of testing the three parameters with different
values resulting the importance of hyperparameter
adjustment, especially the sole setting of each
hyperparameters as 125 in n_estimators, max_dept to
‘None’ and max_features to 4 got the higher accuracy. It is
worth noting that these parameters weren’t the highest nor
lowest value that were used for testing, highlighting that
simply using higher or lower value doesn’t guarantee
improved accuracy. Interestingly, even when these
parameters that achieved the highest accuracy individually
were combined, they did not yield the highest overall
accuracy, showecasing that each attribute has a unique impact
on the model’s performance. In summary, hyperparameter
adjustment significantly enhances digit recognition accuracy
using Random Forest Classification. This approach
contributes to making a model to achieve the best result
without being too time-consuming or costly, making it a
suitable approach for newcomers in machine learning
practitioners.

In parallel, the literature review by Lead et al. (2021)
focuses on finding the most accurate architecture for the task
by investigating the handwritten digit recognition based on
various pre-trained deep learning models. Five pre-trained
models from PyTorch were being applied to the study which
are from GoogLeNet, MobileNet v2, ResNet-50, ResNeXt-50
and Wide ResNet-50 using a MINST dataset.

After pre-processed with the data, Lead et.al (Lead et al.,
2021) applied 70000 28x28 pixels of grayscales images
dataset that contained labelled images from 0 to 9 in the
testing part. The dataset was split into two datasets, 60000 for
training and 10000 for testing images on digit classification.
During the training process, CNN Resnet-18 was used for its
training architecture and algorithm, it processes input images,
predicts the outcomes, and then learns to improve from the
feedback by comparing the result with the actual one. The
evaluation involved using confusion matrices to analyze the
top 9 loss images and found that the confusion patterns are
quite similar with other digits. The result of accuracy and
training time is being considered while evaluating these
models and it returned that the Wide ResNet-50 achieved the
least error percentage on Top-1 error (0.5278%) and Top-5
error (0.0079%). To be noted, MobileNet v2 also achieved a
commendable top-1 error rate of 0.5754% and top-5 error
(0.0079%) in just 498 seconds. The transition to CIFAR-10
dataset with same configuration revealed that ResNeXt-50
achieved the least error rate on Top-1 error(14.0460%) and
Top-5 error(0.5300%). To be noted, MobileNet v2 performed
its versatility by achieving a top-1 error rate of 15.2780% and
top-5 rate of 0.5380% with a smaller model size and faster
training.

Based on the outcome, it emphasizes how neural
network architecture for digit identification is always
evolving. The objective of study which is to enhance the
neural network for MNIST digit recognition was aligned with
Mobile v2's consistent performance across datasets which

demonstrated its potential for further investigation of digit
recognition.

I1l. MATERIALS AND METHODS

A. Selection of Materials

1) Source code: The Python programming language,
renowned for deep learning research, has been used for the
study. Besides, Python has a large selection of tools and
frameworks made particularly for developing neural
networks and machine learning algorithms. The Pandas
library handled data manipulation, which was used to load
and handle datasets, rendering it simpler to deal with the
MNIST dataset and carry out data preprocessing while
NumPy enabled numerical computations to carry out
normalization. Keras, which has TensorFlow as its backend
and benefits from the fast calculation capabilities of
TensorFlow, allowed for the flexible development of neural
network models to evaluate architectural alternatives for digit
classification.

2) Machine: A computer with Windows 11 (Version 22H2)
operating system equipped with AMD Ryzen 7 Pro 3700U w
processor and 16 GB of installed RAM was used to carry out
this study.

3) Dataset: The MNIST dataset has been used in this study
because this dataset serves as a model for several image
classification schemes, especially handwritten digit
recognition. According to Daniel (2022), MNIST was created
from an even bigger dataset, the NIST Special Database 19,
that comprises handwritten uppercase and lowercase
characters in addition to numbers. Besides, MNIST
comprises 60000 handwritten digits for training the machine
learning model, and 10000 handwritten digits for model
testing. Each digit in the MNIST is retained as a 28x28 pixel
grayscale image, and each data has 784 features.

