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Abstract— Weather forecasting involves using weather data to 
predict the future weather conditions in a specific location. 
Understanding the weather is important as it affects various 
things such as planting crops, running a business, and being 
prepared for emergencies. Farmers rely on precise weather 
forecasts to determine the best time for planting, while 
businesses use them to organize their operations, and 
communities depend on them to stay secure. This study 
examines the application of Long Short-Term Memory (LSTM) 
in forecasting weather.  LSTM is a neural network known for 
effectively interpreting and processing sequential data, like a 
sequence of climate observations. By adjusting parameters such 
as batch size, number of epochs, and optimizer algorithm, the 
accuracy of the predictions changes in the updated results. 
 

Keywords—LSTM Network, Weather Forecasting, Neural 
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I. INTRODUCTION  

Weather, as one of the most directly perceivable changes in 
our daily lives, often captures widespread attention. Whether 
it's sunny or rainy, the weather directly impacts our activity 
plans, and in severe cases, it may even involve taking 
precautionary measures to cope with harsh conditions. 
However, with the continuous progress of technology, 
traditional weather forecasting methods are entering an era of 
innovation, and the emergence of deep learning technology 
undoubtedly injects new vitality into weather prediction. 

In this captivating field, deep learning models such as 
Long Short-Term Memory Networks (LSTM) are gradually 
becoming powerful tools for forecasting future weather. 
Robust deep learning frameworks like LSTM and Keras 
provide scientists with powerful tools to build, train, and 
evaluate these models. By constructing, training, and 
evaluating these models, people can take appropriate 
measures to deal with unpredictable weather, avoiding being 
troubled by sudden weather changes in daily life. The goal of 
this research is to reveal the crucial role of deep learning in 
weather forecasting. In this research, the LSTM model is 
trained to analyse and process historical weather parameters, 
making it capable of predicting future temperature changes 
based on the weather conditions from the preceding hours. 

