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Abstract— The efficiency and efficacy of genetic algorithms
(GA) and reinforcement learning (RL) algorithms in traffic
signal control are examined in this study. The study looks into
the benefits and drawbacks of RL and GA in the setting of bad
traffic circumstances that increase fuel consumption and trip
time. While GA investigates a larger solution area for
optimizing traffic light control schemes, RL demonstrates
flexibility through self-learning in diverse contexts. The work
summaries the body of research on reinforcement learning's
optimization for traffic signal management and shows how it
may cut down on average travel time, delays, and stops. The
presentation includes a thorough comparison of several
approaches, such as particle swarm optimization and fuzzy
logic. In order to overcome obstacles and enhance performance
overall, hybridization with Deep Deterministic Policy Gradient
and adjustments to GA are suggested as future paths and
improvements. The hardware and software specifications, as
well as the process used to apply RL to traffic light management,
are described in the materials and techniques section. We
address policy gradient algorithms, exploration/exploitation
tactics, and the parameters of the algorithm. The effects of
changing settings on average wait times and collisions are shown
by the results. According to the study's findings, RL greatly
enhances traffic flow and cuts typical wait times from 300 to 20
seconds, especially when parameters are optimized. Future
studies can investigate how to combine RL with other
algorithms for the best possible traffic management in practical
situations.

Keywords— Reinforcement Learning, Genetic Algorithm,
Traffic light control, Q-Learning

1. INTRODUCTION

This journal represents a deep analysis of Reinforcement
Learning Algorithm and Genetic Algorithm, for its efficiency
and effectiveness in traffic light control. Most vehicles waste
time on the road and burn more fuel due to poor traffic
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conditions. Most vehicles waste time on the road and burn
more fuel due to poor traffic conditions (Chian & Kamsin,
2023). The literature review investigates the strengths and
weaknesses of Reinforcement Learning and Genetic
Algorithms in Traffic Signal Control, as well as the
optimization of Reinforcement Learning on traffic light
control. Reinforcement Learning (RL) has great potential to
tackle these limitations in the recommender systems (Shuhrat,
Ramachandran, & Salam, 2021). The journal also did a clear
comparison between different algorithms and Reinforcement
Learning / Genetic Algorithms. It also discusses the future
direction and improvements of these algorithms on traffic
light control. Additionally, the journal outlines the materials
and method required for the implementation of algorithms in
the context of traffic light control.

II. LITERATURE REVIEW

A. Strengths and Weaknesses of Reinforcement Learning
and Genetic Algorithms in Traffic Signal Control

The contribution of Reinforcement Learning and Genetic
Algorithm to traffic signal control is significant, because of
the unique strengths and weaknesses. Models like RL-TSCI1,
RL-TSC2 and RL-TSC3, outperform in adapting to different
traffic flows and consistently improving its own decision-
making (Patrick Mannion, Jim Duggan, and Enda Howley,
2016). The reason why Reinforcement Learning outperform
fixed-queue timer systems is that the adaptability of
Reinforcement Learning to variable environments through
self-learning and real-time conditions. However, the
implementation was not easy as the need for expertise in both
traffic engineering and computational intelligence, high cost
of human resource and computational intensity for large-scale
networks, and sensitivity to parameter settings (Zhide Li,
Kaiquan Chen, 2018).
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On the other hand, Genetic Algorithm offers a wider
solution space for finding global optimum solutions in
complex traffic scenarios (Hua Wei Guanjie Zheng, Vikash
Gayah, Zhenhui Li, 2021). This algorithm excels in trying
different solution in order to find the best optimized traffic
light control plans, avoiding the risk of suboptimal choices.
Nonetheless, the weaknesses of this algorithm arise in terms
of computational intensity and limitation of real-time
applicability, scalability issues especially in large-scale urban
cities traffic networks with complex infrastructure (Hua Wei
Guanjie Zheng, Vikash Gayah, Zhenhui Li, 2021).

B. Optimization of Reinforcement Learning on traffic light
control

Reinforcement Learning (RL) is a subset of Machine
Learning, autonomously learns optimal behaviour by
exploring actions through trial and error to maximize rewards
(Reinforcement learning, 2023). Unlike supervised learning,
reinforcement learning operates without predefined answers,
making it suitable for automated systems. Despite its
strengths, reinforcement learning algorithms have limitations,
prompting research for optimization. Studies aim to improve
reinforcement learning 's  performance, specifically
addressing  congestion reduction, enhanced vehicle
throughput, and overall traffic efficiency to optimize traffic
flow at intersections.