B. Selection of Methods

1) Data Loading: The training and testing datasets (train.csv
and test.csv) are loaded using Pandas.

2) Data Preprocessing and Transformation: The label will be
separated from the feature data in the training dataset. 20%
of the data in the training dataset will be randomly selected
to implement cross-validation to avoid overfitting. The
remaining 80% of the data will be the training sets to train
the neural network model.

3) Neural Network Architecture Implementation: The neural
network's input layer includes 784 units (pixel units in a
28x28 image). For multi-class classification, the output layer
has ten units, which are digits 0-9.

4) Model Training: Several parameters will be modified to
train the Neural Network model and improve the
performance of the model. To reduce an identified loss
function, the internal model parameters which is weights and
biases must be adjusted repeatedly during the training phase.
The training data will be tested, and the validation data will
be fitted into the model constructed.

5) Model Evaluation: The accuracy, loss, validation loss,
validation accuracy and times per epoch will be observed.

Accuracy: The percentage of accurately predicted labels in
the test dataset.

Loss: The percentage difference between the predicted label

Jg’TI Journal of Applied Technoloay and Innovation (e -1SSN: 2600-7304) vol. 8, no. 1, (2024) 17

and the actual label in the test dataset.

Validation Accuracy: The percentage of accurately
predicted labels with the target label in the validation
dataset.

Validation Loss: The percentage difference between the
predicted label and the target label in the validation dataset.

Times per Epoch: Amount of time that is required to
complete each Epoch in seconds.

6) Prediction: On the test dataset, predictions are made using
the model that performs the best. The trained neural network
is used to make predictions on a different test dataset, and
the predicted labels and image 1Ds will be saved.

C. Algorithm Implementation

Neural networks are systems of interlinked neurons that
resemble the layers of the human brain. Computers may use
this to build an adaptive framework that constantly learns
from errors.

1) Feedforward Neural Network: A Feedforward Neural
Network is an Artificial Neural Network that does not have
looping nodes. Input data is fed into the network during the
forward pass, and computations pass via the hidden layers
to produce an output in output nodes. The network's
prediction or categorization is represented in the output.
Feedforward neural networks are trained by employing
supervised learning. There are several processes the neural
network performs to compute the data. Firstly, input is
multiplied by the given weight values. For example, x1*w1
= 2*3 = 6. The demands for the signal intensity of the
neuron are established by weights. The impact of input data
on the result will be determined by weight value. Secondly,
add the bias value to the product value in the prior phase.
For example, 6+b1 = 6+1 = 7. Thirdly, the weighted sum
will be calculated. Fourthly, by passing the weighted sum
to an activation function, the corresponding weighted sum
is converted into an output stream (Vihar, 2022). Fig.1
illustrates how the Feedforward Neural Network can learn
to categorize the handwritten digits in the MNIST dataset
by following these steps.

Fig. 1. Recognizing Digits using Feedforward Neural Network.
(Rubentak,2023).

A feedforward neural network's mean square error cost
function shown in Fig. 2 is a smooth metric used to adjust
weights and biases, allowing for incremental improvements
for better performance with minimal effect on classified
data points.

1)
Cow by = v - all®.

Fig. 2. Mean Square Error Cost Function (Turing,2023).

Cross Entropy Loss shown in Fig. 3 and Fig. 4 is used to

compute the loss function in neural networks, which
determines whether learning process adjustments are
necessary.

Cross Entropy Loss:

L(©) = log (i)) _lfy 1
—log(l-93) ify=0

Fig. 3. Cross Entropy Loss (Turing,2023).