II. LITERATURE REVIEW 
 In traditional weather forecasting methods, the indigenous 
communities use nature to predict the weather and make 
decisions, especially when it comes to farming and everyday 
jobs. Radeny et al. (2019) looks at how indigenous people in 
East Africa predict the weather through observing the sky and 
nature. In Africa, the rising temperatures are affecting farming 
and other agricultural practices. In this situation, farmers and 
herders rely on the knowledge from their cultural heritage to 
make decisions on agricultural practices. Research done by 
Tahiluddin et al. (2023) looks at how people in Tawi-Tawi, 
Philippines utilize traditional weather knowledge due to the 
absence of modern forecasts. Locals rely on a variety of 
natural signals such as cloud formation, wind direction, 
temperature, visibility, celestial positions and animal 
behaviours to forecast the weather. Similarly, Balehegn et al. 
(2019) also explores how Afar herders in Ethiopia depend on 
animals, bugs, birds, and trees to forecast weather and identify 
changing climate. Despite challenges in accuracy, these 
traditional methods persist due to the lack of access to modern 
alternatives.   
 Dharmasena (2021) studied about how people in Sri Lanka 
predict bad weather such as droughts, floods, storms, and rain, 
using old-fashioned ways of observing the nature. This 
method is emphasized by the locals together with their 
traditional farming methods to assist them in taking care of the 
environment and farming. The researcher also suggests that 
combining what indigenous people know with modern science 
can help to predict the weather better and manage disasters 
more effectively. In short, these studies highlight the 
importance of Indigenous Knowledge in predicting the 
weather and climate in many different places.  
 However, traditional weather forecasting methods often 
face limitations in terms of accuracy, adaptability, and real-
time monitoring due to the complexity of the atmospheric 
system (Pu & Kalnay, 2018). In contrast, emerging 
applications of artificial intelligence (AI), such as Nvidia's 
FourcastNet, Google DeepMind's GraphCast, and Huawei's 
Pangu Weather, have brought revolutionary changes to 
weather forecasting by leveraging machine learning, big data 
analysis, and pattern recognition (Hickey, 2020). These AI 
applications demonstrate significant improvements in 
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accuracy and speed compared to traditional methods 
(Heikkiläarchive, 2023). The use of big data technology 
further enhances forecasting capabilities, allowing for more 
detailed and comprehensive modeling of weather systems. 
Artificial intelligence excels in accuracy, efficiency, 
adaptability, and real-time monitoring, providing powerful 
tools for disaster prevention, agriculture, transportation, and 
other societal aspects influenced by weather forecasts.  (Fathi 
et al.,2021).  The development of these new technologies 
brings more reliable and comprehensive solutions to the field 
of weather forecasting. 
 To implement these AI applications, humans have been 
integrating machine learning (ML) into building and 
improving weather forecasting models. The benefit of ML is 
that it takes a more data-driven approach which increases the 
accuracy of results. The paper by Tiu et al. (2021) has 
reviewed and concluded that ML algorithms can provide great 
help in anticipating and responding to dengue outbreaks. An 
article by Wang et al. (2019) has also showcased how their 
proposed ML-based method “deep uncertainty quantification” 
have a much better accuracy when compared to numerical 
weather prediction in weather forecasting, with a value of 
47.76% better. Another article by Bochenek and Ustrnul 
(2022) has discussed the usage of ML in weather forecasting. 
The authors have also reviewed supervised and unsupervised 
ML methods, then provided suggestions for determining the 
best methods for accurate weather forecasting. In the final 
article by Bhawsar et al. (2021), it has reviewed various ML 
and deep learning techniques utilized in weather forecasting, 
also listed potential issues meteorologists need to face during 
weather forecasting. In a nutshell, ML techniques provide 
better accuracy for weather forecasting results, which is an 
achievement for humanity. 
 In recent years, deep learning methodologies, notably 
Convolutional Neural Networks (CNN), Recurrent Neural 
Networks (RNN), and Temporal Convolutional Networks 
(TCN), have also gained popularity in weather forecasting. 
Firstly, CNN, which excels in analysing and classifying 2D 
images, was found instrumental in improving the accuracy 
and efficiency in severe convection weather (SCW) 
phenomena as compared to traditional forecasting methods 
using manual observation (Ng et al., 2023; Zhou et al., 2019; 
Xiao et al., 2021). In research conducted by Xiao et al. (2021), 
a deep CNN-based model, MeteCNN was introduced, 
achieving a 92.68% accuracy in classifying 11 weather 
phenomena. Zhou et al. (2019) has also implemented a deep 
2D CNN algorithm which has displayed up to 178% 
improvement in SCW phenomena prediction as compared to 
traditional methods. Next, a study by Cebeci (2019) has 
showcased LSTM's prowess in short-term weather 
forecasting. By utilizing multidimensional datasets in this 
research, LSTM model has achieved the highest average 
accuracy rate, outperforming other algorithms such as Support 
Vector Regression (SVR) and Multi-Layer Perceptron (MLP). 
Similar research conducted by Ren et al. (2021) has also 
highlighted the superiority of LSTM models in accuracy and 
timeliness in short-term local weather forecasting.  
Hewage et al. (2021) has evaluated LSTM and TCN models 
using two regressions, namely multi-input single-output 
(MISO) and multi-input multi-output (MIMO). In this 
research, MIMO-LSTM model was identified as the optimal 

model, offering efficient implementation and accurate 
predictions up to 12 hours. Upon further research conducted 
by Behera et al. (2020) on the MIMO-TCN model, the TCN-
based model achieved high accuracy in local forecasting for 
up to 9 hours. Therefore, it can be concluded that the 
integration of CNN, LSTM, and TCN into weather forecasting 
models can address the challenges in traditional methods and 
enhance the accuracy and efficiency of forecasting weather. 
 In summary, both traditional and modern approaches to 
weather forecasting have been significant in our daily lives. 
The implementation of artificial intelligence (AI) has 
revolutionized weather forecasting, offering more 
lightweighted, accurate, adaptable, and real-time solutions 
compared to traditional methods. The integration of machine 
learning (ML) algorithms further enhances forecasting 
accuracy, through data-driven approaches. Notably, deep 
learning methodologies, especially LSTM networks, has 
demonstrated superior performance in capturing complex 
weather patterns. Therefore, LSTM is suggested to be further 
investigated to enhance the researchers’ understanding of its 
role in accurate and efficient weather forecasting. 