Several studies, including one by Jaun et al. (2021),
showcase significant improvements in traffic signal control
through RL-based signal optimization models (Jaun, et al.,
2021). Multi-Agent Reinforcement Learning (MARL)
systems are being investigated for enhancing coordination
across intersections. The results demonstrate substantial
reductions in delay, stops, and average travel time,
particularly during peak hours.

Moreover, Kumar, Nistala Venkata Kameshwer, & Vijay
K. (2023) propose a model using RL to classify vehicles and
assign different weights, effectively reducing average waiting
time by up to 91.7% (Kumar, Nistala Venkata Kameshwer,
& Vijay K., 2023). In addition, Xiaoyuan, Xusheng, Guiling,
& Zhu (2019) leverage Deep Reinforcement Learning (DRL)
for traffic light control, introducing a 3DQN model that
outperforms fixed-time signals by over 20% in average
waiting time reduction (Xiaoyuan, Xusheng, Guiling, & Zhu,
2019). The study underscores the effectiveness of DRL
techniques in optimizing traffic flow and reducing
congestion.

Furthermore, Zibo, Tongchao, Wenxing, Fengyao, &
Liguo (2021) provide a comprehensive review of traffic
signal control, highlighting RL as a promising alternative to
traditional methods (Zibo, Tongchao, Wenxing, Fengyao, &
Liguo, 2021). The literature emphasizes challenges in RL
applications, such as efficient state representation and reward
formulation, and concludes that DRL-based approaches
generally outperform traditional methods. The simulation
results affirm the superiority of DRL over Fixed Signal
Timing (FST) control schemes in various traffic modes (P1—
P3). DRL consistently reduces waiting times and queue

lengths, demonstrating its effectiveness in optimizing traffic
signal control at intersections.

In conclusion, the fusion of optimization techniques with
RL holds promise for enhancing traffic flow at signalized
intersections. The document suggests nuanced strategies,
including fine-tuning reward structures, incorporating
sophisticated decision-making models like the 3DQN, and
adopting principles from MARL. These insights provide a
robust foundation for future research and practical
implementation of adaptive, efficient, and responsive traffic
signal control systems, mitigating congestion and enhancing
traffic flow in urban environments.

C. Comparison with Different Methodologies

To gain a deeper comprehension of traffic light
regulation using reinforcement learning, we have focused on
Reinforcement Learning (RL) and Genetic Algorithms (GAs)
in the context of traffic signal control, exploring a variety of
computational approaches for intelligent traffic control
systems (Aradi, 2020). To shed light on these systems'
distinctive tactics for optimizing urban traffic flow, the paper
contrasts them with other methodologies like fuzzy logic,
particle swarm optimization (PSO), and deterministic
algorithms (Alam, 2013); (Dezani, 2014); (Silva, 2022).

In comparison with Fuzzy Logic, RL is highlighted for its
adaptability to dynamic scenarios through learning optimal
control policies, while Fuzzy Logic employs a rule-based
system emulating human decision-making processes (Aradi,
2020); (Alam, 2013). The choice between RL and Fuzzy
Logic depends on specific traffic scenario requirements.

The integration of GAs with High-Level Petri net models
is discussed as a distinctive approach, emphasizing its
effectiveness in optimizing traffic flow by considering
alternative routes and real-time adjustments (Dezani, 2014).
This approach contrasts with a fuzzy logic-based strategy,
showcasing the diversity of methodologies in traffic signal
control.

PSO is distinguished in the comparison for its ease of use
and efficiency in optimizing traffic signal systems, leading to
considerable decreases in average waiting (Silva, 2022).
GAs's distinct search strategy is compared to PSO; both
approaches have benefits and need more investigation to
allow for thorough comparisons.

In adaptive traffic signal control, deterministic algorithms
are compared with reinforcement learning (RL); in large data
volume scenarios, the former outperforms (Abdulhai,
2003)The deterministic algorithm performs better because of
its comprehension of the dynamics of the traffic system,
which emphasizes its ability to adjust to changing traffic
demands.

