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Abstract— Weather forecasting involves using weather data to
predict the future weather conditions in a specific location.
Understanding the weather is important as it affects various
things such as planting crops, running a business, and being
prepared for emergencies. Farmers rely on precise weather
forecasts to determine the best time for planting, while
businesses use them to organize their operations, and
communities depend on them to stay secure. This study
examines the application of Long Short-Term Memory (LSTM)
in forecasting weather. LSTM is a neural network known for
effectively interpreting and processing sequential data, like a
sequence of climate observations. By adjusting parameters such
as batch size, number of epochs, and optimizer algorithm, the
accuracy of the predictions changes in the updated results.

Keywords—LSTM Network, Weather Forecasting, Neural
Network, Predictive Modelling, Sequential Data.

I. INTRODUCTION

Weather, as one of the most directly perceivable changes in
our daily lives, often captures widespread attention. Whether
it's sunny or rainy, the weather directly impacts our activity
plans, and in severe cases, it may even involve taking
precautionary measures to cope with harsh conditions.
However, with the continuous progress of technology,
traditional weather forecasting methods are entering an era of
innovation, and the emergence of deep learning technology
undoubtedly injects new vitality into weather prediction.

In this captivating field, deep learning models such as
Long Short-Term Memory Networks (LSTM) are gradually
becoming powerful tools for forecasting future weather.
Robust deep learning frameworks like LSTM and Keras
provide scientists with powerful tools to build, train, and
evaluate these models. By constructing, training, and
evaluating these models, people can take appropriate
measures to deal with unpredictable weather, avoiding being
troubled by sudden weather changes in daily life. The goal of
this research is to reveal the crucial role of deep learning in
weather forecasting. In this research, the LSTM model is
trained to analyse and process historical weather parameters,
making it capable of predicting future temperature changes
based on the weather conditions from the preceding hours.

II. LITERATURE REVIEW

In traditional weather forecasting methods, the indigenous
communities use nature to predict the weather and make
decisions, especially when it comes to farming and everyday
jobs. Radeny et al. (2019) looks at how indigenous people in
East Africa predict the weather through observing the sky and
nature. In Africa, the rising temperatures are affecting farming
and other agricultural practices. In this situation, farmers and
herders rely on the knowledge from their cultural heritage to
make decisions on agricultural practices. Research done by
Tahiluddin et al. (2023) looks at how people in Tawi-Tawi,
Philippines utilize traditional weather knowledge due to the
absence of modern forecasts. Locals rely on a variety of
natural signals such as cloud formation, wind direction,
temperature, visibility, celestial positions and animal
behaviours to forecast the weather. Similarly, Balehegn et al.
(2019) also explores how Afar herders in Ethiopia depend on
animals, bugs, birds, and trees to forecast weather and identify
changing climate. Despite challenges in accuracy, these
traditional methods persist due to the lack of access to modern
alternatives.

Dharmasena (2021) studied about how people in Sri Lanka
predict bad weather such as droughts, floods, storms, and rain,
using old-fashioned ways of observing the nature. This
method is emphasized by the locals together with their
traditional farming methods to assist them in taking care of the
environment and farming. The researcher also suggests that
combining what indigenous people know with modern science
can help to predict the weather better and manage disasters
more effectively. In short, these studies highlight the
importance of Indigenous Knowledge in predicting the
weather and climate in many different places.

However, traditional weather forecasting methods often
face limitations in terms of accuracy, adaptability, and real-
time monitoring due to the complexity of the atmospheric
system (Pu & Kalnay, 2018). In contrast, emerging
applications of artificial intelligence (AI), such as Nvidia's
FourcastNet, Google DeepMind's GraphCast, and Huawei's
Pangu Weather, have brought revolutionary changes to
weather forecasting by leveraging machine learning, big data
analysis, and pattern recognition (Hickey, 2020). These Al
applications demonstrate significant improvements in
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accuracy and speed compared to traditional methods
(Heikkildarchive, 2023). The use of big data technology
further enhances forecasting capabilities, allowing for more
detailed and comprehensive modeling of weather systems.
Artificial intelligence excels in accuracy, efficiency,
adaptability, and real-time monitoring, providing powerful
tools for disaster prevention, agriculture, transportation, and
other societal aspects influenced by weather forecasts. (Fathi
et al.,2021). The development of these new technologies
brings more reliable and comprehensive solutions to the field
of weather forecasting.

