J A@Tl Journal of Applied Technology and Innovation (e -ISSN: 2600-7304) vol. 8, no. 2, (2024) 43

Optimizing Genetic Algorithm for Travelling
Salesman Problem by Modifying Parameter

Chan Lik Yin
School of Computing
Asia Pacific University of Technology
& Innovation (APU)
Kuala Lumpur, Malaysia
TP064809@mail.apu.edu.my

Dr. Kamalanathan Shanmugam
Senior Lecturer/ School of Technology
Asia Pacific University of Technology

& Innovation (APU)
Kuala Lumpur, Malaysia
kamalanathan@apu.edu.my

Abstract—The Travelling Salesman Problem (TSP) is a
classical optimization algorithm problem in the computer
science field. Genetic Algorithm (GA) is an effective technique
for solving the TSP. The objective of this research is to find the
best possible parameter combination to improve the
performance of GA by modifying the parameter values. This
study focuses on exploring various combinations of population
size, selection method, crossover rate, and mutation rate. The
research involves conducting experiments with different
parameter combinations to identify the optimal solution for the
problem at hand. The findings indicate that a specific set of
parameters significantly enhances the performance of the GA,
particularly in terms of solution quality and convergence time.
To prove that the parameters obtained are effective, standard
problems are used to test GA with the tuned and untuned
parameters and compare the results. The result shows that GA
using the tuned parameters outperformed the untuned
parameter. Further research on the exploration of other
parameters such as mutation and crossover operators is
recommended.

Keywords—genetic algorithm, travelling salesman problem,
parameter modification

[. INTRODUCTION

The Travelling Salesman Problem (TSP) is a popular
algorithmic problem in the computer science field. Its goal is
to find the shortest path of a specified quantity of cities for a
salesperson to travel to all the cities once and return to the
departure point (Han, et al., 2023). Finding the most optimal
solution has been a challenge for mathematicians and
computer scientists for decades. It is not merely an academic
problem, but also important in real-life applications such as
manufacturing, delivery business, and logistics. A more
optimal or ideal route will benefit the delivery or logistic
business as the time and fuel consumption can be minimized
and thus improve the profitability of businesses. Besides, less
travelling distance will also indirectly bring positive effects on
the environment and society due to reduced greenhouse gas
emissions.

In the field of computer science, the TSP has drawn a lot
of attention as it is a common problem used in academics and
easy to explain yet challenging to solve. It is known as a
nondeterministic polynomial (NP) hard problem, meaning

Loo Hui Ying
School of Computing
Asia Pacific University of Technology
& Innovation (APU)
Kuala Lumpur, Malaysia
TP065072@mail.apu.edu.my

Dr. Adeline Sneha J
Senior Lecturer/ School of Computing
Asia Pacific University of Technology
& Innovation (APU)
Kuala Lumpur, Malaysia
adeline.john@apu.edu.my

Juhairi Aris Muhamad Shuhili
School of Engineering
Asia Pacific University of Technology
& Innovation (APU)
Kuala Lumpur, Malaysia
juhairi.shuhili@apu.edu.my

that as the quantity of cities increases, the potential solution
sequences grow exponentially. Thus, the solution for the TSP
depends on approximation algorithms that attempt various
arrangements of cities and then select the shortest path. There
are a few well-known algorithms that can be used to solve this
problem such as the branch and bound algorithm and the Ant
Colony Optimization. However, in this research, we use the
Genetic Algorithm (GA) as it is also an effective strategy for
TSP.

Genetic Algorithm (GA) is known as an optimization
technique for improving potential solutions in order to solve
complicated problems such as the TSP in the Artificial
Intelligence (Al) domain. It was first introduced in the 1960s
by John Holland, which is inspired by Darwin’s theory of
natural evolution. It was first developed to simulate the natural
selection and genetics processes, this has laid the foundation
for this algorithm to solve optimization problems that are
challenging using traditional computational methods.

