JATI Journal of Applied Technology and Innovation (e -1ISSN: 2600-7304) vol. 8, no. 1 (2024)

Training Flappy Bird with Deep Q Network and
SARSA

Choo Huan Long
School of computing
Asia Pacific University of Technology
and Innovation (APU)
Kuala Lumpur, Malaysia
tp060974@mail.apu.edu.my

Liew Wen Heng
School of computing
Asia Pacific University of Technology
and Innovation (APU)
Kuala Lumpur, Malaysia
tp075352@mail.apu.edu.my

Wong Ying Cheng
School of computing
Asia Pacific University of Technology
and Innovation (APU)
Kuala Lumpur, Malaysia
tp062394@mail.apu.edu.my

Yong Zhen Xing
School of computing
Asia Pacific University of Technology
and Innovation (APU)
Kuala Lumpur, Malaysia
tp068733@mail.apu.edu.my

Abstract— Deep Q-Network (DQN) is implemented in this
Flappy Bird Game and the purpose of project is to tweak and
change the parameters to meet the desire outcome, which is
passing pipes if the agent can. DQN are employed into the
project to maximize cumulative reward while make decisions in
real-time gameplay. In this project, the Flappy Bird game
environment is set up along with the state and action spaces, the
Q-network, an experience replay buffer, and a training loop.
Using &-greedy policies, the agent learns to make the best
decisions by balancing exploration and exploitation. The
Deepmind’s experience replay was employed to enhance the
stability of learning. Adam optimizer and SDG optimizer is
monitoring the agent’s train/loss, and the o and & will be
modified to make a comparison between different parameters.

Keywords—Deep Q-Network, Epsilon-Greedy Exploration,
Adam Optimizer, SGD Optimizer, Flappy Bird

I. INTRODUCTION

In this Flappy Bird Project, Deep Q-Network has been
utilised and it is a convolutional neural network, trained with
avariant of Q-learning. By training the agent to play the flappy
bird game, the agent needs to know the input, which is raw
pixels to make output, value function that estimates future
rewards. The Deep Q-Network (DQN) algorithm was
developed by DeepMind in 2015. It was able to solve Atari
games by combining the deep neural networks and
reinforcement learning. The algorithm was developed by
enhancing a reinforcement learning (RL) algorithm called Q-
Learning with deep neural networks and a technique
called experience replay.

Il. LITERATURE REVIEW

A. Similar Project

There is a similar project that use deep reinforcement
learning in their project, which is Recommender system
enhancement using deep reinforcement learning. (Shuhrat, et
al., 2021) In this project, they use Deep reinforcement learning
in their recommendation system. Their objective is to provide
an efficient service, as include the user preference and
recommendation, to the user. The algorithm needs to learn the
user preferences and provide suggestions to the user.

Zailan Arabee Abdul Salam
School of computing
Asia Pacific University of Technology
and Innovation (APU)
Kuala Lumpur, Malaysia

zailan@apu.edu.m

Another similar project is using convolutional neural
network for fashion images classification (Tan et al., 2023). In
this project, they are using Convolutional Neural Network to
recognizing images. There are aiming to identify the
parameters will affect the accuracy of the trained model while
the model is doing the image classification.

B. Methodology/ Approach

In the deep reinforcement learning, non-RL based
recommendations and RL based recommendations are
implemented in their project. Non-RL based
recommendations is a recommendation that didn’t use
reinforcement learning to develop the suggestion approach,
included content-based recommendation. It uses static or time
as a feature. RL based recommendations refer to
recommendation system that use reinforcement learning to
develop the suggestion approach. It explores the probabilistic
and lead to decision-making, such as Bayesian strategies. The
agent needs to take decisions based their training, and
maximize for the rewards, to improve the performance,
balance exploration and exploitation. Artificial Neural
Network (Anns) serves as the basic for deep learning
approaches, and it is used to classify the images. There are
three layers, which is input, one hidden layer and output layer,
and the threshold are connected. The result should be able to
show the accuracy, loss, and training time for each batch of
images. Multiple of operations will be collected by
Convolutional Neural Network (CNN) and known as
convolution layers. The weight and biases will be
implemented to the CNN model and the input data will need
to be train. The feature maps will be the output of CNN model
will show in arrays.

C. Conclusion/ Recommendation

In deep reinforcement learning, they came out with
the conclusion that to create a hybrid engine it is important to
take into consideration that different approaches to develop
the recommendation system. In the literature, they
recommend using RL-based recommendation systems that
use reinforcement learning techniques to develop suggestion
approaches. Additionally, they recommended to make the use
of multiple exploration techniques in combination with the
Deep Q-Network. In CNN project, different table and data
were recorded and the table contain of training loss, accuracy,

mailto:tp060974@mail.apu.edu.my
mailto:tp068733@mail.apu.edu.my
mailto:tp075352@mail.apu.edu.my
mailto:zailan@apu.edu.my
mailto:tp062394@mail.apu.edu.my

JE‘JTI Journal of Applied Technology and Innovation (e -1ISSN: 2600-7304) vol. 8, no. 1 (2024) 30

testing loss and accuracy. The SGD optimizer were better than
Adam optimizer, and different batch size will produce
different of loss and accuracy. In conclusion, a perfect
parameter will significantly affect the model to produce the
outcomes.

