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Abstract— The efficiency and efficacy of genetic algorithms 
(GA) and reinforcement learning (RL) algorithms in traffic 
signal control are examined in this study. The study looks into 
the benefits and drawbacks of RL and GA in the setting of bad 
traffic circumstances that increase fuel consumption and trip 
time. While GA investigates a larger solution area for 
optimizing traffic light control schemes, RL demonstrates 
flexibility through self-learning in diverse contexts. The work 
summaries the body of research on reinforcement learning's 
optimization for traffic signal management and shows how it 
may cut down on average travel time, delays, and stops. The 
presentation includes a thorough comparison of several 
approaches, such as particle swarm optimization and fuzzy 
logic. In order to overcome obstacles and enhance performance 
overall, hybridization with Deep Deterministic Policy Gradient 
and adjustments to GA are suggested as future paths and 
improvements. The hardware and software specifications, as 
well as the process used to apply RL to traffic light management, 
are described in the materials and techniques section. We 
address policy gradient algorithms, exploration/exploitation 
tactics, and the parameters of the algorithm. The effects of 
changing settings on average wait times and collisions are shown 
by the results. According to the study's findings, RL greatly 
enhances traffic flow and cuts typical wait times from 300 to 20 
seconds, especially when parameters are optimized. Future 
studies can investigate how to combine RL with other 
algorithms for the best possible traffic management in practical 
situations. 

Keywords— Reinforcement Learning, Genetic Algorithm, 
Traffic light control, Q-Learning 

I. INTRODUCTION 
This journal represents a deep analysis of Reinforcement 

Learning Algorithm and Genetic Algorithm, for its efficiency 
and effectiveness in traffic light control. Most vehicles waste 
time on the road and burn more fuel due to poor traffic 

conditions. Most vehicles waste time on the road and burn 
more fuel due to poor traffic conditions (Chian & Kamsin, 
2023). The literature review investigates the strengths and 
weaknesses of Reinforcement Learning and Genetic 
Algorithms in Traffic Signal Control, as well as the 
optimization of Reinforcement Learning on traffic light 
control. Reinforcement Learning (RL) has great potential to 
tackle these limitations in the recommender systems (Shuhrat, 
Ramachandran, & Salam, 2021). The journal also did a clear 
comparison between different algorithms and Reinforcement 
Learning / Genetic Algorithms. It also discusses the future 
direction and improvements of these algorithms on traffic 
light control. Additionally, the journal outlines the materials 
and method required for the implementation of algorithms in 
the context of traffic light control. 

 

II. LITERATURE REVIEW 

A. Strengths and Weaknesses of Reinforcement Learning 
and Genetic Algorithms in Traffic Signal Control 
The contribution of Reinforcement Learning and Genetic 

Algorithm to traffic signal control is significant, because of 
the unique strengths and weaknesses. Models like RL-TSC1, 
RL-TSC2 and RL-TSC3, outperform in adapting to different 
traffic flows and consistently improving its own decision-
making (Patrick Mannion, Jim Duggan, and Enda Howley, 
2016). The reason why Reinforcement Learning outperform 
fixed-queue timer systems is that the adaptability of 
Reinforcement Learning to variable environments through 
self-learning and real-time conditions. However, the 
implementation was not easy as the need for expertise in both 
traffic engineering and computational intelligence, high cost 
of human resource and computational intensity for large-scale 
networks, and sensitivity to parameter settings (Zhide Li，
Kaiquan Chen, 2018). 
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On the other hand, Genetic Algorithm offers a wider 
solution space for finding global optimum solutions in 
complex traffic scenarios (Hua Wei Guanjie Zheng, Vikash 
Gayah, Zhenhui Li, 2021). This algorithm excels in trying 
different solution in order to find the best optimized traffic 
light control plans, avoiding the risk of suboptimal choices. 
Nonetheless, the weaknesses of this algorithm arise in terms 
of computational intensity and limitation of real-time 
applicability, scalability issues especially in large-scale urban 
cities traffic networks with complex infrastructure (Hua Wei 
Guanjie Zheng, Vikash Gayah, Zhenhui Li, 2021). 

