
Journal of Applied Technology and Innovation (e -ISSN: 2600-7304)   vol. 8, no. 2, (2024)                                    43 

Optimizing Genetic Algorithm for Travelling 
Salesman Problem by Modifying Parameter 

 

Chan Lik Yin  
School of Computing  

Asia Pacific University of Technology 
& Innovation (APU) 

Kuala Lumpur, Malaysia 
TP064809@mail.apu.edu.my 

Dr. Kamalanathan Shanmugam 
Senior Lecturer/ School of Technology  
Asia Pacific University of Technology 

& Innovation (APU) 
Kuala Lumpur, Malaysia 

kamalanathan@apu.edu.my 

Loo Hui Ying  
School of Computing  

Asia Pacific University of Technology 
& Innovation (APU) 

Kuala Lumpur, Malaysia 
TP065072@mail.apu.edu.my 

Juhairi Aris Muhamad Shuhili 
School of Engineering  

Asia Pacific University of Technology 
& Innovation (APU) 

Kuala Lumpur, Malaysia 
juhairi.shuhili@apu.edu.my 

Dr. Adeline Sneha J 
Senior Lecturer/ School of Computing  
Asia Pacific University of Technology 

& Innovation (APU) 
Kuala Lumpur, Malaysia 
adeline.john@apu.edu.my 

 
 
 
 
 
 
 

Abstract—The Travelling Salesman Problem (TSP) is a 
classical optimization algorithm problem in the computer 
science field. Genetic Algorithm (GA) is an effective technique 
for solving the TSP. The objective of this research is to find the 
best possible parameter combination to improve the 
performance of GA by modifying the parameter values. This 
study focuses on exploring various combinations of population 
size, selection method, crossover rate, and mutation rate. The 
research involves conducting experiments with different 
parameter combinations to identify the optimal solution for the 
problem at hand. The findings indicate that a specific set of 
parameters significantly enhances the performance of the GA, 
particularly in terms of solution quality and convergence time. 
To prove that the parameters obtained are effective, standard 
problems are used to test GA with the tuned and untuned 
parameters and compare the results. The result shows that GA 
using the tuned parameters outperformed the untuned 
parameter. Further research on the exploration of other 
parameters such as mutation and crossover operators is 
recommended. 

Keywords—genetic algorithm, travelling salesman problem, 
parameter modification  

I. INTRODUCTION 
The Travelling Salesman Problem (TSP) is a popular 

algorithmic problem in the computer science field. Its goal is 
to find the shortest path of a specified quantity of cities for a 
salesperson to travel to all the cities once and return to the 
departure point (Han, et al., 2023). Finding the most optimal 
solution has been a challenge for mathematicians and 
computer scientists for decades. It is not merely an academic 
problem, but also important in real-life applications such as 
manufacturing, delivery business, and logistics. A more 
optimal or ideal route will benefit the delivery or logistic 
business as the time and fuel consumption can be minimized 
and thus improve the profitability of businesses. Besides, less 
travelling distance will also indirectly bring positive effects on 
the environment and society due to reduced greenhouse gas 
emissions. 

In the field of computer science, the TSP has drawn a lot 
of attention as it is a common problem used in academics and 
easy to explain yet challenging to solve. It is known as a 
nondeterministic polynomial (NP) hard problem, meaning 

that as the quantity of cities increases, the potential solution 
sequences grow exponentially. Thus, the solution for the TSP 
depends on approximation algorithms that attempt various 
arrangements of cities and then select the shortest path. There 
are a few well-known algorithms that can be used to solve this 
problem such as the branch and bound algorithm and the Ant 
Colony Optimization. However, in this research, we use the 
Genetic Algorithm (GA) as it is also an effective strategy for 
TSP. 