To implement these Al applications, humans have been
integrating machine learning (ML) into building and
improving weather forecasting models. The benefit of ML is
that it takes a more data-driven approach which increases the
accuracy of results. The paper by Tiu et al. (2021) has
reviewed and concluded that ML algorithms can provide great
help in anticipating and responding to dengue outbreaks. An
article by Wang et al. (2019) has also showcased how their
proposed ML-based method “deep uncertainty quantification”
have a much better accuracy when compared to numerical
weather prediction in weather forecasting, with a value of
47.76% better. Another article by Bochenek and Ustrnul
(2022) has discussed the usage of ML in weather forecasting.
The authors have also reviewed supervised and unsupervised
ML methods, then provided suggestions for determining the
best methods for accurate weather forecasting. In the final
article by Bhawsar et al. (2021), it has reviewed various ML
and deep learning techniques utilized in weather forecasting,
also listed potential issues meteorologists need to face during
weather forecasting. In a nutshell, ML techniques provide
better accuracy for weather forecasting results, which is an
achievement for humanity.

In recent years, deep learning methodologies, notably
Convolutional Neural Networks (CNN), Recurrent Neural
Networks (RNN), and Temporal Convolutional Networks
(TCN), have also gained popularity in weather forecasting.
Firstly, CNN, which excels in analysing and classifying 2D
images, was found instrumental in improving the accuracy
and efficiency in severe convection weather (SCW)
phenomena as compared to traditional forecasting methods
using manual observation (Ng et al., 2023; Zhou et al., 2019;
Xiao et al., 2021). In research conducted by Xiao et al. (2021),
a deep CNN-based model, MeteCNN was introduced,
achieving a 92.68% accuracy in classifying 11 weather
phenomena. Zhou et al. (2019) has also implemented a deep
2D CNN algorithm which has displayed up to 178%
improvement in SCW phenomena prediction as compared to
traditional methods. Next, a study by Cebeci (2019) has
showcased LSTM's prowess in short-term weather
forecasting. By utilizing multidimensional datasets in this
research, LSTM model has achieved the highest average
accuracy rate, outperforming other algorithms such as Support
Vector Regression (SVR) and Multi-Layer Perceptron (MLP).
Similar research conducted by Ren et al. (2021) has also
highlighted the superiority of LSTM models in accuracy and
timeliness in short-term local weather forecasting.

Hewage et al. (2021) has evaluated LSTM and TCN models
using two regressions, namely multi-input single-output
(MISO) and multi-input multi-output (MIMO). In this
research, MIMO-LSTM model was identified as the optimal

model, offering efficient implementation and accurate
predictions up to 12 hours. Upon further research conducted
by Behera et al. (2020) on the MIMO-TCN model, the TCN-
based model achieved high accuracy in local forecasting for
up to 9 hours. Therefore, it can be concluded that the
integration of CNN, LSTM, and TCN into weather forecasting
models can address the challenges in traditional methods and
enhance the accuracy and efficiency of forecasting weather.

In summary, both traditional and modern approaches to
weather forecasting have been significant in our daily lives.
The implementation of artificial intelligence (AI) has
revolutionized = weather  forecasting, offering more
lightweighted, accurate, adaptable, and real-time solutions
compared to traditional methods. The integration of machine
learning (ML) algorithms further enhances forecasting
accuracy, through data-driven approaches. Notably, deep
learning methodologies, especially LSTM networks, has
demonstrated superior performance in capturing complex
weather patterns. Therefore, LSTM is suggested to be further
investigated to enhance the researchers’ understanding of its
role in accurate and efficient weather forecasting.

III. MATERIALS
A. Dataset

This study utilized the meteorological dataset shared by
ROHAN LAL KSHETRY on Kaggle. The dataset includes
various meteorological information such as temperature,
wind speed, and humidity, spanning from the year 2009 to
2016, providing approximately 96,000 time points of
meteorological measurement data.

The research objective is to build a model using deep
learning techniques to predict future temperature changes.
During the data preparation phase, the meteorological data
were organized and processed to transform the time series
data into a supervised learning problem, enabling the model
to use past hours' weather information to predict the
temperature at the next time point. Long Short-Term Memory
(LSTM) network was chosen as the deep learning
architecture, training the model to learn patterns from
historical data through 100 training cycles. Finally, the
model's performance is evaluated on the test set using the
Root Mean Square Error (RMSE) to measure the difference
between the actual temperature and the model's predicted
temperature.