I1l. MATERIALS AND METHODS

We utilized Python 3.10 as a tool to run the Flappy Bird
game that was packaged with Q-learning algorithm and Deep
Neural Network. We use the source code developed by uvipen
found in GitHub. We are able to modify the parameters and
train the agent to play Flappy Bird game thanks to the source
code. The link to the source code:
https://github.com/uvipen/Flappy-bird-deep-Q-learning-

pytorch

A. Deep Q-Network

Deep Q-Network is a type of reinforcement learning
algorithm, made up of Q-learning and Convolutional Neural
Networks with the goal of maximizing the reward. In the off-
policy Q-learning, Bellman Equation is utilized, and the Q
value is updated iteratively. Here is the Bellman Equation:

Qi+i(s,a) =r +ymax 4Qi(s’,a’)

s’: state of next frame

a’: action of next frame
r: reward
v: discount factor

Qi(s,a): the state and action at the i" iteration.

It can be seen that by updating it iteratively, it will
eventually get to the optimal Q-function. However, this can
lead to rote-learning, where the model memorized the states
instead of generalizing it. To prevent this, deep neural network
is used to create a model that can approximate the optimal Q-
function of unseen states as well (Appiah & Vare (2018). This
update ignores the unpredictability of state transitions in the
game.

Since the states (sequence of pipe) for every game are
different, generalizing the knowledge of every previous game
to future ones is crucial. In order to approximate the Q-values
for generally (for unseen states as well), Deep Q-Network is
built which takes a model, namely Qs and slowly discovers a
0 through iterations such that Qo(s,a) can approximate the Q
value for every state and action.

Since the input for the algorithm will be images,
convolutional neural network (CNN) is the most effective way
to represent the Q-function as it is very good at extracting
significant features from images (Pilcer, et.al. 2015). The
CNN is made up of three convolutional layers, two dense
layers, with linear functions and Rectified Linear Units
(ReLU). It takes 4 consecutive game screens as input to
estimate the Q-value for actions a=0 (do nothing) and a=1

(jump).
By utilizing gradient descent on loss function during

training, the weights of the neural network can be updated.
The loss function is defined as:

loss(i) = 1/2 [ri + max o (Q(s’, @) — Q(si , &)]?

The goal is to minimize the loss function by modifying the
parameters of the network iteratively. A good exploration
technique, expressed by the parameter ¢ (epsilon), is crucial
for effective training. During training, the agent will choose
an action based on probability € or perform the action with the
greatest Q-value.

B. Experience Replay

We employed Deepmind’s experience replay method to
enhance the stability and convergence of Q-value by the
approximation of Q-function over time. The last experiences,
which are consist of

Si, i, I, Si+1

will be stored in a memory buffer that has a fixed capacity.
The oldest experiences will be discarded when the storage is
full to make space for new experiences. A batch experiences
in replay memory are sampled randomly when training the
neural network through gradient descent instead of using them
in the order that they are collected (Pilcer, et.al. 2015). This
can stabilize training as it breaks the temporal correlation
between successive experiences. The loss is determined by
comparing the predicted Q-values for the sampled experiences
with the target Q-values, which encourages the neural network
to approximate an optimal Q-function. The code for
experience replay memory buffer is shown in Fig. 1.

C. Epsilon-Greedy Exploration

We started off by implementing an ~ epsilon greedy

parser.add_argument("--nun ers

parser.add argument("-

t, default-50000,
1 testing phases™)

Fig. 1: Source code of experience replay

strategy as we required some way to initially explore some
state space, that is, choosing a random action with probability
¢ (initial epsilon), otherwise perform the action that
maximizes the Q-function (Tran, 2020).

The ¢ is initialized by --initial_epsilon as 0.99, indicating
that there is a 99% chance of exploration and 1% chance of
exploitation at the beginning of the training as seen in Fig. 2.

parser.add argument("--initial epsilon"”, type=float, default=0.99)

final epsilon”, type=float, default=1e-4)

parser.add argument ("

Fig. 2: Source code of epsilon

As training progresses, the epsilon is annealed linearly
over time, which means it decreases linearly over time from
initial epsilon to final epsilon. This is done to shift the agent’s
focus to exploitation from exploration over the training period.
The code where this is implemented is shown in Fig. 3:

* (opt.initial epsilon - opt.final epsilon

/ opt.num_iters)

Fig. 3: Source code for exploration or exploitation

D. Adam Optimizer (Adaptive Moment Optimizer)

Adam Optimizer algorithm automatically adjusts the
learning rates for each parameter individually based on past
gradient information, which regularizes and optimizes the
parameters and enables the model to learn more effectively
and converge faster. It helps to prevent the model from getting

https://github.com/uvipen/Flappy-bird-deep-Q-learning-pytorch
https://github.com/uvipen/Flappy-bird-deep-Q-learning-pytorch

JTI Journal of Applied Technology and Innovation (e -1ISSN: 2600-7304) vol. 8, no. 1 (2024) 31

stuck in local minima during the training due to complicated
and uneven structure of the loss landscape. The inclusion of
momentum term speeds up the process of gradient descent,
allowing a faster convergence (Jiang, et al. 2020).