III. MATERIALS  
A. Dataset 

This study utilized the meteorological dataset shared by 
ROHAN LAL KSHETRY on Kaggle. The dataset includes 
various meteorological information such as temperature, 
wind speed, and humidity, spanning from the year 2009 to 
2016, providing approximately 96,000 time points of 
meteorological measurement data. 

The research objective is to build a model using deep 
learning techniques to predict future temperature changes. 
During the data preparation phase, the meteorological data 
were organized and processed to transform the time series 
data into a supervised learning problem, enabling the model 
to use past hours' weather information to predict the 
temperature at the next time point. Long Short-Term Memory 
(LSTM) network was chosen as the deep learning 
architecture, training the model to learn patterns from 
historical data through 100 training cycles. Finally, the 
model's performance is evaluated on the test set using the 
Root Mean Square Error (RMSE) to measure the difference 
between the actual temperature and the model's predicted 
temperature. 

B. Implementation 
To implement this model, Python 3.10 programming 

language is required. The main libraries used include 
keras.models for defining the Sequential model in Python, 
keras.layers for various tools to build neural network layers, 
sklearn.metrics for evaluating model performance, 
Matplotlib for creating visualizations, Pandas for data 
processing and analysis, and Numpy for numerical 
computations in Python. Additionally, sklearn.preprocessing 
is used to provide data preprocessing tools.  

In this research, the model is implemented using Google 
Colab. Typically, for running general machine learning tasks, 
it is recommended to have at least 4GB of memory, and 
installing Python, libraries, and storing databases may require 
at least 10GB of available disk space. However, in the case 
of using Google Colab, there is no need to worry about the 
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hardware requirements of the local machine since the code 
runs on cloud resources provided by Google. Therefore, the 
memory and disk space of the local machine of the 
researchers do not directly impact the operation of the 
weather forecasting model in Google Colab. 

IV. METHODS 

A. Preproccesing 
For the input weather forecast dataset, a series of 

processing measures were employed to ensure consistency 
and diversity in the training data, while preventing overfitting. 
Firstly, the data format was standardized to ensure a uniform 
structure for all weather forecast data, including information 
such as date, temperature, humidity, wind speed, etc., and to 
maintain consistency in the model's input data. For potential 
missing values, appropriate handling methods were applied, 
such as mean or median imputation, to ensure the integrity 
and availability of the dataset. When dealing with time series 
data, extraction of time features, including year, month, day, 
hour, etc., was performed to assist the model in capturing 
time-related patterns effectively. Numerical features 
underwent standardization to scale them to a similar range, 
avoiding the impact of differences between various features 
on the model's training.  

B. Model Architecture 
Using the Keras Sequential model, the architecture 

involved the stacking of LSTM layers, fully connected layers, 
and an output layer. The LSTM layer comprised 30 units, 
responsible for handling long-term dependencies in time 
series. The fully connected layer consisted of 256 nodes and 
utilized the ReLU activation function, with a Dropout layer 
to prevent overfitting. The final output layer, designed for 
regression tasks, contained one node with a linear activation 
function. The entire model was compiled with mean squared 
error loss function and the Adam optimizer. This structure 
enabled the neural network to comprehend patterns in time 
series for accurate temperature predictions during testing.  