2) Multilayer Perceptron: A multilayer perceptron refers to an
Artificial Neural Network that comprises input, output, and
multiple hidden layers with numerous neurons to learn more
complex patterns. “Perceptron” means the capacity to see and
comprehend images, which mimics human perception
(Carolina, 2021). However, the single-neuron perceptron
cannot analyze non-linear data. Hence, this issue was resolved
upon the introduction of the Multilayer Perceptron. Multilayer
perceptron neurons can employ any activation function, as
opposed to Perceptron neurons, which demand an activation
function that imposes a threshold. The Multilayer Perceptron
continually adjusts the network weights and lowers the cost
function using backpropagation as its learning approach. The
Multilayer Perceptron determines the Mean Squared Error
gradient as seen in Fig. 5 for every input and output set
throughout every cycle after computing the weighted sums
and applying them through all layers. The weights of the first
hidden layer are subsequently modified using this gradient
result, thereby propagating it back to the neural network's
starting point.

5 &

L

Fig. 4. Cross Entropy Loss (Carolina, 2021).

dF

dwy

Ay(t) = —¢

+ aly-1

Fig. 5. Gradient of Mean Squared Error (Carolina, 2021).

3) Optimizer Algorithm: Adam Optimizer

Adam is an approach for calculating adaptive learning rates
that applies individual learning rates to different parameters.
This is accomplished by gauging the gradient's first and
second moments, which are then used to modify the learning
rate for each weight.

Fig. 6. Formula to estimate the moments adjust for bias (Vitaly, 2018).

JTI Journal of Applied Technology and Innovation (e -ISSN: 2600-7304) vol. 8, no. 1 (2024) 18

D. Purpose

The main purpose of this study is to improve the Neural
Network Model to accurately identify handwritten digits.
Several neural network models are trained using various
modified parameters in the Neural Network algorithm to
evaluate the effectiveness of various models and determine
which parameter values are best in digit recognition.

E. Parameters

The following parameters should be Kkept constant
throughout the study to provide a fair evaluation of each
hyperparameter, listed in Fig.7:

Constant Parameter

Parameter Value

SoftMax— output layer

ReLU (Rectified Linear Unit)—
hidden layers

Activation Function

Hidden layer 4
Learning rate 0.1
Batch size 100
Optimizer Adam Optimizer

Fig. 7. Table of Constant Parameters.

The following parameters will be examined and modified
within this study.

1) Number of Training Epochs: The training epochs
represent the training iterations in the entire training
dataset. It is important to strike a balance between enabling
the model to converge to an accurate solution and avoiding
underfitting or overfitting. Cross-validation and tracking
validation accuracy processes should be performed to
determine the optimal value of training.

2) Dropout Rate: Dropout is an approach applied to
minimize overfitting during the training process for a
neural network. It drives the network to acquire more
enhanced features instead of solely being dependent on a
particular group of neurons. The dropout rate is the
hyperparameter specifying the probability that a neuron
may be deactivated during training. The dropout rate has a
value range between 0 and 1, with 0 denoting no dropout,
indicating every neuron is active, and 1 denoting entirely
dropout, indicating all neurons are deactivated.

IV. RESULT AND DISCUSSION

A. Discussion on Implementation

Generalization describes a model's ability to adapt and
appropriately respond to previously unobserved, new data.
To avoid overfitting and underfitting, it is significant to
achieve the ideal balance between the complexity of the
model and adaptability (Evelyn,2023). The project aimed to
configure a model that strikes the right balance between
overfitting and underfitting. Thus, the model can be trained
to identify handwritten digits more accurately using the
MNIST dataset. The original code is from Kaggle. Blocks
of code that adjust the parameters have been developed to
experiment on while keeping the others constant to see the
results of the specific parameter clearly. The use of Google
Colab makes this process easier, where the code can be
modified by multiple people at the same time. Any changes
are easily saved and run in real time.

Fig. 8. Code to modify parameters.

Fig. 8 is a sample of the code used to modify the two
parameters chosen. The first highlighted block is where the
dropout rate is changed while the second highlighted block
is where the number of epochs is changed. Although the
dropout rate can be modified separately for each layer, the
same dropout rate is applied for all layers in order to get
more consistent results for comparison and optimization.
The rest of the code contains set parameters such as the
number of neurons in the input layer, hidden layers, and
output layer. It also has the activation function used for each
layer, the learning rate, batch size, and optimizer used. The
purpose of listing out these set parameters line by line is to
give a picture that defines everything clearly.