GA executes by continuously evolving the potential
solutions in a population to obtain the optimal or nearly
optimal solution for a problem, such as finding the shortest
path for the TSP. It mimics the natural selection process in
which the fittest individuals are chosen to reproduce the next
generation of offspring that inherit their parents’
characteristics, and they will have better fitness compared to
their parents. At the end of this iteration, the fittest individuals
will be obtained. (Yang, et al., 2023)

There are a few parameters of GA, which are the crossover
rate, mutation rate, population size, and generation number.
The parameters play a significant role in shaping the
performance of the algorithm. An appropriate set of
parameters can help to produce the best result with a shorter
convergence time. Thus, the objective of this study is to
optimize the performance of the GA for solving the TSP by
modifying parameters. The results for each set of parameters
were recorded to be compared and find out the parameter
combination that produced the best result.

f“\
J A@Tl Journal of Applied Technology and Innovation (e -ISSN: 2600-7304) vol. 8, no. 2, (2024) 44

II. LITERATURE REVIEW

A. Similar Projects

Several studies related to our topic have been conducted
by past researchers such as using Genetic Algorithm (GA) to
solve the Travelling Salesman Problem (TSP). The
methodologies used by past researchers give us an insight into
the approaches to modify parameters. By summarizing the
findings from these studies, we can have a better
understanding of how to optimize the performance of the
algorithm.

Yue and Wang (2015) have proposed an improved Ant
Colony Optimization (ACO), CEULACO algorithm to
overcome the limitation of classical ACO in solving the TSP.
The CEULACO algorithm has improved the pheromone
concentration, pheromone evaporation rate, pheromone
updating rule, and search strategy from the classical ACO
algorithm. The performance of CEULACO has proved to be
the best among the comparison with ACO and IMACO in
solving 10 TSP instances.

Gunduz and Aslan (2021) have developed a discrete Jaya
algorithm (DJAYA), an improved Jaya algorithm that has
modified its parameters and operators to solve discrete
optimization problems including TSP. The authors generate
initial solutions using random permutations and the nearest
neighbourhood approach. The transformation operators in the
Jaya algorithm have been replaced by a combination of
transformation operators which are swap, shift, and symmetry
according to roulette wheel selection. The search tendency
parameter has been modified after an analysis of the parameter
is tested on a benchmark instance.

Hatamlou (2018) has applied the black hole algorithm
(BH), an algorithm that simulates the black hole to solve
optimization problems such as TSP. The BH algorithm is
based on the black hole in space which has an extremely high
gravitational power. The BH algorithm will attract the
population of solutions towards the best solution to form a
better solution. The result after a comparison with several
algorithms shows efficiency and robustness in solving huge
TSP with high accuracy and low standard deviation.

B. Comparison with Other Algorithms

Meta-heuristics algorithms are high-level algorithms that
optimize a problem by improving a number of solutions.
Meta-heuristics algorithms rarely make assumptions about
the problem, resulting in their reliability in solving large
spaces of problems (Desale, et al., 2015). As one of the
popular NP-hard problems in combinatorial optimization,
TSP has been solved by many meta-heuristic algorithms
including GA. Each algorithm possesses its unique strengths
such as fast execution time, accurate solution, and low
variance. Numerous algorithms have been compared to find
out the strengths of respective algorithms and determine if is
GA the suitable algorithm for this study.

Rao T. S. (2017) has made a comparison between GA,
Simulated Annealing Algorithm (SA), and Nearest
Neighbour Algorithm (NN) to find the shortest route
generated in solving 5 instances of TSP. GA shows its high
accuracy in small numbers of cities by outperforming the
other algorithms by 10% on average.

Another study conducted by Halim and Ismail (2017)
compared the performance of GA, SA, and NN. Tabu Search

(TS), Ant Colony Optimization (ACO), and Tree Physiology
Optimization (TPO) in solving 15 benchmark TSPs. The
result from this study shows that GA has one of the fastest
computational times when finding optimal routes for all sizes
of nodes. GA also consistently generates solutions that are
close to the optimum route.

Chaudhari and Thakkar (2019) have applied GA, ACO,
Particle Swarm Optimization (PSO) Algorithm, Artificial
Bee Colony (ABC), and Firefly Algorithm (FA) to solve three
benchmark TSP. The result shows that GA is one of the most
consistent in providing near-optimal routes for all the TSPs.

C. Optimization Techniques

Several techniques can be used to optimize and improve
GA for solving the TSP and the techniques have been proven
to be effective by past researchers. The techniques include
tuning parameters, using greedy approaches, and hybridizing
with Particle Swarm Optimization (PSO).

