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Abstract— Deep Q-Network (DQN) is implemented in this 

Flappy Bird Game and the purpose of project is to tweak and 

change the parameters to meet the desire outcome, which is 

passing pipes if the agent can. DQN are employed into the 

project to maximize cumulative reward while make decisions in 

real-time gameplay. In this project, the Flappy Bird game 

environment is set up along with the state and action spaces, the 

Q-network, an experience replay buffer, and a training loop. 

Using ε-greedy policies, the agent learns to make the best 

decisions by balancing exploration and exploitation. The 

Deepmind’s experience replay was employed to enhance the 

stability of learning. Adam optimizer and SDG optimizer is 

monitoring the agent`s train/loss, and the α and ε will be 

modified to make a comparison between different parameters. 

Keywords—Deep Q-Network, Epsilon-Greedy Exploration, 

Adam Optimizer, SGD Optimizer, Flappy Bird 

I. INTRODUCTION 

In this Flappy Bird Project, Deep Q-Network has been 
utilised and it is a convolutional neural network, trained with 
a variant of Q-learning. By training the agent to play the flappy 
bird game, the agent needs to know the input, which is raw 
pixels to make output, value function that estimates future 
rewards. The Deep Q-Network (DQN) algorithm was 
developed by DeepMind in 2015. It was able to solve Atari 
games by combining the deep neural networks and 
reinforcement learning. The algorithm was developed by 
enhancing a reinforcement learning (RL) algorithm called Q-
Learning with deep neural networks and a technique 
called experience replay. 

II. LITERATURE REVIEW 

A. Similar Project 

There is a similar project that use deep reinforcement 
learning in their project, which is Recommender system 
enhancement using deep reinforcement learning. (Shuhrat, et 
al., 2021) In this project, they use Deep reinforcement learning 
in their recommendation system. Their objective is to provide 
an efficient service, as include the user preference and 
recommendation, to the user. The algorithm needs to learn the 
user preferences and provide suggestions to the user. 

Another similar project is using convolutional neural 
network for fashion images classification (Tan et al., 2023). In 
this project, they are using Convolutional Neural Network to 
recognizing images. There are aiming to identify the 
parameters will affect the accuracy of the trained model while 
the model is doing the image classification. 

B. Methodology/ Approach 

In the deep reinforcement learning, non-RL based 
recommendations and RL based recommendations are 
implemented in their project. Non-RL based 
recommendations is a recommendation that didn’t use 
reinforcement learning to develop the suggestion approach, 
included content-based recommendation. It uses static or time 
as a feature. RL based recommendations refer to 
recommendation system that use reinforcement learning to 
develop the suggestion approach. It explores the probabilistic 
and lead to decision-making, such as Bayesian strategies. The 
agent needs to take decisions based their training, and 
maximize for the rewards, to improve the performance, 
balance exploration and exploitation. Artificial Neural 
Network (Anns) serves as the basic for deep learning 
approaches, and it is used to classify the images. There are 
three layers, which is input, one hidden layer and output layer, 
and the threshold are connected. The result should be able to 
show the accuracy, loss, and training time for each batch of 
images. Multiple of operations will be collected by 
Convolutional Neural Network (CNN) and known as 
convolution layers. The weight and biases will be 
implemented to the CNN model and the input data will need 
to be train. The feature maps will be the output of CNN model 
will show in arrays. 

C. Conclusion/ Recommendation 

In deep reinforcement learning, they came out with 
the conclusion that to create a hybrid engine it is important to 
take into consideration that different approaches to develop 
the recommendation system. In the literature, they 
recommend using RL-based recommendation systems that 
use reinforcement learning techniques to develop suggestion 
approaches. Additionally, they recommended to make the use 
of multiple exploration techniques in combination with the 
Deep Q-Network. In CNN project, different table and data 
were recorded and the table contain of training loss, accuracy, 
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testing loss and accuracy. The SGD optimizer were better than 
Adam optimizer, and different batch size will produce 
different of loss and accuracy. In conclusion, a perfect 
parameter will significantly affect the model to produce the 
outcomes. 