C. Model Training 
The model underwent training using the mean squared 

error loss function and the Adam optimizer. Throughout the 
training process, the model adjusted weights and biases 
through multiple iterations to minimize the loss function, 
enhancing accuracy in temperature predictions. Training 
progress was monitored by observing changes in training loss 
and validation loss through visualizations. Finally, the model 
was evaluated by calculating the Root Mean Square Error 
(RMSE) to measure the difference between actual 
temperature and model-predicted temperature.  

D. Evaluation 
The primary metric for evaluating the model's prediction 

accuracy on the test set was the Root Mean Square Error 
(RMSE). RMSE serves as an indicator of the difference 
between the model's predicted results and the actual observed 
values. It involves summing the squares of prediction errors, 
averaging them, and taking the square root to provide a more 
interpretable measure of error. By computing and outputting 
RMSE, a clear understanding of the model's accuracy in 
predicting actual temperatures and the overall level of error 
between predicted results and real values is obtained. 

V. ALGORITHM IMPLEMENTATION 
The selected algorithm for weather forecasting in this 

study is Long Short-Term Memory (LSTM), which is a 
variant of Recurrent Neural Network (RNN) well-suited in 
analysing time-series data (Cebeci, 2019; Hewage et al, 2021; 
Ren et al., 2021). In LSTM, each block comprises of three 
crucial multiplicative units: the input gate, which receives 
input and determines whether to accept its current input; the 
forget gate, which allows the LSTM to discard previous 
memory; and the output gate, which determines what to be 
transferred and displayed (Ren et al., 2021). These features 
provide LSTM algorithms with the ability to selectively 
process current inputs, forget previous states, and decide what 
information to output, making them effective and efficient in 
capturing sequences, which is a crucial process in predicting 
weather.  

In this research, an LSTM-based weather forecasting 
model created by user priyanshu2015 on GitHub is 
employed. This model forecasts the temperature using 8 types 
of weather data from the previous three hours. The 
researchers have run the model using Google Colab and the 
parameters were identified and tested. 
A. Purpose 

In this research, the main objective is to investigate the 
application of the LSTM model in forecasting future weather 
based on the available data. The research aims to investigate 
the factors contributing to the accuracy of this model in 
predicting the weather. Historical weather information, like 
temperature, humidity, wind speed, wind bearings, visibility, 
and pressure are used to predict what the future weather might 
be like. This study aims to analyses how the LSTM model 
was trained and tested using this information to forecast 
weather. 
B. Parameters 

TABLE I.   PARAMETERS 

Parameter Value 
Batch size 128 

Number of epochs 100 

Loss function MSE 

Optimizer Adam 

 
 The parameters used in training this model include the 
batch size, number of epochs, loss function and optimizer. The 
initial values of the parameters used in the original source 
code are shown in TABLE I. In this research, the values will 
be modified by the researchers to assess how it impacts the 
model's performance. 

VI. RESULTS AND DISCUSSION 
In this section, the LSTM-based weather forecasting 

model will be implemented and trained with modified 
parameters (batch size, number of epochs, optimizer). The 
training loss, validation loss, time taken to conduct the 
training and the RMSE score are collected and analysed to 
compare the parameters and determine the most suitable 
parameters for an efficient and accurate weather forecasting 
model. 
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A. Discussion on Implementation 
To set up the model, the primary dataset 

(weatherHistory.csv) revolving around previous weather 
conditions, encompassing factors like temperature, humidity, 
and wind force, was loaded into Google Colab files. This 
information is used to predict the future weather. In order to 
make LSTM networks work well in predicting the weather, 
some important parameters require careful tuning to train the 
model. This paper focuses on finding suitable batch size, 
number of epochs, and different optimizers to improve 
weather predictions while maintaining efficiency by 
consuming less computer power.  