The efficiency of the algorithm depends on the
algorithm coding, operators, and settings of the parameters.
Therefore, there are some research found to be conducted to
examine the effect or impact of modifying the GA parameters
and operators including mutation rate and initial population
rate for the TSP to reduce the convergence time and find the
best result. The results from both studies showed that tuning
parameters and operators can improve the performance of GA
for solving TSP. (Rexhepi, et al., 2013; Mosayebi, M., &
Sodhi, M., 2020)

Rana and Srivastava (2017) have improved GA to solve
the TSP by integrating a greedy approach to the original GA
in terms of generating chromosomes and proposing a new
greedy crossover operator. It can help to search the solution
space deeper and explore solutions with better fitness. The
findings demonstrated that the GA incorporating greedy
approaches exhibits superior performance in path length
compared to other algorithms.

The other technique was proposed by Gupta, et al. (2018)
which is hybridizing with the PSO algorithm. The objective of
this study is to exploit the higher convergence rate of PSO to
GA. Ten standard problems were used to test the proposed
algorithm. Results showed that the hybrid GA-PSO algorithm
performed better than the original GA and PSO.

D. Methodology/Approach

In this section, an overview of the methodologies used in
the studies and research mentioned above is summarized and
provided. These methods that have been applied in similar
projects will be useful as a guide for us in our research.

Rexhepi, et al. (2013) analyzed different solutions from
the outcome using distinct initial populations and mutation
rates. They set the maximum generation number to 10,000
with initial population sizes of 1000, 5000, and 10000. Every
population size was tested with 1%, 3%, 5%, and 10%
mutation probability. Then, the results for the same population
size with multiple mutation rates and results for the same
mutation rate with different initial populations were plotted on
a graph.

Mosayebi and Sodhi (2020) conducted the study by using
the Design of Experiment (DOE) methodology. They selected
three popular crossover operators which were one-point, two-
point, and Cycle, and two mutation operators which were

J :Tl Journal of Applied Technology and Innovation (e -ISSN: 2600-7304) vol. 8, no. 2, (2024) 45

Inversion and Swap. The population size was generated with
a relative population rate of 10 and 20. There were two levels
of parameter settings. They carried out pilot runs with the gr17
problem to identify the relationship between the fitness value
and other parameters by establishing a regression equation.
However, the results for one-point and two-point operators
were close to each other. Therefore, a second experiment was
conducted based on the result from the first experiment. Then,
the authors tested the tuned parameters on standard problems.
The results showed that using the tuned parameters to solve
the TSP has a better result.

E. Conclusion/Recommendation

In conclusion, GA can be used to solve the TSP, and has
been proven by past researchers. It can produce an optimal
solution for the problem.

It is proven that GA is an effective and efficient algorithm
for solving the TSP when compared to other algorithms in
terms of accuracy, consistency, and computational speed.
Thus, GA will be used to solve the TSP in this study.

Several optimization techniques were proposed by past
researchers and were proven to be effective for GA to solve
the TSP. One of them was by tuning parameters such as the
mutation rate and initial population size. This literature
survey also reviewed the methodologies used by other
researchers to modify parameters. Therefore, in this paper,
GA parameters will be tuned to find the best potential value
to solve the TSP.

III. MATERIALS AND METHODS

A. Algorithm Implementation

Genetic Algorithm (GA) is a search-based optimization
algorithm that is commonly applied to obtain optimal or nearly
optimal solutions for difficult problems like the Travelling
Salesman Problem (TSP). In GA, there are some possible
solutions in a population for a given problem initially. Then,
these solutions will undergo crossover and mutation processes
to produce new offspring, and this process iterates over
several generations until it meets the termination condition.
Every solution has a fitness value, and a fitter solution has a
greater chance to mate and yield more fitter solutions. Thus,
the solutions will keep improving over generations.

1) Source Code

The GA source code that we found to solve the TSP is in
the Python programming language. It is provided by
hassanzadehmahdi (2021) on the GitHub website. To run the
code, simply download from GitHub and extract the zip file.
Run the tsp.py in any text editor or IDE’s terminal and the
result will be displayed including the number of generations
in runs and the best path length, Besides, a window showing
the solution will pop up.

The code starts with getting the position of cities from the
text file “TSP51.txt”. The initial population will be generated
based on the population size. The population is generated
randomly and sorted in ascending order based on its distance.