Genetic Algorithm (GA) is known as an optimization 
technique for improving potential solutions in order to solve 
complicated problems such as the TSP in the Artificial 
Intelligence (AI) domain. It was first introduced in the 1960s 
by John Holland, which is inspired by Darwin’s theory of 
natural evolution. It was first developed to simulate the natural 
selection and genetics processes, this has laid the foundation 
for this algorithm to solve optimization problems that are 
challenging using traditional computational methods.  

GA executes by continuously evolving the potential 
solutions in a population to obtain the optimal or nearly 
optimal solution for a problem, such as finding the shortest 
path for the TSP. It mimics the natural selection process in 
which the fittest individuals are chosen to reproduce the next 
generation of offspring that inherit their parents’ 
characteristics, and they will have better fitness compared to 
their parents. At the end of this iteration, the fittest individuals 
will be obtained. (Yang, et al., 2023) 

 There are a few parameters of GA, which are the crossover 
rate, mutation rate, population size, and generation number. 
The parameters play a significant role in shaping the 
performance of the algorithm. An appropriate set of 
parameters can help to produce the best result with a shorter 
convergence time. Thus, the objective of this study is to 
optimize the performance of the GA for solving the TSP by 
modifying parameters. The results for each set of parameters 
were recorded to be compared and find out the parameter 
combination that produced the best result. 
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II. LITERATURE REVIEW 

A. Similar Projects 
Several studies related to our topic have been conducted 

by past researchers such as using Genetic Algorithm (GA) to 
solve the Travelling Salesman Problem (TSP). The 
methodologies used by past researchers give us an insight into 
the approaches to modify parameters. By summarizing the 
findings from these studies, we can have a better 
understanding of how to optimize the performance of the 
algorithm. 

Yue and Wang (2015) have proposed an improved Ant 
Colony Optimization (ACO), CEULACO algorithm to 
overcome the limitation of classical ACO in solving the TSP. 
The CEULACO algorithm has improved the pheromone 
concentration, pheromone evaporation rate, pheromone 
updating rule, and search strategy from the classical ACO 
algorithm. The performance of CEULACO has proved to be 
the best among the comparison with ACO and IMACO in 
solving 10 TSP instances.  

Gunduz and Aslan (2021) have developed a discrete Jaya 
algorithm (DJAYA), an improved Jaya algorithm that has 
modified its parameters and operators to solve discrete 
optimization problems including TSP. The authors generate 
initial solutions using random permutations and the nearest 
neighbourhood approach. The transformation operators in the 
Jaya algorithm have been replaced by a combination of 
transformation operators which are swap, shift, and symmetry 
according to roulette wheel selection. The search tendency 
parameter has been modified after an analysis of the parameter 
is tested on a benchmark instance.  

Hatamlou (2018) has applied the black hole algorithm 
(BH), an algorithm that simulates the black hole to solve 
optimization problems such as TSP. The BH algorithm is 
based on the black hole in space which has an extremely high 
gravitational power. The BH algorithm will attract the 
population of solutions towards the best solution to form a 
better solution. The result after a comparison with several 
algorithms shows efficiency and robustness in solving huge 
TSP with high accuracy and low standard deviation. 

B. Comparison with Other Algorithms 
Meta-heuristics algorithms are high-level algorithms that 

optimize a problem by improving a number of solutions. 
Meta-heuristics algorithms rarely make assumptions about 
the problem, resulting in their reliability in solving large 
spaces of problems (Desale, et al., 2015). As one of the 
popular NP-hard problems in combinatorial optimization, 
TSP has been solved by many meta-heuristic algorithms 
including GA. Each algorithm possesses its unique strengths 
such as fast execution time, accurate solution, and low 
variance. Numerous algorithms have been compared to find 
out the strengths of respective algorithms and determine if is 
GA the suitable algorithm for this study.  

Rao T. S. (2017) has made a comparison between GA, 
Simulated Annealing Algorithm (SA), and Nearest 
Neighbour Algorithm (NN) to find the shortest route 
generated in solving 5 instances of TSP. GA shows its high 
accuracy in small numbers of cities by outperforming the 
other algorithms by 10% on average. 