  

B. Optimization of Reinforcement Learning on traffic light 
control 
Reinforcement Learning (RL) is a subset of Machine 

Learning, autonomously learns optimal behaviour by 
exploring actions through trial and error to maximize rewards 
(Reinforcement learning, 2023). Unlike supervised learning, 
reinforcement learning operates without predefined answers, 
making it suitable for automated systems. Despite its 
strengths, reinforcement learning algorithms have limitations, 
prompting research for optimization. Studies aim to improve 
reinforcement learning 's performance, specifically 
addressing congestion reduction, enhanced vehicle 
throughput, and overall traffic efficiency to optimize traffic 
flow at intersections.  

 
Several studies, including one by Jaun et al. (2021), 

showcase significant improvements in traffic signal control 
through RL-based signal optimization models (Jaun, et al., 
2021). Multi-Agent Reinforcement Learning (MARL) 
systems are being investigated for enhancing coordination 
across intersections. The results demonstrate substantial 
reductions in delay, stops, and average travel time, 
particularly during peak hours. 

  
Moreover, Kumar, Nistala Venkata Kameshwer, & Vijay 

K. (2023) propose a model using RL to classify vehicles and 
assign different weights, effectively reducing average waiting 
time by up to 91.7% (Kumar, Nistala Venkata Kameshwer, 
& Vijay K., 2023). In addition, Xiaoyuan, Xusheng, Guiling, 
& Zhu (2019) leverage Deep Reinforcement Learning (DRL) 
for traffic light control, introducing a 3DQN model that 
outperforms fixed-time signals by over 20% in average 
waiting time reduction (Xiaoyuan, Xusheng, Guiling, & Zhu, 
2019). The study underscores the effectiveness of DRL 
techniques in optimizing traffic flow and reducing 
congestion.  

 
Furthermore, Zibo, Tongchao, Wenxing, Fengyao, & 

Liguo (2021) provide a comprehensive review of traffic 
signal control, highlighting RL as a promising alternative to 
traditional methods (Zibo, Tongchao, Wenxing, Fengyao, & 
Liguo, 2021). The literature emphasizes challenges in RL 
applications, such as efficient state representation and reward 
formulation, and concludes that DRL-based approaches 
generally outperform traditional methods. The simulation 
results affirm the superiority of DRL over Fixed Signal 
Timing (FST) control schemes in various traffic modes (P1–
P3). DRL consistently reduces waiting times and queue 

lengths, demonstrating its effectiveness in optimizing traffic 
signal control at intersections. 

 
In conclusion, the fusion of optimization techniques with 

RL holds promise for enhancing traffic flow at signalized 
intersections. The document suggests nuanced strategies, 
including fine-tuning reward structures, incorporating 
sophisticated decision-making models like the 3DQN, and 
adopting principles from MARL. These insights provide a 
robust foundation for future research and practical 
implementation of adaptive, efficient, and responsive traffic 
signal control systems, mitigating congestion and enhancing 
traffic flow in urban environments.  

 

C. Comparison with Different Methodologies 
 To gain a deeper comprehension of traffic light 

regulation using reinforcement learning, we have focused on 
Reinforcement Learning (RL) and Genetic Algorithms (GAs) 
in the context of traffic signal control, exploring a variety of 
computational approaches for intelligent traffic control 
systems (Aradi, 2020). To shed light on these systems' 
distinctive tactics for optimizing urban traffic flow, the paper 
contrasts them with other methodologies like fuzzy logic, 
particle swarm optimization (PSO), and deterministic 
algorithms (Alam, 2013); (Dezani, 2014); (Silva, 2022).  

In comparison with Fuzzy Logic, RL is highlighted for its 
adaptability to dynamic scenarios through learning optimal 
control policies, while Fuzzy Logic employs a rule-based 
system emulating human decision-making processes (Aradi, 
2020); (Alam, 2013). The choice between RL and Fuzzy 
Logic depends on specific traffic scenario requirements.  

The integration of GAs with High-Level Petri net models 
is discussed as a distinctive approach, emphasizing its 
effectiveness in optimizing traffic flow by considering 
alternative routes and real-time adjustments (Dezani, 2014). 
This approach contrasts with a fuzzy logic-based strategy, 
showcasing the diversity of methodologies in traffic signal 
control.  