Finally, the comparison highlights the ever-changing field
of intelligent traffic control systems and emphasizes the range
of computational approaches that are at one's disposal (Aradi,
2020); (Alam, 2013); (Dezani, 2014); (Silva, 2022);
(Abdulhai, 2003). The study underscores how customized
approaches based on unique traffic situations and preferences
are required to manage complexity in transportation networks.
It is believed that more investigation and real-world
comparisons are necessary to fully comprehend the
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advantages and disadvantages of each approach for
intelligent traffic control systems.

D. Future directions and improvements

Through three experimental investigations that combine
their benefits, it investigates the direction and advancement of
genetic algorithm (GAs) and reinforcement learning (RL) in
the future. (Bonarini, 2019). The main goal is to overcome the
illusory generalization limit — one of the limits of GAs in
tandom environments. In order to comprehend its interaction
with GAs and create a hybridized procedural technique, the
study explores the advanced Deep Deterministic Policy
Gradient (DDPGQG) in deep reinforcement learning. (Bonarini,
2019)

Bonarini (2019) has done experiments that showcase a
novel hybrid process that integrates the advantage of
reinforcement learning approaches with genetic algorithm.
This methodology introduces Policy Feedback as an off-
policy learning method. This study encourages creativity in
procedural procedures and tackles difficulties in stochastic
conditions. The evaluation covers a wide range of industries,
including facility planning, scheduling and operation
management, and it demonstrates how GAs may be
successfully integrated with other optimization strategies to
produce better performance measures. (Bonarini, 2019))Vijay
Chabhar er al. (2021) offer a comprehensive review of generic
algorithm modifications, weighing the benefits and drawbacks
of each. The study highlights how GAs should be strategically
integrated with other optimization techniques, providing a
road map for overcoming challenges and improving overall
performance indicators. (Vijay Chahar, 2020)

The paper highlights the uses of RL and Deep RL
frameworks in fluid dynamics while providing insights into
these models in parallel. In their discussion of problems and
possible routes for integrating Deep RL with active flow
control (AFC), Vingnon et al. (2023) give the fluid mechanics
community a toolkit for dealing with practical issues. (C
Vignon, 2023)

While acknowledging the drawbacks of GAs, such as high
processing costs and intricate parameter settings, Aymeric
Vie(2020) offers several possible remedies, including GPU,
parallel and quantum computing and inventive representation
strategies. The favourable prognosis presents novel
opportunities for the application of GAs in the future.
(Aymeric Vi'e, 2020)

The combination of these contributions broadens our
comprehension of the intricate relationships between RL, GAs
and their hybridizations, stimulating original thought and
promoting more study of adaptive systems and optimization.
The flexibility of GAs in stochastic environments and the
necessity of an all-encompassing approach to optimization
issues are highlighted in the review’s conclusion. (Bonarini,
2019) All things considered, the literature presents a
comprehensive picture of the changing scene, addressing
issues and pointing forth possible directions for future
development.

III. MATERIALS AND METHOD

A. Materials
1. Software Requirements

For this study paper, PyCharm is used to run the provided
source code. Pycharm is an advanced Integrated Development
Environment (IDE) created especially for Python developers.
Python was chosen as the programming language for the
provided source code due to its simple syntax and ease of
reading. Applications like the reinforcement learning
technique for traffic light control may be developed and
maintained more quickly according to its clear and simple
code structure. It also boasts comprehensive library standards,
offering a variety of modules and packages. The provided
source code has been installed and imported into three
libraries which are Pygame, Scipy and Numpy. Pygame is
used to develop a graphical user interface to visualize the
reinforcement learning-based traffic light controller. Scipy is
essential to solving the mathematical and scientific difficulties
involved in applying reinforcement learning algorithms to
optimize the traffic light control system. Additionally, Numpy
is also used to perform a variety of mathematical operations
on arrays, which improves the computational capabilities of
the reinforcement learning traffic light control system. The
reinforcement learning algorithm is executed in the Windows
11 operating system.

ii. Hardware Requirements

The hardware that has been used for executing the given
reinforcement learning algorithm on traffic light control in this
paper is the NVIDIA GeForce RTX2050 for the Graphic
Processing Unit (GPU). The reinforcement learning algorithm
itself does not heavily rely on GPU acceleration in the source
code. Intel(R) Core (TM) i5-13420H is the central processing
unit (CPU) employed in this research work. The capabilities
of the CPU may have an impact on the reinforcement learning
algorithm's performance. The computations involved in the
reinforcement learning method include value function
calculations, reward prediction, g-value updates, and more.
The CPU's processing power determines how quickly those
calculations are completed. The computer's reinforcement
learning method makes use of 8 GB of RAM. It involves
learning rate and discount factor updates, g-value storage, and
computations that require memory.