Another study conducted by Halim and Ismail (2017) 
compared the performance of GA, SA, and NN. Tabu Search 

(TS), Ant Colony Optimization (ACO), and Tree Physiology 
Optimization (TPO) in solving 15 benchmark TSPs. The 
result from this study shows that GA has one of the fastest 
computational times when finding optimal routes for all sizes 
of nodes. GA also consistently generates solutions that are 
close to the optimum route. 

Chaudhari and Thakkar (2019) have applied GA, ACO, 
Particle Swarm Optimization (PSO) Algorithm, Artificial 
Bee Colony (ABC), and Firefly Algorithm (FA) to solve three 
benchmark TSP. The result shows that GA is one of the most 
consistent in providing near-optimal routes for all the TSPs. 

C. Optimization Techniques 
Several techniques can be used to optimize and improve 

GA for solving the TSP and the techniques have been proven 
to be effective by past researchers. The techniques include 
tuning parameters, using greedy approaches, and hybridizing 
with Particle Swarm Optimization (PSO).  

The efficiency of the algorithm depends on the 
algorithm coding, operators, and settings of the parameters. 
Therefore, there are some research found to be conducted to 
examine the effect or impact of modifying the GA parameters 
and operators including mutation rate and initial population 
rate for the TSP to reduce the convergence time and find the 
best result. The results from both studies showed that tuning 
parameters and operators can improve the performance of GA 
for solving TSP. (Rexhepi, et al., 2013; Mosayebi, M., & 
Sodhi, M., 2020) 

Rana and Srivastava (2017) have improved GA to solve 
the TSP by integrating a greedy approach to the original GA 
in terms of generating chromosomes and proposing a new 
greedy crossover operator. It can help to search the solution 
space deeper and explore solutions with better fitness. The 
findings demonstrated that the GA incorporating greedy 
approaches exhibits superior performance in path length 
compared to other algorithms. 

The other technique was proposed by Gupta, et al. (2018) 
which is hybridizing with the PSO algorithm. The objective of 
this study is to exploit the higher convergence rate of PSO to 
GA. Ten standard problems were used to test the proposed 
algorithm. Results showed that the hybrid GA-PSO algorithm 
performed better than the original GA and PSO. 

D. Methodology/Approach 
In this section, an overview of the methodologies used in 

the studies and research mentioned above is summarized and 
provided. These methods that have been applied in similar 
projects will be useful as a guide for us in our research. 

 Rexhepi, et al. (2013) analyzed different solutions from 
the outcome using distinct initial populations and mutation 
rates. They set the maximum generation number to 10,000 
with initial population sizes of 1000, 5000, and 10000. Every 
population size was tested with 1%, 3%, 5%, and 10% 
mutation probability. Then, the results for the same population 
size with multiple mutation rates and results for the same 
mutation rate with different initial populations were plotted on 
a graph. 

Mosayebi and Sodhi (2020) conducted the study by using 
the Design of Experiment (DOE) methodology. They selected 
three popular crossover operators which were one-point, two-
point, and Cycle, and two mutation operators which were 
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Inversion and Swap. The population size was generated with 
a relative population rate of 10 and 20. There were two levels 
of parameter settings. They carried out pilot runs with the gr17 
problem to identify the relationship between the fitness value 
and other parameters by establishing a regression equation. 
However, the results for one-point and two-point operators 
were close to each other. Therefore, a second experiment was 
conducted based on the result from the first experiment. Then, 
the authors tested the tuned parameters on standard problems. 
The results showed that using the tuned parameters to solve 
the TSP has a better result. 

E. Conclusion/Recommendation 
In conclusion, GA can be used to solve the TSP, and has 

been proven by past researchers. It can produce an optimal 
solution for the problem. 