III. MATERIALS AND METHODS 

We utilized Python 3.10 as a tool to run the Flappy Bird 
game that was packaged with Q-learning algorithm and Deep 
Neural Network. We use the source code developed by uvipen 
found in GitHub. We are able to modify the parameters and 
train the agent to play Flappy Bird game thanks to the source 
code. The link to the source code: 
https://github.com/uvipen/Flappy-bird-deep-Q-learning-
pytorch 

A. Deep Q-Network 

Deep Q-Network is a type of reinforcement learning 
algorithm, made up of Q-learning and Convolutional Neural 
Networks with the goal of maximizing the reward. In the off-
policy Q-learning, Bellman Equation is utilized, and the Q 
value is updated iteratively. Here is the Bellman Equation: 

Qi+1(s,a) = r +γmax a’Qi(s’,a’) 

s’: state of next frame 

a’: action of next frame    

r: reward 

γ: discount factor 

Qi(s,a): the state and action at the ith iteration.  

 

It can be seen that by updating it iteratively, it will 
eventually get to the optimal Q-function. However, this can 
lead to rote-learning, where the model memorized the states 
instead of generalizing it. To prevent this, deep neural network 
is used to create a model that can approximate the optimal Q-
function of unseen states as well (Appiah & Vare (2018). This 
update ignores the unpredictability of state transitions in the 
game.  

Since the states (sequence of pipe) for every game are 
different, generalizing the knowledge of every previous game 
to future ones is crucial. In order to approximate the Q-values 
for generally (for unseen states as well), Deep Q-Network is 
built which takes a model, namely Qθ and slowly discovers a 
θ through iterations such that Qθ(s,a) can approximate the Q 
value for every state and action. 

Since the input for the algorithm will be images, 
convolutional neural network (CNN) is the most effective way 
to represent the Q-function as it is very good at extracting 
significant features from images (Pilcer, et.al. 2015). The 
CNN is made up of three convolutional layers, two dense 
layers, with linear functions and Rectified Linear Units 
(ReLU). It takes 4 consecutive game screens as input to 
estimate the Q-value for actions a=0 (do nothing) and a=1 
(jump). 

By utilizing gradient descent on loss function during 
training, the weights of the neural network can be updated. 
The loss function is defined as: 

loss(i) = 1/2 [ri + max a’ (Q(s’, a’)) − Q(si , ai)]2 

The goal is to minimize the loss function by modifying the 
parameters of the network iteratively. A good exploration 
technique, expressed by the parameter ε (epsilon), is crucial 
for effective training. During training, the agent will choose 
an action based on probability ε or perform the action with the 
greatest Q-value. 

B. Experience Replay 

 We employed Deepmind’s experience replay method to 
enhance the stability and convergence of Q-value by the 
approximation of Q-function over time. The last experiences, 
which are consist of 

si, ai, ri, si+1 

will be stored in a memory buffer that has a fixed capacity. 
The oldest experiences will be discarded when the storage is 
full to make space for new experiences. A batch experiences 
in replay memory are sampled randomly when training the 
neural network through gradient descent instead of using them 
in the order that they are collected (Pilcer, et.al. 2015). This 
can stabilize training as it breaks the temporal correlation 
between successive experiences. The loss is determined by 
comparing the predicted Q-values for the sampled experiences 
with the target Q-values, which encourages the neural network 
to approximate an optimal Q-function. The code for 
experience replay memory buffer is shown in Fig. 1. 

 

C. Epsilon-Greedy Exploration 

We started off by implementing  an epsilon greedy 

strategy as we required some way to initially explore some 
state space, that is, choosing a random action with probability 
ε (initial epsilon), otherwise perform the action that 
maximizes the Q-function (Tran, 2020). 

The ε is initialized by --initial_epsilon as 0.99, indicating 
that there is a 99% chance of exploration and 1% chance of 
exploitation at the beginning of the training as seen in Fig. 2. 