B. Methodology

Reinforcement learning is a computational approach
geared towards achieving specific goals by allowing a
computer system to interact with an unfamiliar and dynamic
environment. With the use of this learning paradigm, the
computer can decide for itself to maximise the total reward
linked to a particular task. Interestingly, reinforcement
learning functions both without direct human intervention
and without explicit programming for task completion. An
overview of a situation involving reinforcement learning is
shown in the diagram below.

The main goal of reinforcement learning is to teach an
agent how to carry out a task in an environment whose
properties are unknown. In this scenario, the environment
provides the agent with observations and rewards, while the
agent transmits actions back to the environment. In relation
to the overall task aim, the reward functions as a metre to
indicate the effectiveness of an action.

Two essential parts of the agent are a learning algorithm
and a policy.

1) Policy
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The policy is a mapping process that chooses activities
according to environmental observations. Usually, the policy
is a function approximator, like a deep neural network, with
programmable parameters.

2) Learning Algorithm

Based on the actions, observations, and incentives that are
obtained, the learning algorithm continuously modifies the
policy's parameters. The learning algorithm's main objective
is to repeatedly improve the policy to find the ideal set of
parameters that will maximise the total reward earned
throughout the task.

Reinforcement learning basically involves the agent
learning its best behaviour through a sequence of
environment-trial-and-error  interactions without direct
human intervention.

To illustrate, consider the task of parking a vehicle using
an automated driving system as an example. The objective
here is for the vehicle's computer (the agent) to autonomously
park the vehicle correctly. The controller generates steering,
braking, and acceleration orders (actions) by utilising
readings from several sensors (observations), such as
cameras, accelerometers, gyroscopes, GPS receivers, and
lidar. The actuators in charge of driving the car receive these
action commands after that. Except the agent, every factor in
this scenario is part of the environment: wind, road conditions,
vehicle dynamics, and other variables.

The computer learns by parking the car repeatedly using
a trial-and-error method. To facilitate this learning process, a
signal is given that denotes failure (reward) if the vehicle does
not reach the intended position and orientation and success
when it does. The computer modifies its action-selection
strategy (policy) after every trial to maximise the reward
(learning algorithm). The computer keeps going through this
iterative process until it figures out the best course of action
for properly parking the car.

Agent

State Reward Action

Figure 1: Reinforcement Learning Block Diagram

An agent is a decision-maker who examines the
environment and acts in accordance with its true condition
(Kolat, 2023). Every activity is assessed based on its calibre.
Depending on whether an activity is desired or undesirable,
the agent is either rewarded or penalised. Markov decision
process (MDP), described in terms of <S, A, R, P>, is the
basis for reinforcement learning (RL):

S: Set of observable states.
A: Set of possible agents’ actions.

R: Set of gathered rewards based on the quality of the
action.

P: The policy is to decide which action is selected at a
given state.

In reinforcement learning (RL), a well-crafted rewarding
strategy has a significant impact on how well the agent's
neural network (NN) is tuned to produce the intended
behaviour. By modifying a network's responses, this kind of
learning seeks to enable it to function correctly in untested
contexts outside of the training set.

IV. ALGORITHM IMPLEMENTATION

A. Purpose

A branch of machine learning called reinforcement
learning (RL) aims to direct an agent to perform in a way that
maximizes cumulative rewards within a given environment.
In discrete time steps, the agent engages with the environment
by obtaining observations (st) from the state space (S), acting
(at) in the action space (A), and earning scalar rewards (rt) in
response to its activities. An action-to-observation policy (1)
governs the behavior of the agent. The agent's learning of a
policy that eventually results in the largest cumulative reward
is the aim.