It is proven that GA is an effective and efficient algorithm 
for solving the TSP when compared to other algorithms in 
terms of accuracy, consistency, and computational speed. 
Thus, GA will be used to solve the TSP in this study. 

Several optimization techniques were proposed by past 
researchers and were proven to be effective for GA to solve 
the TSP. One of them was by tuning parameters such as the 
mutation rate and initial population size. This literature 
survey also reviewed the methodologies used by other 
researchers to modify parameters. Therefore, in this paper, 
GA parameters will be tuned to find the best potential value 
to solve the TSP. 

III. MATERIALS AND METHODS 

A. Algorithm Implementation 
Genetic Algorithm (GA) is a search-based optimization 

algorithm that is commonly applied to obtain optimal or nearly 
optimal solutions for difficult problems like the Travelling 
Salesman Problem (TSP). In GA, there are some possible 
solutions in a population for a given problem initially. Then, 
these solutions will undergo crossover and mutation processes 
to produce new offspring, and this process iterates over 
several generations until it meets the termination condition. 
Every solution has a fitness value, and a fitter solution has a 
greater chance to mate and yield more fitter solutions. Thus, 
the solutions will keep improving over generations. 

1) Source Code 

The GA source code that we found to solve the TSP is in 
the Python programming language. It is provided by 
hassanzadehmahdi (2021) on the GitHub website. To run the 
code, simply download from GitHub and extract the zip file. 
Run the tsp.py in any text editor or IDE’s terminal and the 
result will be displayed including the number of generations 
in runs and the best path length, Besides, a window showing 
the solution will pop up. 

The code starts with getting the position of cities from the 
text file “TSP51.txt”. The initial population will be generated 
based on the population size. The population is generated 
randomly and sorted in ascending order based on its distance.   

After the initial population is generated, the population 
will evolve for 200 generations, or the target value is achieved. 
The crossover rate will determine the probability of crossover 
for each population. If the crossover occurs, two-parent 
chromosomes will be selected through tournament selection 

with 4 tournament sizes. One-point crossover operator will 
randomly select a crossover point on both parent 
chromosomes, and the information to the right of the point will 
be swapped to reproduce the child chromosomes. If the 
crossover does not occur, the child's chromosomes will be a 
copy of random parent chromosomes.  

After the child's chromosome is reproduced, the mutation 
will randomly perform based on the mutation rate. If the 
mutation occurs, the swap mutation operator will select two 
random points for both child chromosomes. The two points 
will be swapped and the child chromosome will be mutated. 
All the child chromosomes will be the new population and 
sorted in ascending order. Based on elitism, the top two child 
chromosomes will be kept for the next generations.  

After 200 generations, the best solution will be plotted in 
a 2D graph with the cities and the path will be visualized. 

 
Fig. 1. Flow chart of Genetic Algorithm 

After the optimization of the parameters, the best 
combination of parameters that has the best performance on 
average will be applied to two standard TSPs to test its 
performance. The standard TSPs are dantzig42 and eil101, 
from the TSPLIB that are contributed by Gerhard Reinelt 
(Reinelt, 1991). The result will be compared with the optimal 
path length provided by the author to test the efficiency of the 
tuned parameter. 

2) Purpose 
The main purpose of implementing this algorithm is to 

solve various sizes of the TSP instance efficiently. The 
original parameters set by the source code owner are tuned to 
find a better solution for the problem which is the shortest 
possible path. It aims to contribute to domains such as 
delivery and logistics businesses to shorten their travelling 
distance. 

3) Parameters 
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The values of GA parameters including population size, 
selection of operators, and operator rates are still an open 
question to be used in an arbitrary problem. They are 
explored to reduce the time required to get the best optimal 
solution. The basics of the code do not change throughout the 
study, but the parameters will be modified to improve the 
performance of the algorithm (Rexhepi, et al., 2013).  