B. Results

To find the optimal solution, parameters such as the number
of epochs and dropout rate have been experimented with in
this project. The main results that have been compared based
on the training of the models are the accuracy and validation
accuracy after the entire training is over. Both these results
are utilized to ensure that the data does not go wrong, and a
more detailed analysis is obtained. The average time taken
per epoch of the models is roughly the same, showing a very
consistent time that is likely attributed to the performance of
Google Colab.

Number of Epochs

Model | Number of epochs

Accuracy Validation Accuracy | Average Accuracy

A 14 0.9946 0.9721 0.98335
B 17 0.9957 0.9771 0.98640
c 20 (Default) 0.9940 0.9724 0.98320
D 23 0.9967 0.9786 0.98765
E 26 0.9974 0.9761 0.98675

Fig. 9. Table of Results for Model trained with different number of epochs.

In training neural network models, the number of epochs is a
crucial modified parameter. Research shows that when
trained for 23 epochs, the model achieves its best average
accuracy of 98.77%. Fig 9. Shows the outcome is better than
the default value of 20 epochs and the other number of
epochs, demonstrating that more training improves the
model’s overall accuracy. Underfitting and overfitting
principles are implemented here as the model doesn’t learn
complicated patterns in the data when the number of epochs
is too low (for example: 14 or 17 epochs). On the other
hand, the model is more likely to overfit if the number of
epochs is too high (for example: 26 epochs). When a model
learns training data excessively or deficiently, it leads to
poor accuracy and begins to pick up unimportant features
that cause it to perform poor data in recognizing digit.

JETI Journal of Applied Technology and Innovation (e -ISSN: 2600-7304) vol. 8, no. 1 (2024) 19

Dropout Rate

Model

Dropout rate

Accuracy

Validation Accuracy

Average Accuracy

0.1

09945

09813

098800

0.2

0.9920

0.9789

0.98545

0.9864

0.9786

0.98250

0.3 (Default)
0.4

0.9803

0.9758

0.97805

|||

0.5

0.9723

0.9754

0.97385

Fig. 10. Table of Results for Model trained with different dropout rates.

Final Accuracy vs. Dropout Rate

Fig. 11. Line Chart (Final Accuracy vs Dropout Rate).

The dropout rate determines the likelihood of neurons
becoming inactive during each training iteration. Fig 10 and
11 shows higher accuracy and validation are generated by
lower dropout rates, such as 0.1 and 0.2, while greater
dropout rates, such as 0.4 and 0.5. Based on average
accuracy, the ideal dropout rate is 0.1, which results in an
average accuracy of 98.80%. Compared to the default rate
of 0.3, which has an average accuracy of 98.25%. The
lowest dropout rate of 0.1 results in a maximum validation
accuracy of 98.15%. That represents a significant
improvement, the same as the validation accuracy.
Deactivation takes part in the deactivation of neurons
during training. Lower dropout rates such as 0.1 and 0.2
keep more neurons active, allowing the model to retain and
utilize a broader range of learned features. In contrast,
higher dropout rates (0.4 and 0.5) deactivate a significant
portion of neurons. The dropout rates must be balanced
properly for a model to be generalized. The best option is to
set a dropout rate of 0.1. to avoid overfitting and enhance
the network's capability to generalize new data. In
comparison to the default rate of 0.3, this rate results in a
significant improvement in both average accuracy and
validation accuracy.

Cross Tuning

After obtaining the best value to use for the number of
epochs and dropout rate separately, the best value of the
number of epochs will be tested with multiple different
values of dropout rate and vice versa to confirm the chosen
values for both modified parameters match one another
well. This is because certain over- or underfitting problems
that might take place can be prevented when modified
parameters are considered individually.