PSO is distinguished in the comparison for its ease of use 
and efficiency in optimizing traffic signal systems, leading to 
considerable decreases in average waiting (Silva, 2022). 
GAs's distinct search strategy is compared to PSO; both 
approaches have benefits and need more investigation to 
allow for thorough comparisons.  

In adaptive traffic signal control, deterministic algorithms 
are compared with reinforcement learning (RL); in large data 
volume scenarios, the former outperforms (Abdulhai, 
2003)The deterministic algorithm performs better because of 
its comprehension of the dynamics of the traffic system, 
which emphasizes its ability to adjust to changing traffic 
demands.  

Finally, the comparison highlights the ever-changing field 
of intelligent traffic control systems and emphasizes the range 
of computational approaches that are at one's disposal (Aradi, 
2020); (Alam, 2013); (Dezani, 2014); (Silva, 2022); 
(Abdulhai, 2003). The study underscores how customized 
approaches based on unique traffic situations and preferences 
are required to manage complexity in transportation networks. 
It is believed that more investigation and real-world 
comparisons are necessary to fully comprehend the 
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advantages and disadvantages of each approach for 
intelligent traffic control systems.  

D. Future directions and improvements 
Through three experimental investigations that combine 

their benefits, it investigates the direction and advancement of 
genetic algorithm (GAs) and reinforcement learning (RL) in 
the future. (Bonarini, 2019). The main goal is to overcome the 
illusory generalization limit – one of the limits of GAs in 
tandom environments. In order to comprehend its interaction 
with GAs and create a hybridized procedural technique, the 
study explores the advanced Deep Deterministic Policy 
Gradient (DDPG) in deep reinforcement learning. (Bonarini, 
2019) 

Bonarini (2019) has done experiments that showcase a 
novel hybrid process that integrates the advantage of 
reinforcement learning approaches with genetic algorithm. 
This methodology introduces Policy Feedback as an off-
policy learning method. This study encourages creativity in 
procedural procedures and tackles difficulties in stochastic 
conditions. The evaluation covers a wide range of industries, 
including facility planning, scheduling and operation 
management, and it demonstrates how GAs may be 
successfully integrated with other optimization strategies to 
produce better performance measures. (Bonarini, 2019))Vijay 
Chahar er al. (2021) offer a comprehensive review of generic 
algorithm modifications, weighing the benefits and drawbacks 
of each. The study highlights how GAs should be strategically 
integrated with other optimization techniques, providing a 
road map for overcoming challenges and improving overall 
performance indicators. (Vijay Chahar, 2020) 

The paper highlights the uses of RL and Deep RL 
frameworks in fluid dynamics while providing insights into 
these models in parallel. In their discussion of problems and 
possible routes for integrating Deep RL with active flow 
control (AFC), Vingnon et al. (2023) give the fluid mechanics 
community a toolkit for dealing with practical issues. (C 
Vignon, 2023) 

While acknowledging the drawbacks of GAs, such as high 
processing costs and intricate parameter settings, Aymeric 
Vie(2020) offers several possible remedies, including GPU, 
parallel and quantum computing and inventive representation 
strategies. The favourable prognosis presents novel 
opportunities for the application of GAs in the future. 
(Aymeric Vi´e, 2020) 

The combination of these contributions broadens our 
comprehension of the intricate relationships between RL, GAs 
and their hybridizations, stimulating original thought and 
promoting more study of adaptive systems and optimization. 
The flexibility of GAs in stochastic environments and the 
necessity of an all-encompassing approach to optimization 
issues are highlighted in the review’s conclusion. (Bonarini, 
2019) All things considered, the literature presents a 
comprehensive picture of the changing scene, addressing 
issues and pointing forth possible directions for future 
development. 

III. MATERIALS AND METHOD 

A. Materials 
i. Software Requirements 

For this study paper, PyCharm is used to run the provided 
source code. Pycharm is an advanced Integrated Development 
Environment (IDE) created especially for Python developers. 
Python was chosen as the programming language for the 
provided source code due to its simple syntax and ease of 
reading. Applications like the reinforcement learning 
technique for traffic light control may be developed and 
maintained more quickly according to its clear and simple 
code structure. It also boasts comprehensive library standards, 
offering a variety of modules and packages. The provided 
source code has been installed and imported into three 
libraries which are Pygame, Scipy and Numpy. Pygame is 
used to develop a graphical user interface to visualize the 
reinforcement learning-based traffic light controller. Scipy is 
essential to solving the mathematical and scientific difficulties 
involved in applying reinforcement learning algorithms to 
optimize the traffic light control system. Additionally, Numpy 
is also used to perform a variety of mathematical operations 
on arrays, which improves the computational capabilities of 
the reinforcement learning traffic light control system. The 
reinforcement learning algorithm is executed in the Windows 
11 operating system.  