In the source code by hassanzadehmahdi, the default 
parameter settings are as follows: swap mutation operator, 1-
point crossover operator, tournament selection method, 
tournament selection size of 4, 0.1 mutation rate, 0.9 
crossover rate, 2000 for population size and 200 for 
maximum generations.  

The mutation and crossover operator, tournament selection 
size, and maximum generations will be maintained 
throughout the study, while the parameters that will be tuned 
concurrently to optimize the algorithm for the TSP are as 
below: 

a) Mutation Rate 
Mutation is a GA technique used to generate new genetic 

material. It can help to maintain the diversity of genetics from 
one generation to the other. The mutation rate is the 
probability of an individual in the population undergoing 
mutation. A mutation rate with a greater value helps to 
explore deeper to the search space but might cause the 
algorithm to get stuck in a suboptimal solution. (Datta, 2023)  

b) Crossover Rate 
Crossover is a process that produces a new solution by 

combining the best features of two parents which also helps 
in producing genetic diversity. The crossover rate is the 
likelihood of the occurrence of the crossover process. The 
optimal value for this parameter depends on the problem as 
well as the population. A high crossover rate ensures the 
exploration of search space is sufficient but will lead to a 
longer search time. (Datta, 2023) 

c) Population Size 

GA starts with an initial population which consists of 
potential solutions to the TSP. Each solution is an individual, 
and the number of individuals in the population is set with the 
population size parameter and they are generated randomly 
in this source code (Kanade, 2023).  

d) Selection Method 
The selection method is the most crucial parameter that 

will affect the performance of GA. Its function is to select a 
pair of parents to generate a new solution for the next 
generation. A selection method aims to exploit the best 
features of the parent solutions with good features to improve 
the solutions for the next generation. Some popular selection 
methods are Roulette Wheel Selection, Stochastic Universal 
Sampling, and tournament selection. Tournament selection is 
the default selection method used in the source code and in 
this study. (Jebari & Madiafi, 2013) 

B. Hardware Requirement 
There is no high hardware requirement for a computer to 

run the code. A computer with a quad-core processor such as 
Intel Code i5 with at least 4GB of RAM is suggested. 
Besides, a few gigabytes of free storage space will be 

sufficient to download the source code and datasets for other 
standard problems to test the code if needed. In addition, a 
basic graphics card is also enough for running the code as it 
mainly depends on the CPU. Overall, the requirement for 
hardware to run this program is relatively lightweight and can 
be run on most modern computers. 

C. Software Requirement 
There are a few software requirements to run the code. 

The most important is to download the source code posted by 
hassanzadehmahdi from GitHub. The folder provided 
includes the main Python script and a dataset. Besides, the 
computer must be installed with Python with 3.x versions as 
the code is written in Python. It is available on the official 
Python website. After that, the necessary Python library that 
is used in the code should be installed via Command Prompt 
for Windows users and Terminal for macOS or Linux users, 
with the code ‘pip install matplotlib’. Apart from that, a text 
editor such as VS code and Sublime Text, or an Integrated 
Development Environment (IDE) like PyCharm or IDLE is 
required to run the script. These software requirements with 
the Python environment set up correctly will be essential to 
run the code. 

IV. RESULTS AND DISCUSSION 

A. Discussion on Implementation 
The parameters that are modified in this study included 

population size, selection method, crossover rate, and 
mutation rate. The other parameters remain as default which 
are the swap mutation operator, one-point crossover operator, 
200 for maximum generation number, and 4 for the 
tournament selection size if the tournament selection method 
is used. The target length of the optimal path is 450, which 
was set by the source code author. If the code achieves the 
target length before reaching the maximum generations, the 
code will terminate. 

The code was run with different combinations of 
parameters to get the best potential solution for the TSP. The 
parameter modifications are as follows: The population sizes 
were 1000, 2000, and 3000. For each of the population sizes, 
it was run with a crossover rate (0.1, 0.5, 0.7, 0.9) and a 
mutation rate (0.1, 0.3, 0.7, 0.5, 0.9) for each combination of 
population size and crossover rate. Then, the tournament 
selection method and Rank Selection were used as the 
selection method for every set.  