B. Implementation

To implement this model, Python 3.10 programming
language is required. The main libraries used include
keras.models for defining the Sequential model in Python,
keras.layers for various tools to build neural network layers,
sklearn.metrics for evaluating model performance,
Matplotlib for creating visualizations, Pandas for data
processing and analysis, and Numpy for numerical
computations in Python. Additionally, sklearn.preprocessing
is used to provide data preprocessing tools.

In this research, the model is implemented using Google
Colab. Typically, for running general machine learning tasks,
it is recommended to have at least 4GB of memory, and
installing Python, libraries, and storing databases may require
at least 10GB of available disk space. However, in the case
of using Google Colab, there is no need to worry about the
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hardware requirements of the local machine since the code
runs on cloud resources provided by Google. Therefore, the
memory and disk space of the local machine of the
researchers do not directly impact the operation of the
weather forecasting model in Google Colab.

IV. METHODS

A. Preproccesing

For the input weather forecast dataset, a series of
processing measures were employed to ensure consistency

and diversity in the training data, while preventing overfitting.

Firstly, the data format was standardized to ensure a uniform
structure for all weather forecast data, including information
such as date, temperature, humidity, wind speed, etc., and to
maintain consistency in the model's input data. For potential
missing values, appropriate handling methods were applied,
such as mean or median imputation, to ensure the integrity
and availability of the dataset. When dealing with time series
data, extraction of time features, including year, month, day,
hour, etc., was performed to assist the model in capturing
time-related patterns effectively. Numerical features
underwent standardization to scale them to a similar range,
avoiding the impact of differences between various features
on the model's training.

B. Model Architecture

Using the Keras Sequential model, the architecture
involved the stacking of LSTM layers, fully connected layers,
and an output layer. The LSTM layer comprised 30 units,
responsible for handling long-term dependencies in time
series. The fully connected layer consisted of 256 nodes and
utilized the ReLU activation function, with a Dropout layer
to prevent overfitting. The final output layer, designed for
regression tasks, contained one node with a linear activation
function. The entire model was compiled with mean squared
error loss function and the Adam optimizer. This structure
enabled the neural network to comprehend patterns in time
series for accurate temperature predictions during testing.

C. Model Training

The model underwent training using the mean squared
error loss function and the Adam optimizer. Throughout the
training process, the model adjusted weights and biases
through multiple iterations to minimize the loss function,
enhancing accuracy in temperature predictions. Training
progress was monitored by observing changes in training loss
and validation loss through visualizations. Finally, the model
was evaluated by calculating the Root Mean Square Error
(RMSE) to measure the difference between actual
temperature and model-predicted temperature.

D. Evaluation

The primary metric for evaluating the model's prediction
accuracy on the test set was the Root Mean Square Error
(RMSE). RMSE serves as an indicator of the difference
between the model's predicted results and the actual observed
values. It involves summing the squares of prediction errors,
averaging them, and taking the square root to provide a more
interpretable measure of error. By computing and outputting
RMSE, a clear understanding of the model's accuracy in
predicting actual temperatures and the overall level of error
between predicted results and real values is obtained.

V. ALGORITHM IMPLEMENTATION

The selected algorithm for weather forecasting in this
study is Long Short-Term Memory (LSTM), which is a
variant of Recurrent Neural Network (RNN) well-suited in
analysing time-series data (Cebeci, 2019; Hewage et al, 2021,
Ren et al., 2021). In LSTM, each block comprises of three
crucial multiplicative units: the input gate, which receives
input and determines whether to accept its current input; the
forget gate, which allows the LSTM to discard previous
memory; and the output gate, which determines what to be
transferred and displayed (Ren et al., 2021). These features
provide LSTM algorithms with the ability to selectively
process current inputs, forget previous states, and decide what
information to output, making them effective and efficient in
capturing sequences, which is a crucial process in predicting
weather.

In this research, an LSTM-based weather forecasting
model created by user priyanshu2015 on GitHub is
employed. This model forecasts the temperature using 8 types
of weather data from the previous three hours. The
researchers have run the model using Google Colab and the
parameters were identified and tested.

A. Purpose

In this research, the main objective is to investigate the
application of the LSTM model in forecasting future weather
based on the available data. The research aims to investigate
the factors contributing to the accuracy of this model in
predicting the weather. Historical weather information, like
temperature, humidity, wind speed, wind bearings, visibility,
and pressure are used to predict what the future weather might
be like. This study aims to analyses how the LSTM model
was trained and tested using this information to forecast
weather.