B. Parameters

The exploration/exploitation issue is highlighted in the
context of reinforcement learning, highlighting the necessity
of striking a balance between the exploitation of learnt
knowledge and the discovery of novel alternatives. A few
discrete action exploration strategies are covered, such as the
well-known e-greedy exploration, with an emphasis on the
progressive shift over time from exploration to exploitation.
Turning the conversation to continuous actions, the criticism
focuses on the implicit investigation in stochastic policies,
specifically the supposition that actions have a Gaussian
distribution. Problems including noisy trajectories and their
detrimental effects on robotic control are emphasized, and a
manual variance adaptation approach is suggested to reduce
unwanted behavior. Finally, a thorough evaluation of existing
methods that use Gaussian action-perturbing exploration in
continuous action spaces is done. (Thomas Riickstief3, 2010)

When it comes to policy gradient algorithms, the main
issue that has to be addressed is the significant variation in
gradient estimates, which causes a delayed convergence. This
problem results from repetitive sampling from a probabilistic
strategy at each time-step, which introduces noise into the
gradient estimate. Parameter-based exploration is a suggested
substitute that modifies policy parameters directly instead of
affecting the actions that follow. In the segment preceding
every episode, a particular approach that uses finite
differences for gradient estimation is introduced. Benefits of
this strategy include reduced gradient computations, action
consistency, noise-free trajectories, and flexibility. (Thomas
Riickstief3, 2010)

Within the field of Stochastic Gradient Descent (SGD)
techniques, the step-size parameter () is typically chosen by
hand, however automated options have been investigated.
Theoretical factors, including conditions derived from
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stochastic approximation theory, provide little help in
practice and frequently lead to learning that is considered to
be overly sluggish. Conventional selections such as o, t=1/t,
which work well with tabular Monte Carlo techniques, don't
work well with Temporal Difference (TD) techniques,
nonstationary issues, or situations requiring function
approximation. Because they need O(d"2) step-size
parameters, recursive least-squares approaches are unfeasible
for big function approximation problems, despite being
optimum for linear methods. Setting a = 1 would remove
sample error in the tabular context after one target, but a
slower learning rate is usually preferred. For example, it
would take around 10 encounters for o = 1/10 to converge to
the mean goal. As a general guideline, one should choose o =
TE / (x>x =t 1) for linear function approximation, where x
is a randomly selected feature vector from the same
distribution as the SGD input vectors. When feature vectors
have lengths that are comparatively constant, this rule
performs well. Though the idea of experiences with a state
becomes less obvious, an analogous method is still required
to achieve similar behavior to linear approximation in general
function approximation, where experiences with a state lack
a clear description. (Richard S. Sutton, n.d.)

V. RESULTS AND DISCUSSION
A. Results
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Figure 22: Results of different parameters (Average wait time per
completed episode)
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Figure 33: Results of different parameters (Average collisions per
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Alpha  |Discount |Epsilon  |Average wait time per episode Average collisions per episode

0.1 0.6 0.1 3.16 0|
0.2 0.6 0.1 2.97 0
0.3 0.6 0.1 312 0
0.4 0.6! 0.1 3.24 0.1
0.5 0.6 0.1 3.05 0
0.6 0.6 0.1 2.94 0.1
0.7 0.6 0.1 2.9 0
0.8 0.6 0.1 2.94 0
0.9 0.6 0.1 3.06| 0|

1 0.6 0.1 3.13 0

Figure 44: Result of different values of Alpha Parameter

Alpha _|Discount |Epsilon |Average wait time per completed episode Average collisions per episode
0.1 0.1 0.1 3.11 0
0.1 0.2 0.1 3.01 0
01 0.3 0.1 2.81 0
0.1 0.4 0.1 3.18 0
0.1 0.5 0.1 3.05 o
0.1 0.6 01 3.16 0
0.1 0.7 0.1 3.03 0
0.1 0.8 0.1 2.91 0
0.1 0.9 0.1 3.43 0
01 1 01 2.84 0
Figure 55: Result of different values of Discount Parameter
Alpha  |Discount |Epsilon |Average wait time per completed episode Average collisions per episode

0.1 0.6 0.1 3.16 0|
0.1 0.6 0.2 3.37 0.1
0.1 0.6 0.3 3.29 0
0.1 0.6 0.4 3.51 0
0.1 0.6 0.5 3.76 0.1
0.1 0.6 0.6 4.12 0
0.1 0.6 0.7 4.09 0.2
0.1 0.6 0.8 4.28 0
0.1 0.6 0.9 4.33 0.1
0.1 0.6 1 4.61 0.1