Each parameter set was run for ten times. The average 
path length, standard deviation, and average computational 
time were calculated and recorded in tables. 

After getting the best parameter combination for the TSP, 
it was tested with a standard problem dantzig42 and eil101 to 
be compared with the result produced by the algorithm with 
untuned parameters. 

B. Results 
The results were recorded in tables according to the 

population sizes. CR stands for crossover rate, Avg stands for 
average which is the average path length, and time means the 
average computational time for the parameter set. 

TABLE I.  RESULTS OF 1000 POPULATION SIZE 
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Selection 
Method CR 

Mutation Rate 

0.1 0.3 0.5 0.7 0.9 

Tournament 

0.1 Avg:970.27 
Time:5.63 

Avg:1128.42 
Time:5.72 

Avg:1171.01 
Time:6.30 

Avg:1186.42 
Time:6.21 

Avg:1212.76 
Time:5.82 

0.5 Avg:546.18 
Time:7.51 

Avg:545.56 
Time:7.56 

Avg:716.73 
Time:8.24 

Avg:843.19 
Time:7.87 

Avg:909.82 
Time:7.99 

0.7 Avg:522.37 
Time:8.86 

Avg:511.22 
Time:8.89 

Avg:538.09 
Time:8.83 

Avg:699.09 
Time:9.27 

Avg:798.00 
Time:9.41 

0.9 Avg:529.48 
Time:9.19 

Avg:508.90 
Time:9.33 

Avg:519.34 
Time:9.62 

Avg:547.24 
Time:9.79 

Avg:704.90 
Time:9.24 

       

Rank 
Selection 

 

0.1 Avg:661.50 
Time:10.83 

Avg:745.16 
Time:10.70 

Avg:854.60 
Time:9.63 

Avg:952.25 
Time:10.11 

Avg:1021.63 
Time:11.14 

0.5 Avg:543.39 
Time:21.61 

Avg:545.13 
Time:20.05 

Avg:537.96 
Time:21.61 

Avg:551.88 
Time:23.93 

Avg:570.33 
Time:21.27 

0.7 Avg:523.43 
Time:20.68 

Avg:516.75 
Time:22.35 

Avg:512.17 
Time:23.33 

Avg:543.33 
Time:23.83 

Avg:536.30 
Time:24.86 

0.9 Avg:519.85 
Time:31.23 

Avg:526.95 
Time:33.10 

Avg:521.81 
Time:32.37 

Avg:503.73 
Time:34.22 

Avg:524.45 
Time:54.31 

TABLE II.  RESULTS OF 2000 POPULATION SIZE 

Selection 
Method CR 

Mutation Rate 

0.1 0.3 0.5 0.7 0.9 

Tournament 

0.1 Avg:955.221 
Time:13.74 

Avg:1074.63 
Time:13.88 

Avg:1143.90 
Time:13.01 

Avg:1167.59 
Time:17.41 

Avg:1174.22 
Time:14.41 

0.5 Avg:502.24 
Time:18.97 

Avg:528.97 
Time:17.16 

Avg:693.39 
Time:17.48 

Avg:794.68 
Time:17.67 

Avg:892.66 
Time:21.76 

0.7 Avg:513.76 
Time:18.31 

Avg:481.74 
Time:18.21 

Avg:506.87 
Time:18.63 

Avg:645.46 
Time:18.13 

Avg:767.73 
Time:18.50 

0.9 Avg:488.28 
Time:22.90 

Avg: 483.67 
Time:26.44 

Avg:478.00 
Time:22.38 

Avg:535.57 
Time:23.04 

Avg:677.66 
Time:22.73 

       