ii. Hardware Requirements 

The hardware that has been used for executing the given 
reinforcement learning algorithm on traffic light control in this 
paper is the NVIDIA GeForce RTX2050 for the Graphic 
Processing Unit (GPU). The reinforcement learning algorithm 
itself does not heavily rely on GPU acceleration in the source 
code. Intel(R) Core (TM) i5-13420H is the central processing 
unit (CPU) employed in this research work. The capabilities 
of the CPU may have an impact on the reinforcement learning 
algorithm's performance. The computations involved in the 
reinforcement learning method include value function 
calculations, reward prediction, q-value updates, and more. 
The CPU's processing power determines how quickly those 
calculations are completed. The computer's reinforcement 
learning method makes use of 8 GB of RAM. It involves 
learning rate and discount factor updates, q-value storage, and 
computations that require memory.  

B. Methodology 
    Reinforcement learning is a computational approach 

geared towards achieving specific goals by allowing a 
computer system to interact with an unfamiliar and dynamic 
environment. With the use of this learning paradigm, the 
computer can decide for itself to maximise the total reward 
linked to a particular task. Interestingly, reinforcement 
learning functions both without direct human intervention 
and without explicit programming for task completion. An 
overview of a situation involving reinforcement learning is 
shown in the diagram below.  

The main goal of reinforcement learning is to teach an 
agent how to carry out a task in an environment whose 
properties are unknown. In this scenario, the environment 
provides the agent with observations and rewards, while the 
agent transmits actions back to the environment. In relation 
to the overall task aim, the reward functions as a metre to 
indicate the effectiveness of an action.  

Two essential parts of the agent are a learning algorithm 
and a policy.   

1) Policy 
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The policy is a mapping process that chooses activities 
according to environmental observations. Usually, the policy 
is a function approximator, like a deep neural network, with 
programmable parameters.  

2) Learning Algorithm 

Based on the actions, observations, and incentives that are 
obtained, the learning algorithm continuously modifies the 
policy's parameters. The learning algorithm's main objective 
is to repeatedly improve the policy to find the ideal set of 
parameters that will maximise the total reward earned 
throughout the task.  

Reinforcement learning basically involves the agent 
learning its best behaviour through a sequence of 
environment-trial-and-error interactions without direct 
human intervention.  

To illustrate, consider the task of parking a vehicle using 
an automated driving system as an example. The objective 
here is for the vehicle's computer (the agent) to autonomously 
park the vehicle correctly. The controller generates steering, 
braking, and acceleration orders (actions) by utilising 
readings from several sensors (observations), such as 
cameras, accelerometers, gyroscopes, GPS receivers, and 
lidar. The actuators in charge of driving the car receive these 
action commands after that. Except the agent, every factor in 
this scenario is part of the environment: wind, road conditions, 
vehicle dynamics, and other variables.   

The computer learns by parking the car repeatedly using 
a trial-and-error method. To facilitate this learning process, a 
signal is given that denotes failure (reward) if the vehicle does 
not reach the intended position and orientation and success 
when it does. The computer modifies its action-selection 
strategy (policy) after every trial to maximise the reward 
(learning algorithm). The computer keeps going through this 
iterative process until it figures out the best course of action 
for properly parking the car.  

 
Figure 1: Reinforcement Learning Block Diagram 

An agent is a decision-maker who examines the 
environment and acts in accordance with its true condition 
(Kolat, 2023). Every activity is assessed based on its calibre. 
Depending on whether an activity is desired or undesirable, 
the agent is either rewarded or penalised. Markov decision 
process (MDP), described in terms of <S, A, R, P>, is the 
basis for reinforcement learning (RL):  

S: Set of observable states.  

A: Set of possible agents’ actions.  

R: Set of gathered rewards based on the quality of the 
action.  

P: The policy is to decide which action is selected at a 
given state.  