B. Parameters

TABLE L PARAMETERS
Parameter Value
Batch size 128
Number of epochs 100
Loss function MSE
Optimizer Adam

The parameters used in training this model include the
batch size, number of epochs, loss function and optimizer. The
initial values of the parameters used in the original source
code are shown in TABLE 1. In this research, the values will
be modified by the researchers to assess how it impacts the
model's performance.

VI. RESULTS AND DISCUSSION

In this section, the LSTM-based weather forecasting
model will be implemented and trained with modified
parameters (batch size, number of epochs, optimizer). The
training loss, validation loss, time taken to conduct the
training and the RMSE score are collected and analysed to
compare the parameters and determine the most suitable
parameters for an efficient and accurate weather forecasting
model.
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A. Discussion on Implementation

To set up the model, the primary dataset
(weatherHistory.csv) revolving around previous weather
conditions, encompassing factors like temperature, humidity,
and wind force, was loaded into Google Colab files. This
information is used to predict the future weather. In order to
make LSTM networks work well in predicting the weather,
some important parameters require careful tuning to train the
model. This paper focuses on finding suitable batch size,
number of epochs, and different optimizers to improve
weather predictions while maintaining efficiency by
consuming less computer power.

Firstly, batch size is modified to investigate its impact on
the model’s accuracy and training time. This research paper
examines how using different batch sizes (64, 256 and 512)
instead of the usual 128, as suggested by GitHub user
priyanshu2015, will affect how well the LSTM model works.
Using smaller batch size makes the optimization process
more exact, but it takes longer to train. While increasing the
amount of batch sizes for training can result in a faster
process, the accuracy of the outcomes may be compromised
(Pramoditha, 2023). Therefore, it is important to determine
the optimal batch size that ensures a balance between training
time and accuracy.

Secondly, the number of epochs determines the number
of times the entire training dataset is processed by the
learning algorithm during training (Vinayedula, 2023). This
research experiments on different number of epochs, starting
with 10, 50, 150, and 100, which is originally implemented
in source code. The aim is to assess the influence of the
number of iterations the model undergoes on its capacity to
comprehend temporal patterns. The right number of epochs
help make predictions that are accurate without making the
model too simple or too complicated (DeepAl, 2020). Thus,
this paper aims to find the ideal number of epochs to train the
LSTM model.

Optimization algorithms help to improve how well neural
networks work by changing things like weights and learning
speed to reduce losses. Using optimization algorithms is very
important in making the model work better (Doshi, 2021).
This research commences with the “Adam” (Adaptive
Moment Estimation) optimizer, which was set by the source
code author, priyanshu2015. Adam optimizer is a method
often used in deep learning to improve how the model learns.
This study aims to understand how different optimization
algorithms, such as Stochastic Gradient Descent (SGD) and
Root Mean Squared Propagation (RMSprop), impact the
LSTM model’s learning ability from past data and accuracy
in predicting the future.

The performance of this weather forecasts model was
assessed using a measure called Root Mean Squared Error
(RMSE). The RMSE formula -calculates the average
difference between the actual and predicted values of the
weather and then finds the square root of that average. The
accuracy of the model’s predictions is computed by
calculating the average size of error between the predicted
values and actual values. The RMSE calculation is crucial in
this research to demonstrate the performance of the LSTM
model predicting weather (C3.ai, 2021).

(1) Formula for MSE = (1/n) * Z (predicted_value - actual_value) "2
where:
n is the total number of data points.
X represents the sum over all data points.

(2) Formula for RMSE = sqrt (MSE)

Fig. 1. Formula for MSE.

Figure 1 shows the formula used to calculate the RMSE
value. First, the MSE (1), showing how different the
predicted and actual values are, on average, is computed.
After that, the square root of MSE will be calculated to get
the RMSE (2). This step is done to ensure the RMSE value
has the same units as the original data for clarity. RMSE is a
measure used to see how well a model is doing. The smaller
RMSE values are, the better the model’s performance (C3.ai,
2021).

In simple terms, this research aims to assess the LSTM
model’s accuracy in predicting weather by experimenting
with different parameters and finally, choosing the ideal
values or methods best suited for the model.