23 epochs with a 0.1-0.5 dropout rate

Model | Dropout rate with 23 epochs Accuracy \:hdam'r} Average
Accuracy Accuracy
K 0.1 0.9944 0.9790 0.98715
L 0.2 0.9926 0.9785 0.98553
M 0.3 0.9875 0.9807 0.98410
N 0.4 0.9821 0.9775 0.07980
4] 0.3 0.9730 0.9764 0.97470

Fig. 12. Table of Results for Model trained with different dropout rates
with 23 epochs.

Fig. 12 shows a significant amount of fluctuation in
average accuracy when the dropout rate is changed. This
indicates that having the right dropout rate can greatly
affect the effectiveness of the model and its results. Based
on the average accuracy, it is confirmed that a 0.1 dropout

rate is optimal when paired with 23 epochs, proving that the
greatest generalization performance is achieved with this
configuration and adequately adapting to the training
dataset while avoiding overfitting. This optimal model is
efficiently trained across a reasonable number of epochs,
while preventing high dropout that may hinder learning.

0.1 dropout rate with 14-26 epochs

Model Number of epochs with 0.1 Aceuracy Ay ﬂ]lﬂﬂtll)l-l A\'erage_
dropout rate Accuracy Accuracy

P 14 0.8920 0.9748 0.98340

Q 17 0.6920 0.9783 0.98560

R 20 0.0946 0.9785 0.98655

s 23 0.9937 0.9773 0.98550

T 26 0.9952 0.9780 0.98660

Fig. 13. Table of Results for Model trained with different number of epochs
with 0.1 dropout rate.

Fig. 13 shows that the average accuracy is consistent across
the 5 different training epochs. All the epochs' accuracy and
validation scores are high, showing that the model is
effective overall. This is indicative of the robustness and
efficiency of the model with a 0.1 dropout rate. However, 20
epochs and 26 epochs both achieve slightly high accuracy,
therefore 23 epochs are taken as the optimum solution due to
it being the average of them. This is to strike a balance to
prevent overfitting, which could happen with more epochs,
while ensuring the model has enough training iterations to
achieve a good result.

From both results obtained from cross tuning, the second
model shows that when a dropout rate of 0.1 is used, the
model's performance is unaffected by the number of epochs.
This indicates that the number of epochs does not affect the
results of the model as significantly as the dropout rate. This
remarkable observation has proved that dropout rates serve
as a more significant modified parameter than the number of
epochs impacting the performance or accuracy of the model.
The extensiveness of the model is directly affected by the
dropout rate. The model may be unable to retain the training
data (which can cause the risk of overfitting if there is
excessive training data) if there is a greater dropout rate,
which establishes more randomness and regularization. On
the other hand, a model can retain more data and complexity
when the dropout rate is lower.

All in all, overfitting or underfitting can be successfully
regulated by the dropout rate, irrespective of how many
numbers of epochs there are.

Both tables have confirmed that a 0.1 dropout rate is the
most optimal solution when paired with 23 epochs. With this
in consideration, the model K will be chosen as it has the
highest average accuracy. The Digit Recognizer will be able
to recognize the handwritten digit more accurately and
possibly faster too.

V. CONCLUSION

In this paper, it is demonstrated how the performance of
neural network models for digit recognition to MNIST
datasets can be improved by utilizing a comprehensive
combination of methods and methodologies. From
experimental results, it is found that the model K uses Adam
Optimizer, 4 hidden layers with Dropout Layer, 0.1 learning
rate, and 23 epochs get an average accuracy of 0.98715
compared with other results this is the highest accuracy. The
average time taken per epoch for model K is 3.3 seconds,
which is a very short time, indicating a model that can be
trained very fast and has high performance. This is especially
crucial as performance speed is highly valued in this
technological era. Compared to the other results, the result of

JETI Journal of Applied Technology and Innovation (e -ISSN: 2600-7304) vol. 8, no. 1 (2024) 20

model K shows that the performance of neural network
models has been improved to recognize MNIST datasets by
changing the parameters of the model. Finally, it is possible
to implement training with different optimizers such as
Adamax and SMORMSS3 to further improve the accuracy of
the digit recognition (Amananandrai,2023).