After the initial population is generated, the population
will evolve for 200 generations, or the target value is achieved.
The crossover rate will determine the probability of crossover
for each population. If the crossover occurs, two-parent
chromosomes will be selected through tournament selection

with 4 tournament sizes. One-point crossover operator will
randomly select a crossover point on both parent
chromosomes, and the information to the right of the point will
be swapped to reproduce the child chromosomes. If the
crossover does not occur, the child's chromosomes will be a
copy of random parent chromosomes.

After the child's chromosome is reproduced, the mutation
will randomly perform based on the mutation rate. If the
mutation occurs, the swap mutation operator will select two
random points for both child chromosomes. The two points
will be swapped and the child chromosome will be mutated.
All the child chromosomes will be the new population and
sorted in ascending order. Based on elitism, the top two child
chromosomes will be kept for the next generations.

After 200 generations, the best solution will be plotted in
a 2D graph with the cities and the path will be visualized.

@EG 19
GENERATE
initial population
TN
—1IS Generation
==200? ///
~

w
S Crossover occurs?

\\/

Tournament
Selection

i

<

Randomly select]

One-point 2 child
Crossover

chromosomes

Swap Mutation

Generation + 1

Display shortest
route

(END)

Fig. 1. Flow chart of Genetic Algorithm

After the optimization of the parameters, the best
combination of parameters that has the best performance on
average will be applied to two standard TSPs to test its
performance. The standard TSPs are dantzigd2 and eill01,
from the TSPLIB that are contributed by Gerhard Reinelt
(Reinelt, 1991). The result will be compared with the optimal
path length provided by the author to test the efficiency of the
tuned parameter.

2) Purpose

The main purpose of implementing this algorithm is to
solve various sizes of the TSP instance efficiently. The
original parameters set by the source code owner are tuned to
find a better solution for the problem which is the shortest
possible path. It aims to contribute to domains such as
delivery and logistics businesses to shorten their travelling
distance.

3) Parameters

f“\
J A@Tl Journal of Applied Technology and Innovation (e -ISSN: 2600-7304) vol. 8, no. 2, (2024) 46

The values of GA parameters including population size,
selection of operators, and operator rates are still an open
question to be used in an arbitrary problem. They are
explored to reduce the time required to get the best optimal
solution. The basics of the code do not change throughout the
study, but the parameters will be modified to improve the
performance of the algorithm (Rexhepi, et al., 2013).

In the source code by hassanzadehmahdi, the default
parameter settings are as follows: swap mutation operator, 1-
point crossover operator, tournament selection method,
tournament selection size of 4, 0.1 mutation rate, 0.9
crossover rate, 2000 for population size and 200 for
maximum generations.

The mutation and crossover operator, tournament selection
size, and maximum generations will be maintained
throughout the study, while the parameters that will be tuned
concurrently to optimize the algorithm for the TSP are as
below:

a) Mutation Rate

Mutation is a GA technique used to generate new genetic
material. It can help to maintain the diversity of genetics from
one generation to the other. The mutation rate is the
probability of an individual in the population undergoing
mutation. A mutation rate with a greater value helps to
explore deeper to the search space but might cause the
algorithm to get stuck in a suboptimal solution. (Datta, 2023)

b) Crossover Rate

Crossover is a process that produces a new solution by
combining the best features of two parents which also helps
in producing genetic diversity. The crossover rate is the
likelihood of the occurrence of the crossover process. The
optimal value for this parameter depends on the problem as
well as the population. A high crossover rate ensures the
exploration of search space is sufficient but will lead to a
longer search time. (Datta, 2023)

¢) Population Size

GA starts with an initial population which consists of
potential solutions to the TSP. Each solution is an individual,
and the number of individuals in the population is set with the
population size parameter and they are generated randomly
in this source code (Kanade, 2023).

d) Selection Method

The selection method is the most crucial parameter that
will affect the performance of GA. Its function is to select a
pair of parents to generate a new solution for the next
generation. A selection method aims to exploit the best
features of the parent solutions with good features to improve
the solutions for the next generation. Some popular selection
methods are Roulette Wheel Selection, Stochastic Universal
Sampling, and tournament selection. Tournament selection is
the default selection method used in the source code and in
this study. (Jebari & Madiafi, 2013)

B. Hardware Requirement

There is no high hardware requirement for a computer to
run the code. A computer with a quad-core processor such as
Intel Code 15 with at least 4GB of RAM is suggested.
Besides, a few gigabytes of free storage space will be

sufficient to download the source code and datasets for other
standard problems to test the code if needed. In addition, a
basic graphics card is also enough for running the code as it
mainly depends on the CPU. Overall, the requirement for
hardware to run this program is relatively lightweight and can
be run on most modern computers.