B. Results
TABLE II. EPOCHS
Epochs Average Average RMSE Time Taken

Training Loss | Validation Loss (s)
10 0.0105 0.0049 2.827 43
50 0.0036 0.0020 1.798 84
100 0.0024 0.0014 1.648 259
150 0.0022 0.0013 1.590 432

To assess the impact of different epoch values on model
accuracy, 10, 50, 150, and the original number of epochs,
100, were tested using a batch size of 128 and Adam
optimization algorithm. The result, as depicted in TABLE II,
has shown a noticeable trend where, as the number of epochs
increases, the average training loss, validation loss, and
RMSE value of the model decrease. This suggests that the
model's accuracy improves with a higher number of epochs.
This is because, with each epoch, the model updates its
weight and bias based on the training data, leading to a
reduction in average training and validation loss and an
improvement in prediction accuracy (Vinayedula, 2023).
Among the experimented values, training the model with 150
epochs resulted in the lowest RMSE score. However, it is also
observed that the time taken to train the model at 150 epochs
is significantly higher than the others. Additionally, a high
number of epochs can also lead to overfitting, causing the
model to fail in generalising new data. Therefore, it is
important to select a suitable epoch value, which is 100 in this
model, to achieve a balance between accuracy and training
time and avoid overfitting.

TABLE IIL BATCH SIZE
Batch Average Average RMSE Time Taken
Size Training Loss | Validation Loss (s)
64 0.0022 0.0021 2.096 444
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128 0.0010 0.0007 1.560 251
256 0.0031 0.0015 1.748 157
512 0.0036 0.0021 1.667 144

In this experiment, the impact of different batch sizes (64,
256, 512 and the original batch size 128) on model
performance was evaluated for 100 epochs using the Adam
optimizer. Observing the results in Table III, smaller batch
sizes (64 and 128) showed lower training loss on the training
set, possibly due to more frequent parameter updates,
whereas larger batch sizes (256 and 512) exhibited poorer
performance on training loss, indicating that the model
struggled to adapt to the training data, leading to training
instability. On the validation set, smaller batch sizes
demonstrated lower validation loss, suggesting better
generalization ability of the model, while larger batch sizes
had a decreased generalization performance, possibly due to
overfitting on the training data. A smaller batch size (128) has
also exhibited relatively lower RMSE, indicating more
accurate predictions on the test data as compared to larger
batch sizes. Additionally, larger batch sizes allow for more
parallel computation, resulting in shorter training times for
the same number of epochs (Sabrepc, 2023). In summary, the
choice of different batch sizes has a significant impact on
model performance and training efficiency. Through a
comprehensive analysis of RMSE, training loss, and
validation loss, Batch Size 128 consistently performed
relatively well, demonstrating lower RMSE and achieving a
balance between training loss and validation loss, making it a
potentially good compromise in this model.

TABLE IV. OPTIMIZER
Optimizer Average Average RMSE Time Taken
Training Loss | Validation Loss (s)
Adam 0.0036 0.0024 1.993 120
SGD 0.0134 0.0113 5.061 136
RMSprop 0.0042 0.0023 2.070 145

To investigate the performance of the model when using
different optimizers, two additional optimizers Stochastic
Gradient Descent (SGD) and Root Mean Squared
Propagation (RMSprop) are chosen on top of the original
Adam optimizer while maintaining the original number of
epochs (100) and batch size (128). The results are listed in
Table I'V. In terms of the average training loss, it is found out
that SGD obtained the least satisfactory result out of the three,
while Adam had the lowest loss with RMSprop following
close behind. As for average validation loss, RMSprop had a
slight advantage over Adam, while SGD still fell behind.
According to the RMSE values obtained, it is safe to assume
that SGD is not a suitable optimizer for this model with a high
value of 5.061. When comparing the time taken to train using
Adam and RMSprop optimizer, Adam is recorded to be 25
seconds quicker. According to an online article written by
Agarwal (2023), it is stated that Adam optimizer has a much
faster converge rate than other optimizers, which allows to
reach its performance much sooner for quicker training times.
Hence, it can be concluded that the original optimizer, Adam,
is the superior choice for training and testing for this model.

VII. CONCLUSIONS

In conclusion, this paper has investigated some essential
parameters to find out the best choices that could help the
LSTM model reach its best performance when predicting the
weather. Based on the experiments conducted, it is found that
the original parameters selected were already the most
suitable for its model, which were 100 epochs, batch size of
128 and the Adam optimizer. There are some parameters that
performed better than others in certain aspects, but other
conditions should also be considered. As an example,
although the epoch values of 150 had a better performance
than 100 epoch values for the model, it took a longer time to
complete. It should be noted that time taken is an important
factor for real-time forecasting. Therefore, we may conclude
that the current LSTM model has excellent performance, but
further research should be made to help enhance its accuracy
for weather prediction.
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