Firstly, batch size is modified to investigate its impact on 
the model’s accuracy and training time. This research paper 
examines how using different batch sizes (64, 256 and 512) 
instead of the usual 128, as suggested by GitHub user 
priyanshu2015, will affect how well the LSTM model works. 
Using smaller batch size makes the optimization process 
more exact, but it takes longer to train. While increasing the 
amount of batch sizes for training can result in a faster 
process, the accuracy of the outcomes may be compromised 
(Pramoditha, 2023). Therefore, it is important to determine 
the optimal batch size that ensures a balance between training 
time and accuracy.  

Secondly, the number of epochs determines the number 
of times the entire training dataset is processed by the 
learning algorithm during training (Vinayedula, 2023). This 
research experiments on different number of epochs, starting 
with 10, 50, 150, and 100, which is originally implemented 
in source code. The aim is to assess the influence of the 
number of iterations the model undergoes on its capacity to 
comprehend temporal patterns. The right number of epochs 
help make predictions that are accurate without making the 
model too simple or too complicated (DeepAI, 2020). Thus, 
this paper aims to find the ideal number of epochs to train the 
LSTM model.  

Optimization algorithms help to improve how well neural 
networks work by changing things like weights and learning 
speed to reduce losses. Using optimization algorithms is very 
important in making the model work better (Doshi, 2021). 
This research commences with the “Adam” (Adaptive 
Moment Estimation) optimizer, which was set by the source 
code author, priyanshu2015. Adam optimizer is a method 
often used in deep learning to improve how the model learns. 
This study aims to understand how different optimization 
algorithms, such as Stochastic Gradient Descent (SGD) and 
Root Mean Squared Propagation (RMSprop), impact the 
LSTM model’s learning ability from past data and accuracy 
in predicting the future.  

The performance of this weather forecasts model was 
assessed using a measure called Root Mean Squared Error 
(RMSE). The RMSE formula calculates the average 
difference between the actual and predicted values of the 
weather and then finds the square root of that average. The 
accuracy of the model’s predictions is computed by 
calculating the average size of error between the predicted 
values and actual values. The RMSE calculation is crucial in 
this research to demonstrate the performance of the LSTM 
model predicting weather (C3.ai, 2021).   

 

Fig. 1. Formula for MSE. 

Figure 1 shows the formula used to calculate the RMSE 
value. First, the MSE (1), showing how different the 
predicted and actual values are, on average, is computed. 
After that, the square root of MSE will be calculated to get 
the RMSE (2). This step is done to ensure the RMSE value 
has the same units as the original data for clarity. RMSE is a 
measure used to see how well a model is doing. The smaller 
RMSE values are, the better the model’s performance (C3.ai, 
2021).  

In simple terms, this research aims to assess the LSTM 
model’s accuracy in predicting weather by experimenting 
with different parameters and finally, choosing the ideal 
values or methods best suited for the model. 

B. Results 

TABLE II.  EPOCHS 

Epochs Average 
Training Loss 

Average 
Validation Loss 

RMSE Time Taken 
(s) 

10 0.0105 0.0049 2.827 43 
50 0.0036 0.0020 1.798 84 
100 0.0024 0.0014 1.648 259 
150 0.0022 0.0013 1.590 432 

To assess the impact of different epoch values on model 
accuracy, 10, 50, 150, and the original number of epochs, 
100, were tested using a batch size of 128 and Adam 
optimization algorithm. The result, as depicted in TABLE II, 
has shown a noticeable trend where, as the number of epochs 
increases, the average training loss, validation loss, and 
RMSE value of the model decrease. This suggests that the 
model's accuracy improves with a higher number of epochs. 
This is because, with each epoch, the model updates its 
weight and bias based on the training data, leading to a 
reduction in average training and validation loss and an 
improvement in prediction accuracy (Vinayedula, 2023). 
Among the experimented values, training the model with 150 
epochs resulted in the lowest RMSE score. However, it is also 
observed that the time taken to train the model at 150 epochs 
is significantly higher than the others. Additionally, a high 
number of epochs can also lead to overfitting, causing the 
model to fail in generalising new data. Therefore, it is 
important to select a suitable epoch value, which is 100 in this 
model, to achieve a balance between accuracy and training 
time and avoid overfitting.  