C. Software Requirement

There are a few software requirements to run the code.
The most important is to download the source code posted by
hassanzadehmahdi from GitHub. The folder provided
includes the main Python script and a dataset. Besides, the
computer must be installed with Python with 3.x versions as
the code is written in Python. It is available on the official
Python website. After that, the necessary Python library that
is used in the code should be installed via Command Prompt
for Windows users and Terminal for macOS or Linux users,
with the code ‘pip install matplotlib’. Apart from that, a text
editor such as VS code and Sublime Text, or an Integrated
Development Environment (IDE) like PyCharm or IDLE is
required to run the script. These software requirements with
the Python environment set up correctly will be essential to
run the code.

IV. RESULTS AND DISCUSSION

A. Discussion on Implementation

The parameters that are modified in this study included
population size, selection method, crossover rate, and
mutation rate. The other parameters remain as default which
are the swap mutation operator, one-point crossover operator,
200 for maximum generation number, and 4 for the
tournament selection size if the tournament selection method
is used. The target length of the optimal path is 450, which
was set by the source code author. If the code achieves the
target length before reaching the maximum generations, the
code will terminate.

The code was run with different combinations of
parameters to get the best potential solution for the TSP. The
parameter modifications are as follows: The population sizes
were 1000, 2000, and 3000. For each of the population sizes,
it was run with a crossover rate (0.1, 0.5, 0.7, 0.9) and a
mutation rate (0.1, 0.3, 0.7, 0.5, 0.9) for each combination of
population size and crossover rate. Then, the tournament
selection method and Rank Selection were used as the
selection method for every set.

Each parameter set was run for ten times. The average
path length, standard deviation, and average computational
time were calculated and recorded in tables.

After getting the best parameter combination for the TSP,
it was tested with a standard problem dantzig4?2 and eil101 to
be compared with the result produced by the algorithm with
untuned parameters.

B. Results

The results were recorded in tables according to the
population sizes. CR stands for crossover rate, Avg stands for
average which is the average path length, and time means the
average computational time for the parameter set.

TABLE L. RESULTS OF 1000 POPULATION SIZE

Journal of Applied Technology and Innovation (e -ISSN: 2600-7304) vol. 8, no. 2, (2024) 47