In reinforcement learning (RL), a well-crafted rewarding 
strategy has a significant impact on how well the agent's 
neural network (NN) is tuned to produce the intended 
behaviour. By modifying a network's responses, this kind of 
learning seeks to enable it to function correctly in untested 
contexts outside of the training set.  

 

IV. ALGORITHM IMPLEMENTATION  

A. Purpose 
A branch of machine learning called reinforcement 

learning (RL) aims to direct an agent to perform in a way that 
maximizes cumulative rewards within a given environment. 
In discrete time steps, the agent engages with the environment 
by obtaining observations (st) from the state space (S), acting 
(at) in the action space (A), and earning scalar rewards (rt) in 
response to its activities. An action-to-observation policy (π) 
governs the behavior of the agent. The agent's learning of a 
policy that eventually results in the largest cumulative reward 
is the aim.  

 

B. Parameters 
The exploration/exploitation issue is highlighted in the 

context of reinforcement learning, highlighting the necessity 
of striking a balance between the exploitation of learnt 
knowledge and the discovery of novel alternatives. A few 
discrete action exploration strategies are covered, such as the 
well-known ε-greedy exploration, with an emphasis on the 
progressive shift over time from exploration to exploitation. 
Turning the conversation to continuous actions, the criticism 
focuses on the implicit investigation in stochastic policies, 
specifically the supposition that actions have a Gaussian 
distribution. Problems including noisy trajectories and their 
detrimental effects on robotic control are emphasized, and a 
manual variance adaptation approach is suggested to reduce 
unwanted behavior. Finally, a thorough evaluation of existing 
methods that use Gaussian action-perturbing exploration in 
continuous action spaces is done. (Thomas Rückstieß, 2010) 
 

When it comes to policy gradient algorithms, the main 
issue that has to be addressed is the significant variation in 
gradient estimates, which causes a delayed convergence. This 
problem results from repetitive sampling from a probabilistic 
strategy at each time-step, which introduces noise into the 
gradient estimate. Parameter-based exploration is a suggested 
substitute that modifies policy parameters directly instead of 
affecting the actions that follow. In the segment preceding 
every episode, a particular approach that uses finite 
differences for gradient estimation is introduced. Benefits of 
this strategy include reduced gradient computations, action 
consistency, noise-free trajectories, and flexibility. (Thomas 
Rückstieß, 2010) 

 
Within the field of Stochastic Gradient Descent (SGD) 

techniques, the step-size parameter () is typically chosen by 
hand, however automated options have been investigated. 
Theoretical factors, including conditions derived from 



Journal of Applied Technology and Innovation (e -ISSN: 2600-7304)   vol. 8, no. 2, (2024)                                    54 
 

stochastic approximation theory, provide little help in 
practice and frequently lead to learning that is considered to 
be overly sluggish. Conventional selections such as α_t = 1/t, 
which work well with tabular Monte Carlo techniques, don't 
work well with Temporal Difference (TD) techniques, 
nonstationary issues, or situations requiring function 
approximation. Because they need O(d^2) step-size 
parameters, recursive least-squares approaches are unfeasible 
for big function approximation problems, despite being 
optimum for linear methods. Setting α = 1 would remove 
sample error in the tabular context after one target, but a 
slower learning rate is usually preferred. For example, it 
would take around 10 encounters for α = 1/10 to converge to 
the mean goal. As a general guideline, one should choose α = 
TE / (x>x ⇥ ⇤₁) for linear function approximation, where x 
is a randomly selected feature vector from the same 
distribution as the SGD input vectors. When feature vectors 
have lengths that are comparatively constant, this rule 
performs well. Though the idea of experiences with a state 
becomes less obvious, an analogous method is still required 
to achieve similar behavior to linear approximation in general 
function approximation, where experiences with a state lack 
a clear description. (Richard S. Sutton, n.d.) 