REFERENCES

Ngan, J.F., Keong, Y.Q., Raymond, J.M.C., Wong, K.W.,
Gan J.X. (2023). Digital Classification using Random
Forest Classifier. Journal of Applied Technology and
Innovation,7(3),1-6.
http://jati.sites.apiit.edu.my/files/2023/07/Volume7_lss
ue3_Paperll 2023.pdf

Lead, M.S., Brennan, B.C.C., Gwo, Y. T. & Hui, T.C.
(2021). MNIST handwritten digit recognition with
different CNN architectures. Journal of Applied
Technology and Innovation,5(1),1-4.
https://dif7uuh3zqgcps.cloudfront.net/wp-
content/uploads/sites/11/2021/01/17192613/MNIST -
Handwritten-Digit-Recognition-with-Different-CNN-
Architectures.pdf

Ng,B.L. (2017). MNIST Dataset: Digit Recognizer.
https://lwww.kaggle.com/code/ngbolin/mnist-dataset-
digit-recognizer/notebook.

Daniel .E. (2022). MNIST — Dataset of Handwritten Digits.
https://medium.com/mlearning-ai/mnist-dataset-of-
handwritten-digits-
f8cf28edafe#:~:text=MNIST%20is%20a%20widely%?2
Oused,standard%20benchmark%20for%20classification
%20tasks.

Carolina,B. (2021). Multilayer Perceptron Explained with a
Real-Life Example and Python Code: Sentiment
Analysis. https://towardsdatascience.com/multilayer-
perceptron-explained-with-a-real-life-example-and-
python-code-sentiment-analysis-
ch408ee93141#:~:text=A%20Multilayer%20Perceptron
%20has%20input,use%20any%?20arbitrary%20activatio
n%20function

Turing. (2023). Multilayer Perceptron Explained with a
Real-Life Example and Python Code: Sentiment
Analysis. https://www.turing.com/kb/mathematical-
formulation-of-feed-forward-neural-network

Vitaly, B.(2018). Adam — latest trends in deep learning
optimization. https://towardsdatascience.com/adam-
latest-trends-in-deep-learning-optimization-
6be9a291375¢

Vihar. (2023). Feedforward Neural Networks: A Quick
Primer for Deep Learning. https://builtin.com/data-
science/feedforward-neural-network-intro

Evelyn, M.(2023). What Is Generalization In Machine
Learning?. https://magnimindacademy.com/blog/what-
is-generalization-in-machine-learning/

Rubentak. (2023). Understanding Feed Forward Neural
Networks with MNIST Dataset.
https://magnimindacademy.com/blog/what-is-

generalization-in-machine-learning/

Amananandrai. (2023). 10 famous Machine Learning
Optimizers. https://dev.to/amananandrai/10-famous-
machine-learning-optimizers-1e22