2\
Selection Mutation Rate
Method CR
0.1 0.3 0.5 0.7 0.9
0.1 Avg:970.27 Avg:1128.42 Avg:1171.01 Avg:1186.42 Avg:1212.76
. Time:5.63 Time:5.72 Time:6.30 Time:6.21 Time:5.82
05 Avg:546.18 | Avg:545.56 Avg:716.73 Avg:843.19 Avg:909.82
: Time:7.51 Time:7.56 Time:8.24 Time:7.87 Time:7.99
Tournament
0.7 Avg:522.37 Avg:511.22 Avg:538.09 Avg:699.09 Avg:798.00
. Time:8.86 Time:8.89 Time:8.83 Time:9.27 Time:9.41
0.9 Avg:529.48 Avg:508.90 Avg:519.34 Avg:547.24 Avg:704.90
. Time:9.19 Time:9.33 Time:9.62 Time:9.79 Time:9.24
ol Avg:661.50 Avg:745.16 Avg:854.60 Avg:952.25 Avg:1021.63
. Time:10.83 Time:10.70 Time:9.63 Time:10.11 Time:11.14
05 Avg:543.39 Avg:545.13 Avg:537.96 Avg:551.88 Avg:570.33
Rank) Time:21.61 Time:20.05 Time:21.61 Time:23.93 Time:21.27
Selecti
0.7 Avg:523.43 Avg:516.75 Avg:512.17 Avg:543.33 Avg:536.30
. Time:20.68 Time:22.35 Time:23.33 Time:23.83 Time:24.86
0.9 Avg:519.85 Avg:526.95 Avg:521.81 Avg:503.73 Avg:524.45
. Time:31.23 Time:33.10 Time:32.37 Time:34.22 Time:54.31
TABLE II. RESULTS OF 2000 POPULATION SIZE
Selection Mutation Rate
Method CR
0.1 0.3 0.5 0.7 0.9
01 Avg:955.221 Avg:1074.63 Avg:1143.90 Avg:1167.59 Avg:1174.22
. Time:13.74 Time:13.88 Time:13.01 Time:17.41 Time:14.41
05 Avg:502.24 Avg:528.97 Avg:693.39 Avg:794.68 Avg:892.66
: Time:18.97 Time:17.16 Time:17.48 Time:17.67 Time:21.76
Tournament
07 Avg:513.76 Avg:481.74 Avg:506.87 Avg:645.46 Avg:767.73
. Time:18.31 Time:18.21 Time:18.63 Time:18.13 Time:18.50
0.9 Avg:488.28 Avg: 483.67 Avg:478.00 Avg:535.57 Avg:677.66
. Time:22.90 Time:26.44 Time:22.38 Time:23.04 Time:22.73
01 Avg:595.79 Avg:650.20 Avg:723.53 Avg:839.35 Avg:931.35
. Time:20.81 Time:22.70 Time:22.39 Time:22.45 Time:24.43
05 Avg:512.81 Avg:499.03 Avg:508.27 Avg:533.77 Avg:540.08
Rank : Time:55.02 Time:61.23 Time:64.13 Time:66.35 Time:67.23
Selection 07 Avg:513.66 Avg:504.76 Avg:494.19 Avg:512.77 Avg:508.43
. Time:69.02 Time:78.73 Time:86.03 Time:91.69 Time:95.10
0.9 Avg:524.27 Avg:508.34 Avg:504.16 Avg:510.61 Avg:502.65
. Time:77.70 Time:90.70 Time:100.91 Time:107.44 Time:111.06
TABLE III. RESULTS OF 3000 POPULATION SIZE
Selection Mutation Rate
Method CR
0.1 0.3 0.5 0.7 0.9
0.1 Avg:902.31 Avg:1085 Avg:1123.11 Avg:1167.31 Avg:1189.79
. Time:16.67 Time:17.95 Time:16.83 Time:18.24 Time:18.10
05 Avg:496.95 Avg:482.75 Avg:652.24 Avg:779.21 Avg:851.13
. Time:24.48 Time:25.63 Time:24.11 Time:27.09 Time:25.28
Tournament
0.7 Avg:506.40 Avg:474.86 Avg:508.65 Avg:643.29 Avg:751.63
. Time:28.83 Time:27.91 Time:28.39 Time:29.02 Time:27.85
0.9 Avg:501.61 Avg:477.43 Avg:469.40 Avg:539.76 Avg:647.39
. Time:33.81 Time:34.45 Time:35.54 Time:38.03 Time:38.78
ol Avg:557.73 Avg:601.84 Ave:705.03 Avg:770.55 Avg:882.85
. Time:39.90 Time:40.77 Time:41.34 Time:41.52 Time:41.62
05 Avg:513.10 Avg:510.04 Avg:505.75 Avg:521.86 Avg:515.03
Rank : Time:113.75 Time:130.48 Time:138.07 Time:141.94 Time:144.43
Selection
07 Avg:513.77 Avg:497.18 Avg:489.11 Avg:488.38 Avg:510.46
. Time:140.39 Time:192.82 Time:183.25 Time:202.66 Time:222.43
0.9 Avg:511.39 Avg:486.20 Avg:487.83 Avg:502.02 Avg:500.82
. Time:165.03 Time:193.31 Time:217.76 Time:234.71 Time:275.54

Based on Table I, the best parameter for 1000 population
size for solving the TSP was using the Rank selection
method, 0.9 crossover rate, and 0.7 mutation rate. For the
2000 population size, the parameter settings for the best
potential solution were the Tournament selection method, 0.9
crossover rate, and 0.5 mutation rate while the Tournament
selection method, 0.5 crossover rate, and 0.9 mutation rate are
found to be the most optimal for 3000 population size.
Overall, the best potential solution was using a 3000
population size, Tournament selection method, 0.9 crossover
rate, and 0.5 mutation rate.

Based on the result of the comparison, it is significantly
showing the population, crossover rate, mutation rate, and

selection method are affecting the result and the execution
time.

As the population increases, the average shortest path
length will decrease greatly while the average execution time
will increase gradually. If the population is large, the
probability of finding better solutions will increase as the
exploration of the path has been enhanced. However, the
large exploration will lead to a high cost of computational
time.