TABLE III.  BATCH SIZE 

Batch 
Size  

Average   
Training Loss  

Average   
Validation Loss  

RMSE  Time Taken 
(s)  

64  0.0022  0.0021 2.096  444  
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128  0.0010  0.0007 1.560  251  
256  0.0031 0.0015 1.748  157  
512  0.0036  0.0021 1.667  144  

 
In this experiment, the impact of different batch sizes (64, 

256, 512 and the original batch size 128) on model 
performance was evaluated for 100 epochs using the Adam 
optimizer. Observing the results in Table III, smaller batch 
sizes (64 and 128) showed lower training loss on the training 
set, possibly due to more frequent parameter updates, 
whereas larger batch sizes (256 and 512) exhibited poorer 
performance on training loss, indicating that the model 
struggled to adapt to the training data, leading to training 
instability. On the validation set, smaller batch sizes 
demonstrated lower validation loss, suggesting better 
generalization ability of the model, while larger batch sizes 
had a decreased generalization performance, possibly due to 
overfitting on the training data. A smaller batch size (128) has 
also exhibited relatively lower RMSE, indicating more 
accurate predictions on the test data as compared to larger 
batch sizes. Additionally, larger batch sizes allow for more 
parallel computation, resulting in shorter training times for 
the same number of epochs (Sabrepc, 2023). In summary, the 
choice of different batch sizes has a significant impact on 
model performance and training efficiency. Through a 
comprehensive analysis of RMSE, training loss, and 
validation loss, Batch Size 128 consistently performed 
relatively well, demonstrating lower RMSE and achieving a 
balance between training loss and validation loss, making it a 
potentially good compromise in this model. 

TABLE IV.  OPTIMIZER 

Optimizer Average 
Training Loss 

Average 
Validation Loss 

RMSE Time Taken 
(s) 

Adam 0.0036 0.0024 1.993 120 
SGD 0.0134 0.0113 5.061 136 

RMSprop 0.0042 0.0023 2.070 145 

  
 To investigate the performance of the model when using 
different optimizers, two additional optimizers Stochastic 
Gradient Descent (SGD) and Root Mean Squared 
Propagation (RMSprop) are chosen on top of the original 
Adam optimizer while maintaining the original number of 
epochs (100) and batch size (128). The results are listed in 
Table IV. In terms of the average training loss, it is found out 
that SGD obtained the least satisfactory result out of the three, 
while Adam had the lowest loss with RMSprop following 
close behind. As for average validation loss, RMSprop had a 
slight advantage over Adam, while SGD still fell behind. 
According to the RMSE values obtained, it is safe to assume 
that SGD is not a suitable optimizer for this model with a high 
value of 5.061. When comparing the time taken to train using 
Adam and RMSprop optimizer, Adam is recorded to be 25 
seconds quicker. According to an online article written by 
Agarwal (2023), it is stated that Adam optimizer has a much 
faster converge rate than other optimizers, which allows to 
reach its performance much sooner for quicker training times. 
Hence, it can be concluded that the original optimizer, Adam, 
is the superior choice for training and testing for this model. 

VII. CONCLUSIONS 
In conclusion, this paper has investigated some essential 

parameters to find out the best choices that could help the 
LSTM model reach its best performance when predicting the 
weather. Based on the experiments conducted, it is found that 
the original parameters selected were already the most 
suitable for its model, which were 100 epochs, batch size of 
128 and the Adam optimizer. There are some parameters that 
performed better than others in certain aspects, but other 
conditions should also be considered. As an example, 
although the epoch values of 150 had a better performance 
than 100 epoch values for the model, it took a longer time to 
complete. It should be noted that time taken is an important 
factor for real-time forecasting. Therefore, we may conclude 
that the current LSTM model has excellent performance, but 
further research should be made to help enhance its accuracy 
for weather prediction. 
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