 

As training progresses, the epsilon is annealed linearly 
over time, which means it decreases linearly over time from 
initial epsilon to final epsilon. This is done to shift the agent’s 
focus to exploitation from exploration over the training period. 
The code where this is implemented is shown in Fig. 3: 

 

Fig. 3: Source code for exploration or exploitation 

D. Adam Optimizer (Adaptive Moment Optimizer) 

Adam Optimizer algorithm automatically adjusts the 
learning rates for each parameter individually based on past 
gradient information, which regularizes and optimizes the 
parameters and enables the model to learn more effectively 
and converge faster. It helps to prevent the model from getting 

Fig. 1: Source code of experience replay 

Fig. 2: Source code of epsilon 
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stuck in local minima during the training due to complicated 
and uneven structure of the loss landscape. The inclusion of 
momentum term speeds up the process of gradient descent, 
allowing a faster convergence (Jiang, et al. 2020). 

IV. RESULT 

A. Optimizer 

By keeping the α value at 0.1, γ value of 0.99, initial ε 
greedy at 0.9, the loss graphs of the results are shown below. 
Figure 4 indicates the loss graph of using Adam optimizer 
while Figure 5 represents the loss graph of using SGD 
optimizer. 

As shown in Fig. 4, we can observe that the loss value is 
gradually decreasing, the big fall is clearly started at around 
3500 iterations and decreased steadily until it reached 
convergence at around 5000 iterations. This means that the 
parameters provided are effective for training the agent. 

In Fig. 5, the SGD optimizer costs more iterations to 
observe a convergence trend, which is started at around 4800 
iterations and reaches convergence at around 5500 iterations. 
However, we observe that there are multiple spikes after the 
model reached convergence, which are at around 6100, 9500, 
13000 iterations. The reason for sudden spike to occur may be 
the ε greedy approach that the agent switches from 
exploitation to exploration which will increase the loss value. 
Besides, the model of SGD optimizer is much closer to the 
convergence compared to the ADAM optimizer. 

 

Fig. 4: Adam Optimizer Loss Graph 

 

 

Fig. 5: SGD Optimizer Loss Graph 

B. Learning rate (α) 

In Fig. 6, the graph is scores versus iterations with two 
different α values of model, blue line indicates 0.1 α value, 
while the orange line indicates 0.01 α value. We can observe 
 that both models have similar trends which is plateau 
occurred. This may be because other parameters are affecting 
the stability for the model to obtain scores. Besides, the α 
value of 0.1 increases faster than the 0.01 α value which means 
that the higher α value allows the agents to gain more scores 
in shorter iterations. 

 

Fig. 6: Learning rate Graph 

C. Epsilon (ε) Value 

In Fig. 7, the graph is score versus iteration with two 
different ε values which are 0.5, indicated by the blue line and 
the grey line representing 0.9 ε value. The starting point for 
model to obtain score is at around 1700 iterations for 0.5 ε 
value while the 0.9 ε value started at around 7200 iterations. 
This is because the higher ε value tend to explore more state 
in the environment before change to exploitation phase to 
maximize the reward. Besides, we can notice that both models 
have a much bigger curve began from 14000 iterations, before 
that the curve of models are much slower. 

 

Fig. 7: Epsilon (ε) Graph 

V. CONCLUSIONS 

However, the data given to the algorithm highly influences 

the run-time, but we are still able to receive a meaningful 

result in a limited timeframe even though it will take long 

training model time. While we were tweaking with the 

algorithm, the appropriate parameters were implemented. 

The expectation and result with the training model was met 

within a short learning time, which approximately 5 hours for 

each training. Besides that, the comparison of Adam 

optimizer provides a smoother and lower loss than SGD 

optimizer, and higher learning rate make agent to achieve 

higher score in a short iteration. As a result, the Q-Learning 

algorithm can be continuously improved by tweaking a more 

perfect parameter. 
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