As the crossover rate increases, the overall result will be
shorter, but the execution time will be longer. A high
crossover will increase the exploration rate and cause the
population more homogeneous as the population is sharing
genetic information frequently. Nevertheless, a high
crossover rate will increase the number of crossover
operations, contributing to high computational costs.

The impact of the mutation rate in the GA is a complex
interplay with the crossover rate. When the mutation rate
increases, the average execution time slightly increases as the
probability of mutation operation has increased. However,
when the crossover rate is high, the 0.5 mutation rate shows
a shorter path length than the other mutation rate. The
moderate mutation rate shows the balance between
exploration and exploitation by allowing sufficient
exploration and preserving promising solutions. The high
crossover rate provides wide exploration for the high
mutation rate to increase diversity. When the mutation is
excessively high, the algorithm has too much randomness
which leads to the disruption of good solutions.

While the rank selection method may not yield the best
results in the comparison, it did exhibit distinct characteristics
when compared to the tournament operator. The rank
selection method was performing stably with less sensitivity
to the parameters. However, it took much longer than the
tournament operator when the mutation and crossover rate
was high. The rank selection method is a complex calculation
to select the parent chromosome. Therefore, high mutation
and crossover rates will constantly generate a diverse
population that increases the rate of computing the selection
method.

Some standard problems, dantzig42 and eil101, were used
to test the effectiveness of the tuned parameters by comparing
them with the result of the untuned parameters. The tuned and
untuned parameters will be run ten times to calculate the
average path length and computational time. The graph below
shows the differences in the path of running using tuned and
untuned parameters.

JATI

Journal of Applied Technology and Innovation (e -ISSN: 2600-7304) vol. 8, no. 2, (2024) 48
TABLE IV. RESULTS OF TUNED AND UNTUNED PARAMETERS
Standard Average Average leferer.lce
Problem Parameter path computational from optimal
100 7 length time path
Untuned 777.19 2115 11.19%
80 Dantzig42
Tuned 721.01 26.69 3.15%
60
Untuned 1052.70 63.75 67.36%
Eill01
04 Tuned 997.16 9175 58.51%

Fig. 2. Results of untuned parameters in solving dantzig42

100

801

60 1

40

201

Fig. 3. Results of tuned parameters in solving dantzig42

Fig. 4. Results of untuned parameters in solving eil101

Fig. 5. Results of tuned parameters in solving eil101

Based on Table IV, the tuned parameters, with a 3000
population size, Tournament selection method, 0.9 crossover
rate, and 0.5 mutation rate, highly outperformed the untuned
parameters, which have a 2000 population size, Tournament
selection method, 0.9 crossover rate, and 0.1 mutation rate. In
the dantzig42 problem, the performance of tuned parameters
has exceeded the untuned parameters by 7.24%. In the eil101
problem, the result of the tuned parameters is 5.28% shorter
than the untuned parameters. Although the tuned parameters
required a longer computational time to generate the path, it
is still within an acceptable range of computational time. The
result for the standard problem eill01 has shown that the
algorithm is not suitable for a large number of cities.
However, the GA is considered one of the best algorithms for
solving the TSP with a small number of cities.

V. CONCLUSION

In conclusion, the Genetic Algorithm (GA) is an effective
technique to solve the Travelling Salesman Problem (TSP).
The best parameter combination that has been obtained is
3000 population size, 0.5 mutation rate, 0.9 crossover rate,
tournament selection method, with swap mutation operator
and one-point crossover operator. It has proven to be effective
when compared to the untuned parameters on the standard
problems. It does improve performance in terms of path
length. Modifying parameters to find the best combination is
important to improve the performance of the algorithm for
diverse problem instances including for the delivery and
logistics business. Further research can be conducted by
exploring other parameters such as changing the crossover
and mutation operator to examine the impacts on the
performance of GA for the TSP.

ACKNOWLEDGMENT

We would like to thank all authors and other School of
Computing members who contributed to this study. Besides,
we would like to express our gratitude to the source code and
datasets owner for their source code and datasets.

REFERENCES

Datta, S. (2023, June 17). Genetic Algorithms: Crossover
Probability and Mutation Probability. Retrieved
from https://www.baeldung.com/cs/genetic-
algorithms-crossover-probability-and-mutation-
probability#:~:text=Mutation%20probability%20is
%20a%?20parameter,is%20mutated%20at%20each
%?20generation.