Rank 
Selection 

0.1 Avg:595.79 
Time:20.81 

Avg:650.20 
Time:22.70 

Avg:723.53 
Time:22.39 

Avg:839.35 
Time:22.45 

Avg:931.35 
Time:24.43 

0.5 Avg:512.81 
Time:55.02 

Avg:499.03 
Time:61.23 

Avg:508.27 
Time:64.13 

Avg:533.77 
Time:66.35 

Avg:540.08 
Time:67.23 

0.7 Avg:513.66 
Time:69.02 

Avg:504.76 
Time:78.73 

Avg:494.19 
Time:86.03 

Avg:512.77 
Time:91.69 

Avg:508.43 
Time:95.10 

0.9 Avg:524.27 
Time:77.70 

Avg:508.34 
Time:90.70 

Avg:504.16 
Time:100.91 

Avg:510.61 
Time:107.44 

Avg:502.65 
Time:111.06 

TABLE III.  RESULTS OF 3000 POPULATION SIZE 

Selection 
Method CR 

Mutation Rate 

0.1 0.3 0.5 0.7 0.9 

Tournament 

0.1 Avg:902.31 
Time:16.67 

Avg:1085 
Time:17.95 

Avg:1123.11 
Time:16.83 

Avg:1167.31 
Time:18.24 

Avg:1189.79 
Time:18.10 

0.5 Avg:496.95 
Time:24.48 

Avg:482.75 
Time:25.63 

Avg:652.24 
Time:24.11 

Avg:779.21 
Time:27.09 

Avg:851.13 
Time:25.28 

0.7 Avg:506.40 
Time:28.83 

Avg:474.86 
Time:27.91 

Avg:508.65 
Time:28.39 

Avg:643.29 
Time:29.02 

Avg:751.63 
Time:27.85 

0.9 Avg:501.61 
Time:33.81 

Avg:477.43 
Time:34.45 

Avg:469.40 
Time:35.54 

Avg:539.76 
Time:38.03 

Avg:647.39 
Time:38.78 

       

Rank 
Selection 

 

0.1 Avg:557.73 
Time:39.90 

Avg:601.84 
Time:40.77 

Avg:705.03 
Time:41.34 

Avg:770.55 
Time:41.52 

Avg:882.85 
Time:41.62 

0.5 Avg:513.10 
Time:113.75 

Avg:510.04 
Time:130.48 

Avg:505.75 
Time:138.07 

Avg:521.86 
Time:141.94 

Avg:515.03 
Time:144.43 

0.7 Avg:513.77 
Time:140.39 

Avg:497.18 
Time:192.82 

Avg:489.11 
Time:183.25 

Avg:488.38 
Time:202.66 

Avg:510.46 
Time:222.43 

0.9 Avg:511.39 
Time:165.03 

Avg:486.20 
Time:193.31 

Avg:487.83 
Time:217.76 

Avg:502.02 
Time:234.71 

Avg:500.82 
Time:275.54 

 
Based on Table I, the best parameter for 1000 population 

size for solving the TSP was using the Rank selection 
method, 0.9 crossover rate, and 0.7 mutation rate. For the 
2000 population size, the parameter settings for the best 
potential solution were the Tournament selection method, 0.9 
crossover rate, and 0.5 mutation rate while the Tournament 
selection method, 0.5 crossover rate, and 0.9 mutation rate are 
found to be the most optimal for 3000 population size. 
Overall, the best potential solution was using a 3000 
population size, Tournament selection method, 0.9 crossover 
rate, and 0.5 mutation rate. 

Based on the result of the comparison, it is significantly 
showing the population, crossover rate, mutation rate, and 

selection method are affecting the result and the execution 
time. 

As the population increases, the average shortest path 
length will decrease greatly while the average execution time 
will increase gradually. If the population is large, the 
probability of finding better solutions will increase as the 
exploration of the path has been enhanced. However, the 
large exploration will lead to a high cost of computational 
time.  