 

V. RESULTS AND DISCUSSION 
 

A. Results 

 
Figure 22: Results of different parameters (Average wait time per 

completed episode) 

 
Figure 33: Results of different parameters (Average collisions per 

episode) 

 

Figure 44: Result of different values of Alpha Parameter 

 

Figure 55: Result of different values of Discount Parameter 

 

Figure 66: Result of different values of Epsilon Parameter 

 

B. Discussion 
 Figure 2 shows the average wait time per completed 

episode for different parameters which are alpha (learning 
rate), discount and epsilon. Based on the figure 4, learning 
rate (alpha) determines the step size in updating the Q-
values. In this case, an alpha value of 0.7 seems to strike a 
balance, leading to a lower average wait time which is 2.90 
s. It indicates that a moderate learning rate contributes to 
more effective learning in the given environment. 
Moreover, the discount factor influences the agent's 
consideration of future rewards. A lower discount factor 
(0.3) in this case seems to result in a lower average wait 
time (2.81s) which is shown in figure 5, suggesting that 
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giving less weight to future rewards can lead to improved 
decision-making. According to the figure 6, Epsilon 
controls the balance between exploration and exploitation. 
A low epsilon (0.1) suggests a higher focus on exploiting 
the current knowledge, leading to a lower average wait 
time (3.16s). However, as epsilon increases, the agent 
explores more, which can result in longer wait times as the 
agent takes suboptimal actions to discover new 
possibilities. In a nutshell, the optimal parameter values 
depend on the specific characteristics of the environment 
and the task at hand. Balancing exploration and 
exploitation is crucial for achieving good performance. 
Too much exploration (high epsilon) can lead to increased 
wait times, while too little exploration might cause the 
agent to miss potentially better strategies (low epsilon). 
Learning rate (alpha) and discount factor interact in 
influencing the agent's behavior, and finding the right 
combination is key to achieving optimal performance. 

 Furthermore, the learning rate (alpha) affects how 
much the agent adjusts its estimates based on new 
information. The slight increase in collisions at alpha=0.4 
and alpha=0.6 may indicate that these learning rates result 
in more dynamic Q-value updates, possibly leading to a 
few collisions. The discount factor influences the agent's 
consideration of future rewards. In this case, it seems that 
varying the discount factor within the given range does not 
have a significant impact on collision rates, as all values 
remain at 0. Epsilon controls the balance between 
exploration and exploitation. The increase in collisions at 
epsilon=0.7 suggests that, in this scenario, a higher 
exploration rate results in more collisions. This is expected 
as the agent explores more and takes riskier actions. In 
summary, the learning rate (alpha) influences how much 
an agent adjusts its estimates based on new information. 
Slight increases in collisions at alpha=0.4 and alpha=0.6 
may suggest more dynamic Q-value updates. The discount 
factor, within the given range, doesn't significantly impact 
collision rates. Epsilon, controlling exploration-
exploitation balance, shows increased collisions at 
epsilon=0.7, indicating higher exploration leading to 
riskier actions and more collisions. 

 Figure 2 shows the average wait time per completed 
episode for different parameters which are alpha (learning 
rate), discount and epsilon. Based on the figure 4, learning 
rate (alpha) determines the step size in updating the Q-
values. In this case, an alpha value of 0.7 seems to strike a 
balance, leading to a lower average wait time which is 2.90 
s. It indicates that a moderate learning rate contributes to 
more effective learning in the given environment. 
Moreover, the discount factor influences the agent's 
consideration n of future rewards. A lower discount factor 
(0.3) in this case seems to result in a lower average wait 
time (2.81s) which is shown in figure 5, suggesting that 
giving less weight to future rewards can lead to improved 
decision-making. According to the figure 6, Epsilon 
controls the balance between exploration and exploitation. 
A low epsilon (0.1) suggests a higher focus on exploiting 
the current knowledge, leading to a lower average wait 
time (3.16s). However, as epsilon increases, the agent 
explores more, which can result in longer wait times as the 
agent takes suboptimal actions to discover new 
possibilities. 

 

VI. CONCLUSION 
 The paper has a conclusion that the Reinforcement 
Learning Algorithm is suitable to be implemented for traffic 
light control plan with results performing the best when setting 
the alpha, discount, epsilon value at 0.1, 0.3 and 0.1 
respectively. This will bring the average wait time from 3.46 
seconds to 2.81 seconds. 

 The research can be enhanced by combining other 
algorithms such as fuzzy logic, particle swarm optimization 
(PSO), and deterministic algorithms while using real-world 
scenarios data in virtual environments. This will identify the 
best combination of algorithms to be used in real-time system. 
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