Figure 66: Result of different values of Epsilon Parameter

B. Discussion

Figure 2 shows the average wait time per completed
episode for different parameters which are alpha (learning
rate), discount and epsilon. Based on the figure 4, learning
rate (alpha) determines the step size in updating the Q-
values. In this case, an alpha value of 0.7 seems to strike a
balance, leading to a lower average wait time which is 2.90
s. It indicates that a moderate learning rate contributes to
more effective learning in the given environment.
Moreover, the discount factor influences the agent's
consideration of future rewards. A lower discount factor
(0.3) in this case seems to result in a lower average wait
time (2.81s) which is shown in figure 5, suggesting that
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giving less weight to future rewards can lead to improved
decision-making. According to the figure 6, Epsilon
controls the balance between exploration and exploitation.
A low epsilon (0.1) suggests a higher focus on exploiting
the current knowledge, leading to a lower average wait
time (3.16s). However, as epsilon increases, the agent
explores more, which can result in longer wait times as the
agent takes suboptimal actions to discover new
possibilities. In a nutshell, the optimal parameter values
depend on the specific characteristics of the environment
and the task at hand. Balancing exploration and
exploitation is crucial for achieving good performance.
Too much exploration (high epsilon) can lead to increased
wait times, while too little exploration might cause the
agent to miss potentially better strategies (low epsilon).
Learning rate (alpha) and discount factor interact in
influencing the agent's behavior, and finding the right
combination is key to achieving optimal performance.

Furthermore, the learning rate (alpha) affects how
much the agent adjusts its estimates based on new
information. The slight increase in collisions at alpha=0.4
and alpha=0.6 may indicate that these learning rates result
in more dynamic Q-value updates, possibly leading to a
few collisions. The discount factor influences the agent's
consideration of future rewards. In this case, it seems that
varying the discount factor within the given range does not
have a significant impact on collision rates, as all values
remain at 0. Epsilon controls the balance between
exploration and exploitation. The increase in collisions at
epsilon=0.7 suggests that, in this scenario, a higher
exploration rate results in more collisions. This is expected
as the agent explores more and takes riskier actions. In
summary, the learning rate (alpha) influences how much
an agent adjusts its estimates based on new information.
Slight increases in collisions at alpha=0.4 and alpha=0.6
may suggest more dynamic Q-value updates. The discount
factor, within the given range, doesn't significantly impact
collision rates. Epsilon, controlling exploration-
exploitation balance, shows increased collisions at
epsilon=0.7, indicating higher exploration leading to
riskier actions and more collisions.

Figure 2 shows the average wait time per completed
episode for different parameters which are alpha (learning
rate), discount and epsilon. Based on the figure 4, learning
rate (alpha) determines the step size in updating the Q-
values. In this case, an alpha value of 0.7 seems to strike a
balance, leading to a lower average wait time which is 2.90
s. It indicates that a moderate learning rate contributes to
more effective learning in the given environment.
Moreover, the discount factor influences the agent's
consideration n of future rewards. A lower discount factor
(0.3) in this case seems to result in a lower average wait
time (2.81s) which is shown in figure 5, suggesting that
giving less weight to future rewards can lead to improved
decision-making. According to the figure 6, Epsilon
controls the balance between exploration and exploitation.
A low epsilon (0.1) suggests a higher focus on exploiting
the current knowledge, leading to a lower average wait
time (3.16s). However, as epsilon increases, the agent
explores more, which can result in longer wait times as the
agent takes suboptimal actions to discover new
possibilities.

VI. CONCLUSION

The paper has a conclusion that the Reinforcement
Learning Algorithm is suitable to be implemented for traffic
light control plan with results performing the best when setting
the alpha, discount, epsilon value at 0.1, 0.3 and 0.1
respectively. This will bring the average wait time from 3.46
seconds to 2.81 seconds.

The research can be enhanced by combining other
algorithms such as fuzzy logic, particle swarm optimization
(PSO), and deterministic algorithms while using real-world
scenarios data in virtual environments. This will identify the
best combination of algorithms to be used in real-time system.
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