As the crossover rate increases, the overall result will be 
shorter, but the execution time will be longer. A high 
crossover will increase the exploration rate and cause the 
population more homogeneous as the population is sharing 
genetic information frequently. Nevertheless, a high 
crossover rate will increase the number of crossover 
operations, contributing to high computational costs. 

The impact of the mutation rate in the GA is a complex 
interplay with the crossover rate. When the mutation rate 
increases, the average execution time slightly increases as the 
probability of mutation operation has increased. However, 
when the crossover rate is high, the 0.5 mutation rate shows 
a shorter path length than the other mutation rate. The 
moderate mutation rate shows the balance between 
exploration and exploitation by allowing sufficient 
exploration and preserving promising solutions. The high 
crossover rate provides wide exploration for the high 
mutation rate to increase diversity. When the mutation is 
excessively high, the algorithm has too much randomness 
which leads to the disruption of good solutions.  

While the rank selection method may not yield the best 
results in the comparison, it did exhibit distinct characteristics 
when compared to the tournament operator. The rank 
selection method was performing stably with less sensitivity 
to the parameters. However, it took much longer than the 
tournament operator when the mutation and crossover rate 
was high. The rank selection method is a complex calculation 
to select the parent chromosome. Therefore, high mutation 
and crossover rates will constantly generate a diverse 
population that increases the rate of computing the selection 
method. 

Some standard problems, dantzig42 and eil101, were used 
to test the effectiveness of the tuned parameters by comparing 
them with the result of the untuned parameters. The tuned and 
untuned parameters will be run ten times to calculate the 
average path length and computational time. The graph below 
shows the differences in the path of running using tuned and 
untuned parameters. 
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Fig. 2. Results of untuned parameters in solving dantzig42 

 
Fig. 3. Results of tuned parameters in solving dantzig42 

 
Fig. 4. Results of untuned parameters in solving eil101 

 
Fig. 5. Results of tuned parameters in solving eil101 

 

 

TABLE IV.  RESULTS OF TUNED AND UNTUNED PARAMETERS 

Standard 
Problem Parameter 

Average 
path 

length 

Average 
computational 

time 

Difference 
from optimal 

path  

Dantzig42 
Untuned 777.19 21.15 11.19% 

Tuned 721.01 26.69 3.15% 

Eil101 
Untuned 1052.70 63.75 67.36% 

Tuned 997.16 91.75 58.51% 

 
Based on Table IV, the tuned parameters, with a 3000 

population size, Tournament selection method, 0.9 crossover 
rate, and 0.5 mutation rate, highly outperformed the untuned 
parameters, which have a 2000 population size, Tournament 
selection method, 0.9 crossover rate, and 0.1 mutation rate. In 
the dantzig42 problem, the performance of tuned parameters 
has exceeded the untuned parameters by 7.24%. In the eil101 
problem, the result of the tuned parameters is 5.28% shorter 
than the untuned parameters. Although the tuned parameters 
required a longer computational time to generate the path, it 
is still within an acceptable range of computational time. The 
result for the standard problem eil101 has shown that the 
algorithm is not suitable for a large number of cities. 
However, the GA is considered one of the best algorithms for 
solving the TSP with a small number of cities. 
 

V. CONCLUSION 
In conclusion, the Genetic Algorithm (GA) is an effective 

technique to solve the Travelling Salesman Problem (TSP). 
The best parameter combination that has been obtained is 
3000 population size, 0.5 mutation rate, 0.9 crossover rate, 
tournament selection method, with swap mutation operator 
and one-point crossover operator. It has proven to be effective 
when compared to the untuned parameters on the standard 
problems. It does improve performance in terms of path 
length. Modifying parameters to find the best combination is 
important to improve the performance of the algorithm for 
diverse problem instances including for the delivery and 
logistics business. Further research can be conducted by 
exploring other parameters such as changing the crossover 
and mutation operator to examine the impacts on the 
performance of GA for the TSP.  
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