http://jati.sites.apiit.edu.my/files/2023/07/Volume7_Issue3_Paper11_2023.pdf
http://jati.sites.apiit.edu.my/files/2023/07/Volume7_Issue3_Paper11_2023.pdf
https://dif7uuh3zqcps.cloudfront.net/wp-content/uploads/sites/11/2021/01/17192613/MNIST-Handwritten-Digit-Recognition-with-Different-CNN-Architectures.pdf
https://dif7uuh3zqcps.cloudfront.net/wp-content/uploads/sites/11/2021/01/17192613/MNIST-Handwritten-Digit-Recognition-with-Different-CNN-Architectures.pdf
https://dif7uuh3zqcps.cloudfront.net/wp-content/uploads/sites/11/2021/01/17192613/MNIST-Handwritten-Digit-Recognition-with-Different-CNN-Architectures.pdf
https://dif7uuh3zqcps.cloudfront.net/wp-content/uploads/sites/11/2021/01/17192613/MNIST-Handwritten-Digit-Recognition-with-Different-CNN-Architectures.pdf
https://www.kaggle.com/code/ngbolin/mnist-dataset-digit-recognizer/notebook
https://www.kaggle.com/code/ngbolin/mnist-dataset-digit-recognizer/notebook
https://medium.com/mlearning-ai/mnist-dataset-of-handwritten-digits-f8cf28edafe#:~:text=MNIST%20is%20a%20widely%20used,standard%20benchmark%20for%20classification%20tasks
https://medium.com/mlearning-ai/mnist-dataset-of-handwritten-digits-f8cf28edafe#:~:text=MNIST%20is%20a%20widely%20used,standard%20benchmark%20for%20classification%20tasks
https://medium.com/mlearning-ai/mnist-dataset-of-handwritten-digits-f8cf28edafe#:~:text=MNIST%20is%20a%20widely%20used,standard%20benchmark%20for%20classification%20tasks
https://medium.com/mlearning-ai/mnist-dataset-of-handwritten-digits-f8cf28edafe#:~:text=MNIST%20is%20a%20widely%20used,standard%20benchmark%20for%20classification%20tasks
https://medium.com/mlearning-ai/mnist-dataset-of-handwritten-digits-f8cf28edafe#:~:text=MNIST%20is%20a%20widely%20used,standard%20benchmark%20for%20classification%20tasks
https://towardsdatascience.com/multilayer-perceptron-explained-with-a-real-life-example-and-python-code-sentiment-analysis-cb408ee93141#:~:text=A%20Multilayer%20Perceptron%20has%20input,use%20any%20arbitrary%20activation%20function
https://towardsdatascience.com/multilayer-perceptron-explained-with-a-real-life-example-and-python-code-sentiment-analysis-cb408ee93141#:~:text=A%20Multilayer%20Perceptron%20has%20input,use%20any%20arbitrary%20activation%20function
https://towardsdatascience.com/multilayer-perceptron-explained-with-a-real-life-example-and-python-code-sentiment-analysis-cb408ee93141#:~:text=A%20Multilayer%20Perceptron%20has%20input,use%20any%20arbitrary%20activation%20function
https://towardsdatascience.com/multilayer-perceptron-explained-with-a-real-life-example-and-python-code-sentiment-analysis-cb408ee93141#:~:text=A%20Multilayer%20Perceptron%20has%20input,use%20any%20arbitrary%20activation%20function
https://towardsdatascience.com/multilayer-perceptron-explained-with-a-real-life-example-and-python-code-sentiment-analysis-cb408ee93141#:~:text=A%20Multilayer%20Perceptron%20has%20input,use%20any%20arbitrary%20activation%20function
https://towardsdatascience.com/multilayer-perceptron-explained-with-a-real-life-example-and-python-code-sentiment-analysis-cb408ee93141#:~:text=A%20Multilayer%20Perceptron%20has%20input,use%20any%20arbitrary%20activation%20function
https://www.turing.com/kb/mathematical-formulation-of-feed-forward-neural-network
https://www.turing.com/kb/mathematical-formulation-of-feed-forward-neural-network
https://towardsdatascience.com/adam-latest-trends-in-deep-learning-optimization-6be9a291375c
https://towardsdatascience.com/adam-latest-trends-in-deep-learning-optimization-6be9a291375c
https://towardsdatascience.com/adam-latest-trends-in-deep-learning-optimization-6be9a291375c
https://builtin.com/data-science/feedforward-neural-network-intro
https://builtin.com/data-science/feedforward-neural-network-intro
https://magnimindacademy.com/blog/what-is-generalization-in-machine-learning/
https://magnimindacademy.com/blog/what-is-generalization-in-machine-learning/
https://magnimindacademy.com/blog/what-is-generalization-in-machine-learning/
https://magnimindacademy.com/blog/what-is-generalization-in-machine-learning/
https://dev.to/amananandrai/10-famous-machine-learning-optimizers-1e22
https://dev.to/amananandrai/10-famous-machine-learning-optimizers-1e22