Desale, et al. (2015). Heuristic and Meta-Heuristic
Algorithms and Their Relevance to the Real World:

f“\
J A@Tl Journal of Applied Technology and Innovation (e -ISSN: 2600-7304) vol. 8, no. 2, (2024) 49

A Survey. International Journal Of Computer
Engineering In Research Trends, Volume 2, Issue 5,
296-304.

Gunduz, M., & Aslan, M. (2021). DJAYA: A discrete Jaya
algorithm for solving traveling salesman problem.
Applied Soft Computing, 1-15.

Gupta, 1. K., Shakil, S., & Shakil, S. (2018). A Hybrid GA-

PSO Algorithm to Solve Traveling Salesman

Problem. Advances in Intelligent Systems and

Computing, 453-462.

A. H.,, & Ismail, I. (2017). Combinatorial

Optimization: Comparison of Heuristic Algorithms

in Travelling Salesman Problem. Arch Computat

Methods, 367-380.

Han, T. R, Zer, B. Y., Lun, N. C,, Yi, G. F., Jie, W. J., &
Salam, Z. A. (2023). Optimizing ACO Algorithm
for the TSP. Journal of Applied Technology and
Innovation (e -ISSN: 2600-7304), 52-56.

hassanzadehmahdi. (2021). Traveling-Salesman-Problem-
using-Genetic-Algorithm. Retrieved from GitHub:
https://github.com/hassanzadehmahdi/Traveling-
Salesman-Problem-using-Genetic-Algorithm

Hatamlou, A. (2018). Solving travelling salesman problem
using black hole algorithm. Methodologies and
Application, 8167-8175.

Jebari, K., & Madiafi, M. (2013). Selection Methods for
Genetic Algorithms. Int. J. Emerg. Sci., 333-344.

Kanade, V. (2023, September 6). What Are Genetic
Algorithms? Working, Applications, and Examples.
Retrieved from
https://www.spiceworks.com/tech/artificial-
intelligence/articles/what-are-genetic-algorithms/

Halim,

Kinjal, C., & Ankit, T. (2019). Travelling Salesman Problem:
An Empirical Comparison Between ACO, PSO,
ABC, FA and GA. Emerging Research in
Computing, Information, Communication and
Applications. Advances in Intelligent Systems and
Computing, vol 906.

Mosayebi, M., & Sodhi, M. (2020). Tuning Genetic
Algorithm Parameters using Design of Experiments.
GECCO, 1937-1944.

Rana, S., & Srivastava, S. R. (2017). Solving Travelling
Salesman Problem Using Improved Genetic
Algorithm. Indian Journal of Science and
Technology, 1-6.

Rao, T. S. (2017). A Comparative Evaluation of GA and SA
TSP in a Supply Chain Network. Materials Today:
Proceedings 4,2263-2268.

Reinelt, G. (1991). TSPLIB—A Traveling Salesman Problem
Library. ORSA Journal on Computing, 3, 376-384.

Rexhepi, A., Dika, A., & Maxhuni, A. (2013). Analysis of the
Impact of Parameters Values on the Genetic
Algorithm for TSP. IJCSI International Journal of
Computer Science Issues, 158-164.

Yang, C. M., Pek, V., Ling, S. H., wei, T. C., & Salam, Z. A.
(2023). Solver of 8-Puzzle with Genetic Algorithm.
Journal of Applied Technology and Innovation (e -
ISSN: 2600-7304), 28-32.

Yue, Y., & Wang, X. (2015). An Improved Ant Colony
Optimization Algorithm for Solving TSP.
International Journal of Multimedia and Ubiquitous
Engineering, 153-164.

	I. Introduction
	II. Literature Review
	A. Similar Projects
	B. Comparison with Other Algorithms
	C. Optimization Techniques
	D. Methodology/Approach
	E. Conclusion/Recommendation

	III. MATERIALS AND METHODS
	A. Algorithm Implementation
	1) Source Code
	2) Purpose
	3) Parameters
	a) Mutation Rate
	b) Crossover Rate
	c) Population Size
	d) Selection Method

	B. Hardware Requirement
	C. Software Requirement

	IV. results and discussion
	A. Discussion on Implementation
	B. Results

	V. Conclusion
	Acknowledgment
	References