IV. RESULT

A. Optimizer

By keeping the a value at 0.1, y value of 0.99, initial &
greedy at 0.9, the loss graphs of the results are shown below.
Figure 4 indicates the loss graph of using Adam optimizer
while Figure 5 represents the loss graph of using SGD
optimizer.

As shown in Fig. 4, we can observe that the loss value is
gradually decreasing, the big fall is clearly started at around
3500 iterations and decreased steadily until it reached
convergence at around 5000 iterations. This means that the
parameters provided are effective for training the agent.

In Fig. 5, the SGD optimizer costs more iterations to
observe a convergence trend, which is started at around 4800
iterations and reaches convergence at around 5500 iterations.
However, we observe that there are multiple spikes after the
model reached convergence, which are at around 6100, 9500,
13000 iterations. The reason for sudden spike to occur may be
the €& greedy approach that the agent switches from
exploitation to exploration which will increase the loss value.
Besides, the model of SGD optimizer is much closer to the
convergence compared to the ADAM optimizer.

|

b

Fig. 4: Adam Optimizer Loss Graph

Fig. 5: SGD Optimizer Loss Graph

B. Learning rate (o)

In Fig. 6, the graph is scores versus iterations with two
different a values of model, blue line indicates 0.1 o value,
while the orange line indicates 0.01 o value. We can observe

that both models have similar trends which is plateau
occurred. This may be because other parameters are affecting
the stability for the model to obtain scores. Besides, the o
value of 0.1 increases faster than the 0.01 a value which means
that the higher o value allows the agents to gain more scores
in shorter iterations.

Fig. 6: Learning rate Graph

C. Epsilon (¢) Value

In Fig. 7, the graph is score versus iteration with two
different & values which are 0.5, indicated by the blue line and
the grey line representing 0.9 € value. The starting point for
model to obtain score is at around 1700 iterations for 0.5 ¢
value while the 0.9 ¢ value started at around 7200 iterations.
This is because the higher € value tend to explore more state
in the environment before change to exploitation phase to
maximize the reward. Besides, we can notice that both models
have a much bigger curve began from 14000 iterations, before
that the curve of models are much slower.

[A+ scroll o zoom |

Fig. 7: Epsilon (¢) Graph

V. CONCLUSIONS

However, the data given to the algorithm highly influences
the run-time, but we are still able to receive a meaningful
result in a limited timeframe even though it will take long
training model time. While we were tweaking with the
algorithm, the appropriate parameters were implemented.
The expectation and result with the training model was met
within a short learning time, which approximately 5 hours for
each training. Besides that, the comparison of Adam
optimizer provides a smoother and lower loss than SGD
optimizer, and higher learning rate make agent to achieve
higher score in a short iteration. As a result, the Q-Learning
algorithm can be continuously improved by tweaking a more
perfect parameter.

ACKNOWLEDGMENT

We would like to express our gratitude to uvipen for
providing DQN in Flappy Bird source code for us to test the
model.

REFERENCES

Shuhrat, B., Ramachandran, C. R., Abdul Salam, Z.A.
(2021). Recommender systems enhancement using deep
reinforcement learning. Journal of Applied Technology and
Innovation. vol. 5, no. 4. e -ISSN: 2600-7304

Tang, J.S., Tey, J.Y., Pu, J.Y., Por, J.X., Voon, P.Y., Abdul
Salam, Z.A. (2023) Convolutional Neural Network for
Fashion Images Classification (Fashion-MNIST). Journal of
Applied Technology and Innovation vol. 7, no. 4. e -ISSN:
2600-7304

JE‘JTI Journal of Applied Technology and Innovation (e -1ISSN: 2600-7304) vol. 8, no. 1 (2024)

32

Pilcer, L.S., Hoorelbeke, A., D’andigne, A. (2018). Playing
Flappy Bird with Deep Reinforcement Learning. IEEE
Transactions on Neural Networks, 6.

Appiah, N., & Vare, S. (2018). Playing FlappyBird with Deep
Reinforcement Learning., 6.

Tran, T. V. (2020). FlapAl Bird: Training an Agent to Play
Flappy Bird Using Reinforcement Learning Techniques.
ArXiv, 13.

Jiang, X., Hu, B., Satapathy, S.C., Wang, S.H., Zhang, Y.D.
(2020). Fingerspelling Identification for Chinese Sign
Language via AlexNet-Based Transfer Learning and Adam
Optimizer. Scientific Programming.
https://doi.org/10.1155/2020/3291426

https://doi.org/10.1155/2020/3291426

